首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand whether genotypic variation in acid phosphatase (APase) activity in rapeseed (Brassica napus L.) induced by phosphorus (P) deficiency has impact on P efficiency,soil APase activity in the rhizosphere for rapeseed P-efficient genotype 102 and P-inefficient genotype 105 was measured against organic and inorganic P sources in the pot experiment,and the activities of root-secreted APase and leaf intracellular APase were investigated in different P-starvation periods in the nutrient solution.Higher activity of root-secreted APase in B.napus was induced under low P conditions.However,P nutrition and P uptake efficiency of the plants supplied with organic P were not directly related to the activity of root-secreted APase due to several confounding factors affecting APase availability.The higher activity of leaf APase improved P remobilization in plants and played important roles in enhancing P use efficiency,shown by the significant correlation between leaf APase activity and P use efficiency in a rapeseed recombinant inbred population of 135 lines.  相似文献   

2.
3.
To understand whether genotypic variation in acid phosphatase (APase) activity in rapeseed (Brassica napus L.) induced by phosphorus (P) deficiency has impact on P efficiency, soil APase activity in the rhizosphere for rapeseed P-efficient genotype 102 and P-inefficient genotype 105 was measured against organic and inorganic P sources in the pot experiment, and the activities of root-secreted APase and leaf intracellular APase were investigated in different P-starvation periods in the nutrient solution. Higher activity of root-secreted APase in B. napus was induced under low P conditions. However, P nutrition and P uptake efficiency of the plants supplied with organic P were not directly related to the activity of root-secreted APase due to several confounding factors affecting APase availability. The higher activity of leaf APase improved P remobilization in plants and played important roles in enhancing P use efficiency, shown by the significant correlation between leaf APase activity and P use efficiency in a rapeseed recombinant inbred population of 135 lines.  相似文献   

4.
This pot-based study investigated the influence of poultry manure and 1:1 mixture of poultry manure + biochar (produced from farmyard manure [FYM] or wood), on the biomass production and concentration of heavy metals in leaves of lettuce and spinach. The concentration of mineral nitrogen (N) and soluble inorganic phosphorus (P) of soils cultivated with these vegetables was also investigated. The application of poultry manure or FYM biochar in soil as 10% (equivalent to 60 t ha–1 , an estimated 1726.8 kg ha–1 N in poultry manure and 1353.9 kg ha–1 N in FYM) and 15% amendment (equivalent to 90 t ha–1 , an estimated 2590.2 kg ha–1 N in poultry manure and 2030.8 kg ha–1 N in FYM) significantly decreased biomass production of lettuce as compared to control (no fertilizer added) treatment. However, mixture of poultry manure with wood-derived biochar at both application rates (i.e., 10% and 15%) and with FYM biochar at lower application rate (i.e., 10%) caused 2–3-fold increase in aboveground plant biomass and 2–14-fold increase in root biomass (p < 0.05). Furthermore, as compared to control treatment, a significant ~2–3-fold increase in aboveground plant biomass was also observed in response to mixture of poultry manure with wood-derived and FYM derived biochars at 10% amendment rates. As compared to control treatment, concentration of mineral N and soluble inorganic P were higher in soils of all other treatments. In spinach, amendment of poultry manure or its co-amendment with biochar of FYM significantly increased aboveground plant biomass at 7% (equivalent to 42 t ha–1 ) as compared to 3% and 5% amendment rates (equivalent to 18 and 30 t ha–1 respectively). The concentration of soil mineral N and soil soluble mineral P was not different between treatments. In lettuce, wood-derived biochar did not reduce concentration of heavy metals (i.e., manganese (Mn), copper (Cu), iron, (Fe), cadmium (Cd), lead (Pb), nickel (Ni) and cobalt (Co) than FYM-derived biochar while in spinach, as compared to poultry manure, co-amendment of poultry manure with wood-derived biochar reduced concentration of heavy metals, indicating differential responses of crops to organic amendments.  相似文献   

5.
The waste tea fungal biomass produced during black tea fermentation was investigated as a dietary ingredient in poultry feeds. A small portion of fungal mat was used as starter culture for the next cycle while the major portion is discarded as waste. Hence a trial study was carried out to utilize the waste fungal biomass as a supplementary diet for broiler chicks. The fungal biomass contained 179.38 g of crude protein, 120 g crude fibre, 4.82 g phosphorus, 6.56 g of calcium and 8.92 MJ metabolizable energy per kilogram of biomass. The dried tea fungus showed phytase activity of 23 IU/mg protein. The supplementation of tea fungal inclusion (TFI) at 150 g/kg concentration in poultry feed increased the feed consumption, body weight, performance efficiency factor (PEF) and the carcass characters of test broilers significantly (P=0.01) over the control. The histopathological examination of liver showed no abnormalities and the mortality rate was zero.  相似文献   

6.
长期培肥黑土微生物量磷动态变化及影响因素   总被引:15,自引:5,他引:15  
长期采用两种不同量有机肥(M2、M4)、化肥(NPK)方式培肥黑土,研究微生物量P在作物生长季动态变化.结果表明。施用有机肥微生物量P显著高于施用化肥(NPK)和不施肥(CK),微生物量P分别为M48.75~47.68mg·kg^-1,M2 3.02~37.16mg·kg^-1,NPK1.59~10.62mg·kg^-1,CK0.76~6.74mg·kg^-1之间,波动性较大.M4、M2处理微生物量P最大值出现在抽雄吐丝期,NPK、CK处理最大值出现在大喇叭口期;施肥数量和种类不同所引起的黑土微生物量P的差异并未因季节变化及玉米生育时期影响而明显改变.微生物量P的动态变化与绝大多数黑土生物、理化特性指标的动态变化没有显著的相关性;微生物量P与黑土生物、理化特性(除全钾外),植物氮、磷、钾含量有极显著的正相关关系,与黑土含水量呈显著正相关关系.  相似文献   

7.
Phytate, the major organic phosphorus in soil, is not readily available to plants as a source of phosphorus (P). It is either complexed with cations or adsorbed to various soil components. The present study was carried out to investigate the extracellular phytase activities of tobacco (Nicotiana tabacum variety GeXin No.1) and its ability to assimilate external phytate-P. Whereas phytase activities in roots, shoots and growth media of Pi-fed 14-day-old seedlings were only 1.3–4.9% of total acid phosphatase (APase) activities, P starvation triggered an increase in phytase secretion up to 914.9 mU mg−1 protein, equivalent to 18.2% of total APase activities. Much of the extracellular phytase activities were found to be root-associated than root-released. The plants were not able to utilize phytate adsorbed to sand, except when insoluble phytate salts were preformed with Mg2+ and Ca2+ ions for supplementation. Tobacco grew better in sand supplemented with Mg-phytate salts (31.9 mg dry weight plant−1; 0.68% w/w P concentration) than that with Ca-phytate salts (9.5 mg plant−1; 0.42%), presumably due to its higher solubility. We conclude that insolubility of soil phytate is the major constrain for its assimilation. Improving solubility of soil phytate, for example, by enhancement of citrate secretion, may be a feasible approach to improve soil phytate assimilation.  相似文献   

8.
低磷石灰性土壤施磷和小麦秸秆后土壤微生物量磷的变化   总被引:4,自引:0,他引:4  
通过室内培养试验,向低磷的石灰性土壤加入磷(0、25、50、100 mg P·kg-1,KH2PO4)和小麦秸秆(5 g C·kg-1),25 ℃下培养90 d,研究在施肥和秸秆还田条件下土壤微生物量磷及微生物含磷量的变化特点,及其与土壤有效磷之间的关系.结果表明:土壤微生物量磷、微生物含磷量随加入无机磷量的提高而增加,最高分别为71.37和105.34 mg·kg-1;除非加入足够的无机磷(如100 mg·kg-1),否则同时加入秸秆会降低土壤微生物量磷和微生物含磷量,这种效果在培养初期更加明显.土壤微生物量磷和微生物含磷量与土壤有效磷之间存在显著的正相关关系(相关系数R2分别为0.26和0.40,n=49).加入的无机磷可迅速转化为微生物量磷,表观贡献率最高可达71%,秸秆的加入可使表观贡献率进一步提高.  相似文献   

9.
Transgenic Trifolium subterraneum expressing a phytase gene (phyA) from Aspergillus niger were generated. Five independently transformed lines showed an average 77‐fold increase in exuded phytase activity in comparison with null segregant and wild‐type controls. Unlike other phosphatases, exuded phytase activity was unaffected by P supply, verifying the constitutive expression of phyA. Transgenic T. subterraneum grown in agar with P supplied as phytate, took up 1.3‐ to 3.6‐fold more P than controls and had equivalent P uptake to plants supplied with orthophosphate. This unique phenotype was compromised when the plants were grown in soil. None of the five lines showed increased shoot biomass or total P uptake in an unfertilized, low‐P soil taken from under permanent pasture. With addition of P, one of the five transgenic lines had consistently greater P nutrition compared with control plants. Despite variable growth and P nutrition responses, P uptake per root length was on average greater for transgenic lines. Exudation of phytase by transgenic T. subterraneum allowed utilization of P from phytate in non‐sorbing, sterile laboratory media, but was less effective when plants were grown in soil. Release of extracellular phytase is therefore not the only requirement for the acquisition of P from endogenous soil phytate by plants.  相似文献   

10.
11.
长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响   总被引:25,自引:1,他引:25  
以中国农业科学院红壤实验站1982年布置的长期定位试验为研究对象,分析了长期双季稻绿肥轮作体系下水稻产量变化趋势、稻田土壤有机质变化特征及土壤活性有机质组成。结果表明,绿肥作物与双季稻轮作种植后,水稻产量显著高于冬闲对照,绿肥作物紫云英、油菜和黑麦草处理年平均水稻产量(1982-2008)分别为10.8 t?hm-2?a-1,10.2 t?hm-2?a-1和10.0 t?hm-2?a-1,较冬闲对照分别提高27.2%,20.5%和18.1%。试验前期(1982-1993)种植绿肥作物各处理之间水稻产量无显著差异,试验开展11年后(1994-2008)种植紫云英处理水稻产量显著高于油菜和黑麦草处理。长期双季稻绿肥轮作土壤有机质随年份显著增加,双季稻紫云英轮作土壤有机质积累速度最快,年增加0.31 g?kg-1,双季稻黑麦草次之,土壤有机质年增加0.28g?kg-1,双季稻油菜轮作土壤有机质年增加0.26g?kg-1。种植绿肥作物紫云英稻田土壤活性有机质显著高于其它处理。种植绿肥作物各处理土壤有机碳、全氮、土壤微生物量碳和土壤微生物量氮含量均显著高于冬闲对照。其中黑麦草和紫云英处理土壤微生物量碳含量及微生物熵显著高于油菜和冬闲对照处理。在湘南红壤丘陵双季稻区,种植绿肥作物对提高水稻产量、增加土壤有机质、提高土壤有机质活性具有重要意义,绿肥选择上以紫云英对水稻产量和稻田土壤培肥综合效果最好。  相似文献   

12.
J Liu  F Zhang 《应用生态学报》2000,11(3):360-364
The effects of long-term applying fertilizer P and manure on the pools of soil total P and inorganic P and the crop yield in rotation of winter wheat-summer maize-->spring maize were studied. The results showed that the pool of soil total P and inorganic P were increased by applying fertilizer P and manure, and the phosphorus mostly accumulated in soil was inorganic P. The critical amounts of fertilizer P (P2O5) for balancing soil P were 94.7 kg.hm-2 to winter wheat-summer maize and 51.5 kg.hm-2 to spring maize. Based on regression equations, the application rates of fertilizer P (P2O5) for economic optimum and highest yields were 135.8 and 149.8 kg.hm-2 to winter wheat-summer maize, and 88.6 and 95.9 kg.hm-2 to spring maize, respectively.  相似文献   

13.
Phosphorus (P) starvation is highly notorious for limiting plant growth around the globe. To combat P-starvation, plants constantly sense the changes in their environment, and elicit an elegant myriad of plastic responses and rescue strategies to enhance P-solublization and acquisition from bound soil P-forms. Relative growth responses, P-solublization and P-acquisition ability of 14 diverse Brassica cultivars grown with sparingly soluble P-sources (Rock-P (RP) and Ca_3(PO_4)_2 (TCP)) were evaluated in a solution culture experiment. Cultivars showed considerable genetic diversity in terms of biomass accumulation, concentration and contents of P and Ca in shoots and roots, P-stress factor (PSF) and P use efficiency.Cultivars showed variable P-stress tolerance, and cultivars depicting low PSF and high P-efficiency values were better adaptable to P-starvation. In experiment 2, after initial feeding on optimum nutrition for 12 d after transplanting (DAT),clasa-Ⅰ (low P-tolerant (Oscar and Con-Ⅱ)) and class-Ⅱ (low P-sensitive (Gold Rush and RL-18)) cultivars were exposed to P-free environment for 25 d. All of the cultivars remobilized P from above ground parts to their roots during growth in P-free environment, the magnitude of which was variable in tested cultivars. P-concentrations ([P]s) at 37 DAT were higher in developing compared with developed leaves. Translocation of absorbed P from metabolically inactive to active sites in P-stressed plants may have helped claaa-Ⅰ cultivars to establish a better rooting system, which provided a basis for enhanced P-utilization efficiency (PUE) and tolerance against P-stress. By supplying TCP and RP spatially separated from other nutrients in split root study, class-Ⅰ cultivars were still able to mobilize RP and TCP more efficiently compared with class-Ⅱ cultivars. To compare the growth behavior under P-stress, cultivate were grown in pots for 41 d after sowing, using a soil low in P (NaHCO_3-extractabie P=3.97 mg/kg, Mehlich-Ⅲ-extractable P=6.13 mg/kg) with (+P=60 mg P/kg soil) or without P addition (OP) in study 4. Tested cultivars showed genetic diversity in PUE, P-efficiency (PE), P-efficiency ratio (PER) and PSF. P-stress markedly reduced biomass and plant P contents. Cultivars that produced higher root biomass accumulated higher total P-contents (r=0.98~(**)), which in turn was related negatively to PSF (r=-0.95~(**)) and positively to shoot and total biomass. PER and PE showed significant correlations with shoot P-contents and biomass. Cultivars depicting high PUE and PE, and low PSF values showed better growth behavior under low soil P-environment. Systematic analysis and deployment of the plant rescue traits underlying the nutrient acquisition, assimilation, utilization and remobilization under P-starvation will bring more sparingly soluble P into cropping systems and will help to scavenge more P from plant unavailable bound P reserves.  相似文献   

14.
Potential impact of different levels and sources of organic composts on activities of phosphatases (acid and alkaline phosphatase, phosphodiesterase, and inorganic pyrophosphatase) was studied after three years of continuous application. Enzyme activities were compared with microbial biomass P and available P. Experimental plots were divided based on the organic source into three groups: those receiving farmyard manure (FYM), vermicompost (VC) and Lantana compost (LC). Microbial biomass P (11.7 g kg(-1) soil), available P (24.0 g kg(-1) soil) and acid phosphatase (1.3 mg g(-1) p-NP g(-1) soil h(-1)) was highest in highest dose of VC. Acid phosphatase activity was high in all plots, including those where microbial biomass P levels were low. Most of the phosphatase activities were significantly correlated with available P in FYM and VC. These relationships were negative for LC treatments. Results showed that application of earthworm casts is helpful in faster transformation of organic P by facilitating better environment to microbes and plant roots.  相似文献   

15.
洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系   总被引:37,自引:0,他引:37  
以洞庭湖3类典型湿地的8个土壤剖面为代表,研究了土壤碳、氮、磷,微生物量碳、氮、磷和土壤物理性状的分布特征.结果表明,土壤表层有机碳含量为19.63~50.20 g·kg-1,微生物量碳为424.63~1 597.36 mg·kg-1,微生物量碳占有机碳的比例为3.17%~4.82%;土壤表层全氮1.85~4.45 g·kg-1,微生物量氮5.90~259.47 mg·kg-1,微生物量氮占全氮的比例3.13%~6.42%;土壤表层微生物量磷含量顺序为:湖草洲滩地(200.99 mg·kg-1)>垦殖水田(163.27 mg·kg-1)>芦苇洲滩地(24.16 mg·kg-1),微生物量磷占全磷的比例为1.09%~11.20%;土壤表层容重0.65~1.04 g·cm-3;土壤表层粘粒(<0.001mm)26.24%~39.48%.土壤表层有机碳、全氮、微生物量氮、微生物量磷的含量,湖草洲滩地>垦殖水田>芦苇洲滩地.土壤表层微生物量碳,垦殖水田和湖草洲滩地接近,而大于芦苇湿地;土壤表层容重,芦苇洲滩地>垦殖水田>湖草洲滩地;土壤表层<0.01 mm、<0.001 mm粘粒,湖草洲滩地、芦苇洲滩地>垦殖水田.湿地土壤剖面中有机碳、微生物量碳、全氮、微生物量氮、微生物量磷、容重以及微生物量碳占有机碳的比例、微生物量氮占全氮的比例、微生物量磷占全磷的比例均随深度的增加而降低,至一定深度稳定,而土壤全磷在剖面上下的差异很小.湿地土壤微生物量碳、氮、磷之间呈极显著的正相关关系;土壤容重与有机碳、全氮、微生物量碳、氮、磷之间呈极显著指数负相关关系.湿地土壤<0.001 mm粘粒与有机碳、全氮、微生物量碳、氮、磷含量呈极显著对数正相关关系.  相似文献   

16.
在初始磷浓度为1.25 mmol.L-1的MS培养基中,甘蔗悬浮细胞在继代后的1 d之内几乎将磷完全吸收.此后,细胞在数天内仍能继续生长.缺磷细胞对磷的吸收动力学参数Imax增加,Km减少.在培养过程中,缺磷细胞的无机磷含量变化不大,但随着培养时间的延长,细胞酸性磷酸酶活性逐渐升高,且在培养的第8天,活性增加4倍.甘蔗悬浮细胞中不仅有植酸酶的存在,且在培养的第8天,缺磷细胞植酸酶活性比不缺磷的增高2.5倍.  相似文献   

17.
Alum is used to reduce environmental pollutants in poultry production. Alum decreases NH3 volatilization and increases total N and NH4+-N compared to untreated poultry manure. Nitrification in poultry wastes could therefore be stimulated due to higher NH4+ concentrations or could be inhibited because the soil environment is acidified. A 10-day laboratory study was conducted to study potential nitrification rates in soil slurries (20 g soil in 150 ml water) amended with 2.0 g alum-treated poultry manure. Fecal bacteria, NH4+, NO2-, NO3-, orthophosphate, pH, and NH3 were measured at 2-day intervals. Alum significantly reduced fecal bacteria concentrations through day 6. Water-soluble P was reduced 82% by day 10. Alum-treated manure had significantly increased NH4+ concentrations by day 8 and 10, and significantly decreased NO2- and NO3- concentrations by days 6-10. Alum's effect on potential nitrification was inhibitory in the soil environment. Slurries with alum-treated poultry manure had reduced nitrification rates, fecal bacteria, and soluble P. Therefore, in addition to reducing P loss, alum could temporarily reduce the risk for environmental pollution from land-applied manures in terms of both NO3- and fecal bacteria loss.  相似文献   

18.
多花黑麦草在酸化铅锌尾矿上的定植和生长   总被引:6,自引:0,他引:6  
铅锌矿尾矿上设置长喙田菁压青和不压青处理,在此基础上研究多花黑麦草的萌发、生长和重金属积累情况.结果表明,种植长喙田菁改善了尾矿理化性状,尤其是提高了有机质、全N、有效态磷和K的含量.尾矿的强酸性环境(pH<3)是影响黑麦草在其上定植的主要因素.施用石灰可暂时改善尾矿酸度,但实验结束时尾矿酸度几乎完全恢复原状.因此,施用石灰可能只对种子发芽产生作用.大多数情况下多花黑麦草能在尾矿上萌发、生长和定植,并产生较大的生物量(DM1.4~3.2t·km^-2),表现出对酸性尾矿环境的一定的适应性.与未栽培长喙田菁的对照相比,栽培长喙田菁处理以及栽培长喙田菁并压青处理分别使多花黑麦草的生物量提高了4.8%~39.5%和7.7%~139.5%,其中压青处理又比不压青处理提高了2.7%~75.8%.“长喙田菁-多花黑麦草”植被系列是一个成功的铅锌矿尾矿废弃地复垦的先锋阶段  相似文献   

19.
Use of suitable plants that can extract and concentrate excess P from contaminated soil serves as an attractive method of phytoremediation. Plants vary in their potential to assimilate different organic and inorganic P-substrates. In this study, the response of Duo grass (Duo festulolium) to variable rates of soil-applied potassium dihydrogen phosphate (KH2PO4) on biomass yield and P uptake were studied. Duo grown for 5 weeks in soil with 2.5, 5 and 7.5 g KH2PO4 kg?1 soil showed a significantly higher biomass and shoot P content of 8.3, 11.4 and 12.3 g P kg?1 dry weight respectively compared to plants that received no soil added P. Also, the ability of Duo to metabolize different forms of P-substrates was determined by growing them in sterile Hoagland's agar media with different organic and inorganic P-substrates, viz. KH2PO4, glucose-1-phosphate (G1P), inositiol hexaphosphate (IHP), adenosine triphosphate (ATP) and adenosine monophosphate (AMP) for 2 weeks. Plants on agar media with different P-substrates also showed enhanced biomass yield and shoot P relative to no P control and the P uptake was in the order of ATP > KH2PO4 > G1P > IHP = AMP > no P control. The activities of both phytase (E.C.3.1.3.26) and acid phosphatases (E.C.3.1.3.2) were higher in all the P received plants than the control. Duo grass is capable of extracting P from the soil and also from the agar media and thus it can serve as possible candidate for phytoextraction of high P-soil.  相似文献   

20.
Plants have developed numerous strategies to cope with phosphorus (P) deficiency resulting from low availability in soils. Evolution of ethylene and up-regulation of root secreted acid phosphatase activity are common for plants in response to P deficiency. To determine the role of ethylene in response of plants to P deficiency, we investigated the effects of ethylene precursor (1-amino cyclopropane-1-carboxylic acid, ACC) and ethylene synthesis antagonists (aminoethoxyvinylglycine AVG, cobalt, Co2+) on P concentrations in roots and shoots of Medicago falcata seedlings grown in P-sufficient (500 μM H2PO4) and P-deficient (5 μM H2PO4) solution. After transferring M. falcata seedlings from P-sufficient to P-deficient solution for 2 days, root P concentration was significantly reduced. The reduction in root P concentration was reversed by AVG and Co2+, and a similar reduction in root P concentration of seedlings exposed to P-sufficient solution was observed by ACC. Expression of high-affinity phosphate transporters (MfPT1, MfPT5) was enhanced by P-deficiency and this process was reversed by AVG and Co2+. There was a marked increase in activity of root acid phosphatase (APase) and expression of gene encoding APase (MfPAP1) under P-deficient conditions, and the increase in APAse activity and expression of MfPAP1 was inhibited by AVG and Co2+. APase activity and expression of MfPAP1 expression in seedlings grown in P-sufficient solution were enhanced by ACC. Root and shoot P concentrations were increased when organic phosphorus was added to the P-deficient solution, and the increase in P concentration was significantly inhibited by AVG and Co2+. These results indicate that ethylene plays an important role in modulation of P acquisition by possibly mobilizing organic P via up-regulating root APase activity and high-affinity phosphate transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号