首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Detergent-resistant membrane raft fractions have been prepared from human, goat, and sheep erythrocyte ghosts using Triton X-100. The structure and thermotropic phase behaviour of the fractions have been examined by freeze-fracture electron microscopy and synchrotron X-ray diffraction methods. The raft fractions are found to consist of vesicles and multilamellar structures indicating considerable rearrangement of the original ghost membrane. Few membrane-associated particles typical of freeze-fracture replicas of intact erythrocyte membranes are observed in the fracture planes. Synchrotron X-ray diffraction studies during heating and cooling scans showed that multilamellar structures formed by stacks of raft membranes from all three species have d-spacings of about 6.5 nm. These structures can be distinguished from peaks corresponding to d-spacings of about 5.5 nm, which were assigned to scattering from single bilayer vesicles on the basis of the temperature dependence of their d-spacings compared with the multilamellar arrangements. The spacings obtained from multilamellar stacks and vesicular suspensions of raft membranes were, on average, more than 0.5 nm greater than corresponding arrangements of erythrocyte ghost membranes from which they were derived. The trypsinization of human erythrocyte ghosts results in a small decrease in lamellar d-spacing, but rafts prepared from trypsinized ghosts exhibit an additional lamellar repeat 0.4 nm less than a lamellar repeat coinciding with rafts prepared from untreated ghosts. The trypsinization of sheep erythrocyte ghosts results in the phase separation of two lamellar repeat structures (d = 6.00; 5.77 nm), but rafts from trypsinized ghosts produce a diffraction band almost identical to rafts from untreated ghosts. An examination of the structure and thermotropic phase behaviour of the dispersions of total polar lipid extracts of sheep detergent-resistant membrane preparations showed that a reversible phase separation of an inverted hexagonal structure from coexisting lamellar phase takes place upon heating above about 30 °C. Non-lamellar phases are not observed in erythrocytes or detergent-resistant membrane preparations heated up to 55 °C, suggesting that the lamellar arrangement is imposed on these membrane lipids by interaction with non-lipid components of rafts and/or that the topology of lipids in the erythrocyte membrane survives detergent treatment.  相似文献   

2.
The lipid composition and structure of detergent-resistant membrane rafts from human, goat, and sheep erythrocytes is investigated. While the sphingomyelin:cholesterol ratio varied from about 1:5 in human to 1:1 in sheep erythrocytes a ratio of 1:1 was found in all raft preparations insoluble in Triton X-100 at 4 degrees C. Excess cholesterol is excluded from rafts and saturated molecular species of sphingomyelin assayed by gas chromatography-mass spectrometry determines the solubility of cholesterol in the detergent. Freeze-fracture electron microscopy shows that vesicles and multilamellar structures formed by membrane rafts have undergone considerable rearrangement from the original membrane. No membrane-associated particles are observed. Synchrotron X-ray diffraction studies showed that d spacings of vesicle preparations of rafts cannot be distinguished from ghost membranes from which they are derived. Dispersions of total polar lipid extracts of sheep rafts show phase separation of inverted hexagonal structure upon heating and this phase coexists with multilamellar structures at 37 degrees C.  相似文献   

3.
We have examined the role of receptor clustering in intact erythrocyte membranes exhibiting enhanced lectin-mediated cell agglutination by analyzing freeze-fracture and freeze-etch images of human erythrocytes labeled with ferritin-conjugated soybean agglutinin. We find that trypsinization and fixation of intact erythrocytes, in either order, causes no alteration of the random distribution of ferritin-conjugated soybean agglutinin on the surfaces of these cells as compared to their distribution on the surfaces of fixed erythrocytes and untreated erythrocyte ghosts. Furthermore, clustering of the intramembranous particles in the membrane of intact erythrocytes was not found with any of the cells described above.We conclude that clustering of the soybean agglutinin receptors is not a major factor involved in the enhanced agglutination of intact trypsinized erythrocytes. Caution is necessary in transferring information obtained with erythrocyte ghosts, where clustering can be induced, to intact erythrocytes.  相似文献   

4.
The calcium dependence and the time course of phosphatidylethanolamine and phosphatidylcholine degradation by sheep erythrocyte membrane suspensions in presence of Triton X-100 were investigated. One enzyme with phospholipase A2 specificity was found to be responsible for both phosphatidylethanolamine and phosphatidylcholine degradation.The localization of this enzyme in the membrane of the sheep erythrocyte was investigated by proteolytic treatment of sealed erythrocyte ghosts from the outside and of ghosts which had both sides of the membrane exposed to chymotrypsin. The inability of sealed ghosts to take up chymotrypsin was followed by flux measurements of [14C]dextran carboxyl previously trapped in the ghosts. No efflux of the marker was found during the proteolytic treatment. By comparing the residual phospholipase activities in the membranes from both ghost preparations, we concluded that the phospholipase is oriented to the exterior of the sheep erythrocyte.  相似文献   

5.
The calcium dependence and the time course of phosphatidylethanolamine and phosphatidylcholine degradation by sheep erythrocyte membrane suspensions in presence of Triton X-100 were investigated. One enzyme with phospholipase A2 specificity was found to be responsible for both phosphatidylethanolamine and phosphatidylcholine degradation.The localization of this enzyme in the membrane of the sheep erythrocyte was investigated by proteolytic treatment of sealed erythrocyte ghosts from the outside and of ghosts which had both sides of the membrane exposed to chymotrypsin. The inability of sealed ghosts to take up chymotrypsin was followed by flux measurements of [14C]dextran carboxyl previously trapped in the ghosts. No efflux of the marker was found during the proteolytic treatment. By comparing the residual phospholipase activities in the membranes from both ghost preparations, we concluded that the phospholipase is oriented to the exterior of the sheep erythrocyte.  相似文献   

6.
The calcium dependence and the time course of phosphatidylethanolamine and phosphatidylcholine degradation by sheep erythrocyte membrane suspensions in presence of Triton X-100 were investigated. One enzyme with phospholipase A2 specificity was found to be responsible for both phosphatidyl-ethanolamine and phosphatidylcholine degradation. The localization of this enzyme in the membrane of the sheep erythrocyte was investigated by proteolytic treatment of sealed erythrocyte ghosts from the outside and of ghosts which had both sides of the membrane exposed to chymotrypsin. The inability of sealed ghosts to take up chymotrypsin was followed by flux measurements of [14C]dextran carboxyl previously trapped in the ghosts. No efflux of the marker was found during the proteolytic treatment. By comparing the residual phospholipase activities in the membranes from both ghost preparations, we concluded that the phospholipase is oriented to the exterior of the sheep erythrocyte.  相似文献   

7.
Localization of globoside and Forssman glycolipids on erythrocyte membranes   总被引:5,自引:0,他引:5  
Using the freeze-etch technique, the membrane localization of globoside, a principal glycolipid in human erythrocytes, and Forssman antigen, the chief glycolipid in sheep erythrocytes was evaluated using ferritin and colloidal gold as morphological markers for rabbit antibodies prepared against these glycolipids. Brief trypsinization of human red cell ghosts markedly aggregated intramembranous particles and permitted labeling of globoside, which appeared in a clustered arrangement. The aggregates of ferritin-anti-globoside differed from those of ferritin-wheat germ agglutinin, a label for glycophorin, which corresponded with the aggregates of intramembranous particles. Double-labeling of human trypsinized ghosts with anti-globoside/ Staphylococcal protein A-colloidal gold and ferritin-wheat germ agglutinin indicated that the patterns of labeling were different and that the aggregates of globoside did not bear a direct relationship to the intramembranous particles, which represent transmembrane proteins. Resealed sheep erythrocyte ghosts labeled with ferritin-conjugated rabbit anti-Forssman showed small clusters of Forssman glycolipid on the erythrocyte surface, which could be markedly aggregated with a second goat anti-rabbit antibody, indicating relative mobility of the small glycolipid domains. The distribution of ferritin-anti-Forssman label in sheep ghosts treated at pH 5.5 to aggregate intramembranous particles also did not show definite correspondence between intramembranous particles and the clusters of ferritin-anti-Forssman.  相似文献   

8.
Quinn PJ  Wolf C 《The FEBS journal》2010,277(22):4685-4698
Protein sorting and assembly in membrane biogenesis and function involves the creation of ordered domains of lipids known as membrane rafts. The rafts are comprised of all the major classes of lipids, including glycerophospholipids, sphingolipids and sterol. Cholesterol is known to interact with sphingomyelin to form a liquid-ordered bilayer phase. Domains formed by sphingomyelin and cholesterol, however, represent relatively small proportions of the lipids found in membrane rafts and the properties of other raft lipids are not well characterized. We examined the structure of lipid bilayers comprised of aqueous dispersions of ternary mixtures of phosphatidylcholines and sphingomyelins from tissue extracts and cholesterol using synchrotron X-ray powder diffraction methods. Analysis of the Bragg reflections using peak-fitting methods enables the distinction of three coexisting bilayer structures: (a) a quasicrystalline structure comprised of equimolar proportions of phosphatidylcholine and sphingomyelin, (b) a liquid-ordered bilayer of phospholipid and cholesterol, and (c) fluid phospholipid bilayers. The structures have been assigned on the basis of lamellar repeat spacings, relative scattering intensities and bilayer thickness of binary and ternary lipid mixtures of varying composition subjected to thermal scans between 20 and 50 °C. The results suggest that the order created by the quasicrystalline phase may provide an appropriate scaffold for the organization and assembly of raft proteins on both sides of the membrane. Co-existing liquid-ordered structures comprised of phospholipid and cholesterol provides an additional membrane environment for assembly of different raft proteins.  相似文献   

9.
The process of the formation of vesicles from pigeon erythrocyte membranes was studied. Mildly alkaline solutions of low ionic strength, which reduce human erythrocyte membranes to small vesicles depleted of spectrin and other proteins, have no such effect on pigeon erythrocyte ghosts. A distinct phase of removal of membrane proteins, including spectrin, began to occur only when pigeon erythrocyte membranes were exposed to 0.2 mM EDTA adjusted to pH values above 10.2. Vesicles which demonstrated Na+-dependent amino acid transport were generated between the pH values 10.8 and 11.4. The results show that peripheral proteins, notably spectrin, maintain the integrity of the pigeon erythrocyte ghost. The interaction of these proteins with the membrane is rather different from that well studied in the human erythrocyte ghost and the possible significance of this for the pigeon erythrocyte is discussed.  相似文献   

10.
We have studied the differences between erythrocytes and erythrocyte ghosts as target membranes for the study of Sendai virus fusion activity. Fusion was monitored continuously by fluorescence dequenching of R18-labeled virus. Experiments were carried out either with or without virus/target membrane prebinding. When Sendai virus was added directly to a erythrocyte/erythrocyte ghost suspension, fusion was always lower than that obtained when experiments were carried out with virus already bound to the erythrocyte/erythrocyte ghost in the cold, since with virus prebinding fusion can be triggered more rapidly. Although virus binding to both erythrocytes and erythrocyte ghosts was similar, fusion activity was much more pronounced when erythrocyte ghosts were used as target membranes. These observations indicate that intact erythrocytes and erythrocyte ghosts are not equivalent as target membranes for the study of Sendai virus fusion activity. Fusion of Sendai virus with both target membranes was inhibited when erythrocytes or erythrocyte ghosts were pretreated with proteinase K, suggesting a role of target membrane proteins in this process. Treatment of both target membranes with neuraminidase, which removes sialic acid residues (the biological receptors for Sendai virus) greatly reduced viral binding. Interestingly, this treatment had no significant effect on the fusion reaction itself.  相似文献   

11.
Well-defined X-ray diffraction patterns have been recorded from erythrocyte membranes in the frozen state. At ?40°C, lamellar periodicities range from 19 to 95 nm depending on the glycerol content (0–40%, respectively). Freeze-fracture electron micrographs of samples frozen in two stages to approximate to the diffraction conditions show ice formation external to membrane stacks. The membrane stacks have periodicities of the same order of magnitude as those obtained by X-ray diffraction.  相似文献   

12.
Oriented and periodically stacked sheep erythrocyte ghost membrane specimens were prepared by agglutination of the ghosts with phytohemagglutinin M and sedimentation, and were studied by X-ray diffraction. The spatial orientation of the planes of the membranes in the diffracting stack was determined from the lamellar reflections of the periodic stacking. Equatorial diffraction at (10.5 Å)−1 and a (1.5 Å)−1 reflection were recorded which correlate with side-to-side packed transmembrane α-helices in the agglutinated membrane. A broad (4.6 Å)−1 ring with strong equatorial accentuation and broad maxima at about (2.2 Å)−1 and (1.2 Å)−1 were observed which are attributed to the hydrocarbon chain arrangement in lipid phases of the agglutinated ghost membrane.  相似文献   

13.
To advance our understanding of the organization of cholesterol within cell membranes, we used digitonin in freeze-fracture investigations of model lipid vesicles and tissues. Cholesterol suspensions or multilamellar liposomes composed of phosphatidylcholine with and without cholesterol were exposed to digitonin. Freeze-fracture replicas of those multilamellar liposomes containing cholesterol displayed either 50--60-nm wide intramembrane corrugations or extramembrane tubular complexes. Comparable intramembrane hemitubular scallops and extra-cellular free tubular complexes were observed in thin sections. Exposure of sperm, erythrocytes (whole and ghosts), and intact tissues (skin, liver, adrenal gland, epididymis) to digitonin produced the same types of intra- and extramembrane complexes or furrows as were formed in liposomes. The plasma membrane of guinea pig serum tail had two unfurrowed regions: the annulus and the zipper. Incubating erythrocyte membranes with digitonin resulted in rapid displacement of cholesterol, accompanied by intramembrane particle clustering and membrane faceting, a feature which we did not see in the intact epithelia studied. In freeze-fractured epithelia, we found that plasma membranes, lysosomes, and some vesicular organelles commonly furrowed, but that mitochondrial membranes and nuclear envelopes were generally spared, correlating well with their known cholesterol content. Finally, plasma membrane corrugations approached but did not impinge on either gap or tight junctions, or on coated vesicles. We conclude that freeze-fracture of membranes exposed to digitonin: (a) reveals distinctive cholesterol- digitonin structural complexes; (b) distinguishes cholesterol-rich and - poor organelle membranes; and (c) demonstrates membrane domains rich or poor in cholesterol.  相似文献   

14.
The incorporation of pyrene within the membrane interior of goat erythrocyte ghost has been estimated from its fluorescence spectrum. The excimer to monomer fluorescence intensity ratio of embedded pyrene is a function of the fluidity of its environment and the magnitude of its incorporation. Our study shows that this ratio is considerably less (30%) in a pre-sealed ghost than in the non-sealed ghost revealing that the site of incorporation of the probe is indeed the hydrophobic interior of the membrane; as in the later case, the probe has access to the membrane interior from both sides of the membrane. Our study on kinetics of molecular exchange indicates a very fast (of the order of seconds) transfer rate of pyrene from probed to unprobed erythrocyte ghosts through the aqueous phase rather than actual fusion of the membranes.  相似文献   

15.
Approximately 98% of turkey erythrocyte phospholipase C (PLC) is cytosolic and is released by hypotonic lysis of the cells and extensive washing of the resultant erythrocyte ghosts. Well washed turkey erythrocyte ghosts retain a fraction of tightly associated PLC, which is activated by the P2y-purinergic receptor and G-protein present in ghost membranes. The particulate PLC is sufficient to couple to all the available purinergic receptor-regulated G-protein. In contrast to ghosts, turkey erythrocyte plasma membrane preparations contain no detectable PLC. To investigate the subcellular location of the ghost-associated PLC, cytoskeletons were prepared by Triton X-100 extraction of turkey erythrocyte ghosts. The ghost-associated PLC was quantitatively recovered in cytoskeleton preparations. Cytoskeleton-associated PLC was solubilized by sodium cholate extraction, partially purified, and shown to reconstitute with PLC-free plasma membrane preparations in an agonist and guanine nucleotide-dependent fashion, indicating that the cytoskeleton-associated PLC is G-protein-regulated. Dissociation of erythrocyte ghost cytoskeletons with the actin-binding protein DNase 1 resulted in a dose-dependent inhibition of agonist and guanine nucleotide-stimulated PLC responses in ghosts and caused release of PLC from ghost or cytoskeleton preparations. These data demonstrate the specific association of a receptor and G-protein-regulated PLC with a component of the detergent-insoluble cytoskeleton and indicate that the integrity of the actin cytoskeleton is important for localization and effective coupling of PLC to the relevant G-protein.  相似文献   

16.
Microdomains known as "rafts" have been isolated from many cell types as detergent-resistant membranes (DRMs) and are enriched in sphingolipids and cholesterol. However, there has been considerable controversy over whether such domains are found in native membranes or are artificially generated by the purification procedure. This controversy is based at least in part on the fact that raft membranes were first detected following detergent extraction in the cold. We isolated two plasma membrane fractions, without detergent treatment, using a discontinuous sucrose density gradient. One fraction was designated "light" and the other "heavy." These fractions were compared with DRMs, which were isolated in the presence of 1% Triton X-100. We found that Xenopus DRMs are enriched with sphingomyelin and cholesterol and exhibit a phase state similar to the liquid-ordered phase. Comparison of DRM complexes with the light and heavy plasma membrane fractions revealed some physical and biochemical similarities between the light fraction of the plasma membrane and the DRM complexes, based on (1) the phosphatidylcholine/sphingomyelin ratio and (2) the protein composition visualized on a two-dimensional gel. These two fractions are also quite similar in their thermotropic phase behavior, and their high levels of ganglioside GM1. We conclude that the light membrane fraction isolated in a detergent-free environment has many of the characteristics normally associated with DRMs.  相似文献   

17.
We have studied binding and membrane transfer rates of unsaturated long-chain fatty acids in sheep red cells, as previously done for human red cells, in order to elucidate the transport mechanism. Observed differences must be assigned to the different composition of the membrane in the two species. Equal surface areas of the membranes of the two species have similar binding capacities and affinities for palmitic-, linoleic-, oleic- and arachidonic acid at 37°C. The competitive bindings of linoleic- and arachidonic acid as well as the distribution of bound arachidonic acid on the two sides of the membrane are not different in the two species. However, the rate constants for membrane transfer in sheep are less than half of those measured previously for human ghosts. This finding is confirmed by the exchange efflux kinetics of ghosts containing albumin-bound fatty acid. Studies of sheep ghost membranes with oleic-, arachidonic- and linoleic acid reveal a proportionality between the membrane transfer rate constants and the number of fatty acid double bonds, as found previously for human ghost membrane, and the effect of double bonds is in harmony with a large negative activation entropy for diffusion through the membrane. The established replacement of lecithin by sphingomyelin with a low unsaturation fatty acid index in sheep membranes probably causes a lower transversal lipid phase fluidity. Double bonds diminish the flexibility of hydrocarbon chains and thus the large negative activation entropy of diffusion across the membrane. The smaller transfer rate constants of the three unsaturated fatty acids in sheep membranes support the hypothesis that the transfer is diffusion in protein defined annular lipid domains and not carrier mediated. Received: 24 February 1999/Revised: 10 June 1999  相似文献   

18.
The temperature dependence of ATPase activities and stearic acid spin label motion in red blood cells of normal and MH-susceptible pigs have been examined. Arrhenius plots of red blood cell ghost Ca-ATPase and calmodulin-stimulable Ca-ATPase activities were identical for both normal and MH erythrocyte ghosts. Arrhenius plots of Mg-ATPase activity exhibited a break (defined as a change in slope) at 24 degrees C in both MH and normal erythrocyte ghosts. However, below 24 degrees C the apparent activation energy for this activity was less in MH than normal ghosts. To determine whether breaks in ATPase Arrhenius plots could be correlated with changes in the physical state of the red blood cell membrane, the spin label 16-doxyl-stearate was introduced into the bilayer of both erythrocyte ghosts and red blood cells. With both ghosts and intact cells, at each temperature examined, the mobility of the probe in the lipid bilayer, as measured by electron paramagnetic resonance, was greater in normal than in MH membranes. While there were no breaks in Arrhenius plots for probe motion in the erythrocyte ghosts, the apparent activation energy for probe motion was significantly greater in normal than in MH ghost membranes. While there was no break in the Arrhenius plot of probe motion in normal intact red blood cell membranes, there were breaks in the Arrhenius plot of probe motion at both 24 and 33 degrees C in intact MH red blood cell membranes. Based on the altered temperature dependence of Mg-ATPase activity and spin probe motion in membranes derived from MH red blood cells, we conclude that there may be a generalized membrane defect in MH pigs which is reflected in the red blood cell as an altered membrane composition or organization.  相似文献   

19.
Human erythrocytes are terminally differentiated, nonendocytic cells that lack all intracellular organelles. Here we show that their plasma membranes contain detergent-resistant membrane rafts that constitute a small fraction (4%) of the total membrane protein, with a complex mixture of proteins that differentially associate with rafts. Depletion of raft-cholesterol abrogates association of all proteins with no significant effect on cholesterol:protein ratios in the rest of the membrane, lipid asymmetry, deformability, or transport properties of the bilayer, indicating that cholesterol is critical for protein assembly into rafts and suggesting that rafts have little influence on several erythrocyte functions. Erythrocytes from patients with paroxysmal nocturnal hemoglobinuria, which lack glycosylphosphatidylinositol-anchored proteins, show significant elevation in raft-cholesterol but no increase in raft protein association, suggesting that raft assembly does not require glycosylphosphatidylinositol-anchored proteins, raft proteins do not bind directly to cholesterol, and only threshold levels of raft-cholesterol are critical for protein recruitment. Loss of glycosylphosphatidylinositol-anchored proteins had no effect on erythrocytic infection by malarial parasite or movement of raft markers into the parasite's vacuole. However, infection is blocked following raft-cholesterol disruption, suggesting that erythrocyte rafts can be functionally exploited and providing the first evidence for the involvement of host rafts in an apicomplexan infection.  相似文献   

20.
This paper demonstrates the translational movement along the plane of the human erythrocyte ghost of the membrane particles exposed by freeze-fracture. The membrane particles can be aggregated by incubation of the ghosts in media with a pH in the vicinity of 5 5 or 3 5. The particles are disaggregated in neutral and alkaline media (pH 9 5) and also at pH 4.5 Aggregation of the particles at pH 5.5 is reversible, prevented by prefixation in glutaraldehyde and by media of high ionic strength. Particle aggregation occurs within 2–4 min. These results are consistent with the concept that the erythrocyte ghost membrane is a planar fluid domain formed by a bilayer membrane continuum which is interrupted by localized, yet mobile, proteic intercalations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号