首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the first domain of the HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci of 67 HLA-DRw8-positive Caucasians including 43 with early-onset pauciarticular juvenile rheumatoid arthritis (EOPA-JRA, alternatively known as early-onset pauciarticular juvenile chronic arthritis). Serology, restriction fragment length polymorphism (RFLP), and polymerase chain reaction (PCR) oligotyping revealed that 62, including all the EOPA-JRA patients, carried the HLA-DRB1*0801, DQA1*0401, DQB1*0402 genotype. Approximately onefifth of the controls carried atypical HLA-DRB1, HLA-DQA1, and/or HLA-DQB1 loci on their HLA-DRw8 haplotype confirmed by family studies. DNA sequences of HLA-DRB1, DQA1, and DQB1 alleles in patients and controls were identical to those previously reported. Disease association studies in 113 EOPA-JRA patients and 207 controls unselected for HLA-DRw8 revealed that the HLA-DRB1*0801, DQA1*0401, DQB1*0402 genotype was associated with a higher relative risk (RR) for disease (RR = 12.8, 2 = 48.8, P < 10–4) than was the serologically defined presence of HLA-DRw8 (RR = 8, 2 = 39, P < 10–4). Further analysis suggested that the DQ genes on HLA-DRw8 haplotypes are as likely as the DR genes to contribute to the pathogenesis of EOPA-JRA. This study increases to five the number of HLA-DR/DQ haplotypes identified in HLA-DRw8 Caucasians.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M34308.  相似文献   

2.
The HLA-DQA1 gene exhibits haplotype-specific restriction fragment polymorphisms due to DNA rearrangements. We found that some of these polymorphisms extend into the 5 flanking region of the gene and are distinct from other HLA-DQA1 related DNA polymorphisms so far reported. Sequencing of genomic DNA subclones derived from the 5 flanking region of HLA-DQA1 showed the presence, in a DR4 haplotype, of two repetitive elements of the Alu family, oriented in opposite directions and bracketing an approximately 3 kilobase region immediately adjacent to the promoter of the gene. When DNAs extracted from several cell lines were analyzed by genomic hybridization using single-copy probes relative to these intervening sequences, polymorphisms were observed. No structural alterations of the gene immediately outside the DNA portion delimited by the two Alu elements were observed, thus suggesting that polymorphisms of the 5 end of HLA-DQA1 may be limited to the intervening region between the two Alu repeats. The latter includes upstream regulatory elements controlling the expression of the genes. The possibility that the structure of the DNA in this region may influence the regulation of HLA-DQA1 gene expression in different haplotypes is discussed.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession number M72411. Address correspondence and offprint requests to: J. Guardiola.  相似文献   

3.
The human HLA-DQ probe was used to screen genomic and cDNA libraries constructed from a rabbit T-cell line. Clones containing highly homologous sequences were obtained from both libraries and their sequences were determined. The organization of the RLA-DQ gene was determined by comparison of the nucleotide sequences of the genomic clone to that of the corresponding cDNA clone. This analysis allowed assignment of the complete structure of the RLA-DQ chain. Comparisons with human and mouse class II products revealed that RLA-DQ is more closely related to HLA-DQ/DX than to H-2 A. In contrast to the DQ/DX region of man, which contains at least two distinct alpha genes, the rabbit genome contains a single DQ gene which is equally distant from the HLA-DQ or -DX genes. The rabbit DQ gene, like human HLA-DQ, is transcribed in T cells.Abbreviations used in this paper RLA rabbit major histocompatibility complex - HLA human major histocompatibility complex - SSC 0.15 M sodium chloride, 0.015 M sodium citrate  相似文献   

4.
Structure and expression of the three MHC-linked HSP70 genes   总被引:23,自引:0,他引:23  
A duplicated locus encoding the major heat shock-induced protein HSP70 is located in the major histocompatibility complex (MHC) class III region 92 kilobases (kb) telomeric to the C2 gene. Nucleotide sequence analysis of the two intronless genes, HSP70-1 and HSP70-2, has shown that they encode an identical protein product of 641 amino acids. A third intronless gene, HSP70-Hom, has also been identified 4 kb telomeric to the HSP70-1 gene. This encodes a more basic protein of 641 amino acids which has 90% sequence similarity with HSP70-1. In order to investigate the expression of the three (MHC)-linked HSP70 genes individually by northern blot analysis, we have isolated locus-specific probes from the 3 untranslated regions of the genes. The HSP70-1 and HSP70-2 genes have been shown to be expressed at high levels as a 2.4 kb mRNA in cells heat-shocked at 42°C. HSP70-1 is also expressed constitutively at very low levels. The HSP70-Hom gene, which has no heat shock consensus sequence in its 5 flanking sequence, is expressed as a 3 kb mRNA at low levels both constitutively and following heat shock.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M34267-9. Address correspondence and offprint requests to: R. D. Campbell.  相似文献   

5.
Summary We have determined the DNA sequence of a BALB/cTla region class I gene from the major histocompatibility complex (MHC) that had been identified previously as encoding a murine antigen by DNA-mediated gene transfer. Analysis of the DNA sequence shows, however, that this gene, the T1c gene from theTla c genotype, could not encode a TL antigen or any other functional class I molecule due to the presence of numerous stop codons and frameshift mutations in the coding regions. This result suggests that the earlier transformation data may have been incorrect or perhaps that the clone containing the T1c gene contains sequences that induced expression of a serologically reactiveTla gene in the genome of the recipient L cell. The T1c gene is structurally related to the previously sequenced T13c gene that encodes a serologically defined TL antigen. The 3 half of the T1c gene including exons 4, 5, 6, and the 3 untranslated region has about 85% nucleotide similarity (including introns) with the corresponding parts of the T13c gene; however, the 5 half of the T1c gene has little homology with the T13c gene. There is a sharp line of demarcation between the homologous and nonhomologous regions, and this border occurs precisely at a B2 Alu repeat sequence present in the T13c gene. This suggests that a recombination event took place here and that an Alu repeat sequence that is known to have characteristics of transposable elements played some role in a recombination or gene conversion event.  相似文献   

6.
7.
The organization of the major histocompatibility complex (MHC) class II region in cattle was investigated by Southern blot analysis using human probes corresponding to DO, DP, DQ, and DR genes. Exon-specific probes were also employed to facilitate the assessment of the number of different bovine class II genes. The results indicated the presence of single DO and DR genes, at least three DR genes, while the number of DQ genes was found to vary between MHC haplotypes. Four DQ haplotypes, DQ 1 1 to DQ 2 4, possessed a single DQ and a single DQ gene whereas both these genes were duplicated in eight other haplotypes, DQ 3 5 to DQ 9 12. No firm evidence for the presence of bovine DP genes was obtained. The same human probes were also used to investigate the genetic polymorphism of bovine class II genes. DQ DQ , DR DR , and DO restriction fragment length polymorphisms (RFLPs) were resolved and in particular the DQ restriction fragment patterns were highly polymorphic. Comparison of the present result with the current knowledge of the class II region in other mammalian species suggested that the DO, DP, DQ, DR, and DZ subdivision of the class II region was established already in the ancestor of mammals. The DP genes appear to be the least conserved class II genes among mammalian species and may have been lost in cattle. The degree of polymorphism of different class II genes, as revealed by RFLP analyses, shows striking similarities between species.  相似文献   

8.
Structure and evolution of the promoter regions of the DQA genes   总被引:3,自引:3,他引:0  
HLA-DQ antigens are unique among the class II antigens in that their chains are highly polymorphic. In the present study, we characterized the general structure of the promoter regions of the DQA genes derived from different DR haplotypes and defined their nucleotide sequence polymorphisms. The promoter of each DQA1 allele contains three sequence motifs which are not present in non-DQA related class II genes: one identical to a tumor necrosis factor (TNF) response element, one similar to an NFB binding element, and one similar to a W motif. All DQA alleles lack TATA and CCAAT boxes in the proximal promoter region but carry other sequence elements characteristic of MHC class II genes, including S, X, X2, and Y boxes, and a pyrimidine-rich tract upstream of the X box. Nucleotide sequence polymorphisms among the various DQA1 alleles were noted within the promoter region, with some of the differences mapping within, or close to, regulatory elements that are important for the expression of MHC class II genes. All DQA1 alleles carry an unrearranged, full length, Alu-Sx related repeat immediately upstream of the proximal promoter region. This repeat was not present in the DQA2 (DXA) genes analyzed, confirming that DQ locus duplication probably occurred before integration of the Alu repeat into the primordial DQA1 locus, some 31–43 million years (myr) ago. The DQA2 promoter region is highly conserved between DR4 and DR3 haplotypes, with the degree of conservation exceeding that expected from the neutral mutation rate.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence data base and have been assigned the accession numbers M97 454-M97 464. Correspondence to: E. Morzycka-Wroblewska.  相似文献   

9.
Nucleotide sequences of the immunoglobulin constant heavy chain genes of the horse have been described for IGHM, IGHG and IGHE genes, but not for IGHA. Here, we provide the nucleotide sequence of the genomic IGHA gene of the horse (Equus caballus), including its secretion region and the transmembrane exon. The equine IGHA gene shows the typical structure of a mammalian IGHA gene, with only three exons, separated by two introns of similar size. The hinge exon is located at the 5 end of the CH2 exon and encodes a hinge region of 11 amino acids, which contains five proline residues. The coding nucleotide sequence of the secreted form of the equine IGHA gene shares around 72% identity with the human IGHA1 and IGHA2 genes, as well as the bovine, ovine, porcine and canine IGHA genes, without distinct preference for any of these species. The same species also cluster together in a phylogenetic tree of the IGHA coding regions of various mammals, whereas rodent, rabbit, marsupial and monotreme IGHA genes each build a separate cluster.The nucleotide sequences reported in this paper have been assigned the EMBL/GenBank accession numbers AY247966 and AY351982  相似文献   

10.
The zebrafish (Brachydanio rerio) offers many advantages for immunological and immunogenetic research and has the potential for becoming one of the most important nonmammalian vertebrate research models. With this in mind, we initiated a systematic study of the zebrafish major histocompatibility complex (Mhc) genes. In this report, we describe the cloning and characteristics of the zebrafish class I A genes coding for the chains of the heterodimer and thus complete the identification of all four classes and subclasses of the Mhc in this species. We describe the full class I cDNA sequence as well as the exon-intron organization of the class I A genes, including intron sequences. We identify three families of class I A genes which we designate Bree-UAA,-UBA, and -UCA. The three families originated about the time of the divergence of cyprinid and salmonid fishes. All three families are members of an ancient lineage that diverged from another, older lineage also represented in cyprinid fishes before the radiation of teleost orders. The fish class I A genes therefore evolve differently from mammalian class I A genes, in which the establishment of lineages and families mostly postdates the divergence of orders.The nucleotide sequence data reported in this Papershave been submitted to the EMBL/GenBank nucleotide sequence databases and have been assigned the accession numbers Z46776–Z46779  相似文献   

11.
The cDNA and a partial genomic sequence of a rat class I major histocompatibility (RT1) gene, 11/3R, is reported here. The sequence contains several unique amino acid residues at certain positions, mutations in exon 7 (which is not expressed), a mutation of the canonical exon 8 stop codon to a sense codon, and includes a long 3 unstranslated region (utr). The structure of exon 7 differs from that found in most rat class I genes and resembles exon 7 of most H-2K,D,L.Q genes. Parts of the 3 noncoding region are homologous to the RT1.A-4 and certain H-2 genes. Expression is detectable by northern blot analysis in mitogen-stimulated lymphocytes only, by polymerase chain reaction (PCR) in each tissue tested. After transfection into L cells 11/3R can be shown to be expressible at the cell surface. Probes derived from the 3 noncoding part crosshybridize with a number of restriction fragments which map to the RT1.C region, thus defining a subfamily of RT1.C region genes. Several members of this subfamily are deleted in the M1 RT1 mutant. The 11/3R gene presents typical features of a class Ib gene. Aspects of evolution and the potential of the gene are discussed.The nucleotide sequence data reported in this paper have been submitted to the GenBank molecule sequence data base and have been assigned the accession numbers X67503 ande X67504.  相似文献   

12.
We present the nucleotide sequences of four members of the six-member human salivary prolinerich protein (PRP) gene family. The four genes are PRB1 and PRB2, which encode basic PRPs, and PRB3 and PRB4, which encode glycosylated PRPs. Each PRB gene is approximately 4.0 kb in length and contains four exons, the third of which is entirely composed of 63-bp tandem repeats and encodes the proline-rich portion of the protein products. Exon 3 contains different numbers of tandem repeats in the different PRB genes. Variation in the numbers of these repeats is also responsible for length variations in different alleles of the PRB genes. We have determined a probable evolutionary history of the human PRP gene family by comparing the nucleotide sequences of the six PRP genes. The present-day six PRP loci probably evolved from a single ancestral gene by four sequential gene duplications, leading to six genes that fall into three subsets, each consisting of two genes. During this evolutionary process, multiple rearrangements and gene conversion occurred mainly in the region from the 3 end of IVS2 and the 3 end of exon 3.  相似文献   

13.
Thewm7 haplotype of the major histocompatibility complex (MHC), derived from the Japanese wild mouseMus musculus molossinus, enhances recombination specific to female meiosis in theK/A interval of the MHC. We have mapped crossover points of fifteen independent recombinants from genetic crosses of thewm7 and laboratory haplotypes. Most of them were confined to a short segment of approximately 1 kilobase (kb) of DNA between theA 3 andA 2 genes, indicating the presence of a female-specific recombinational hotspot. Its location overlaps with a sex-independent hotspot previously identified in theMus musculus castaneus CAS3 haplotype. We have cloned and sequenced DNA fragments surrounding the hotspot from thewm7 haplotype and the corresponding regions from the hotspot-negative B10.A and C57BL/10 strains. There is no significant difference between the sequences of these three strains, or between these and the published sequences of the CAS3 and C57BL/6 strains. However, a comparison of this A3/A2 hotspot with a previously characterized hotspot in theE gene revealed that they have a very similar molecular organization. Each hotspot consists of two elements, the consensus sequence of the mouse middle repetitive MT family and the tetrameric repeated sequences, which are separated by 1 kb of DNA.The nucleotide sequence data reported in this paper have been submitted to the DNA Data Bank of Japan nucleotide sequence database and have been assigned the accession numbers d90007-9. Offprint requests to: T. Shiroishi.  相似文献   

14.
Homozygous lymphoblastoid cell lines representing various Dw subtypes of DR2 were examined for polymorphism at the DQ locus by molecular and cellular techniques. The subtypes studied included Dw2, Dw12, and a group heterogenous by cellular typing that we shall refer to as non-Dw2/non-Dw12. Restriction fragment length polymorphism analysis of cell lines representing these subtypes revealed DQ -specific patterns consistent with cellular typing. Two-dimensional gel electrophoresis of DQ molecules from representative cell lines revealed a structural polymorphism of DQ among the three subtypes. The DQ chain migrated to a position that was unique to each subtype and was consistent among various representative cell lines of each subtype. Nucleotide sequence analysis of cDNA clones of DQ from Dw2, Dw12, and non-Dw2/non-Dw12 lines confirmed that the variability resided at the genetic level. Variability was found in the form of numerous scattered nucleotide substitutions throughout the first domain of these alleles. The DQ gene of the non-Dw2/non-Dw12 cell line AZH was further found to be almost identical with the DQ gene of a DR1 line (Bell et al. 1985b), implicating a common evolutionary origin of these alleles. The only difference between these two sequences was due to an apparent gene conversion event at amino acid 57. T-cell cloning experiments resulted in the derivation of Epstein-Barr virus-specific, DQw1-restricted clones that proliferated against only those cell lines that exhibited the DQ gene common to AZH and the DR1 cell line. Thus, the polymorphism among DQ alleles within DR2 results in subtype-specific restriction.  相似文献   

15.
In 96 patients with congenital adrenal hyperplasia (CAH) and 50 healthy donors from northwestern Russia the distribution of the HLA-DQA1 alleles and the mutation spectrum and frequency at the CYP21B gene were examined. In the patients with nonclassical (NC) CAH, the distribution of the HLA-DQA1 polymorphic alleles was similar to that in the population sample. In the patients with the salt-wasting form of the disease a statistically significant decrease of the *0401 or *0501major allele frequency was observed. The prevalence of certain HLA-DQA1 genotypes, namely, HLA5, HLA3, and HLA4, was observed in the patients with the NC, salt-wasting (SW), and simple virilizing CAH, respectively. Each clinical group was characterized by a specific spectrum of clinically valuable mutations. An association between theCYP21B mutations most frequently found in case of SW and SV CAH (delB, I2splice, and I172N) and certain HLA-DQA1alleles was demonstrated. The necessity of more precise clinical diagnostics of the NC CAH cases along with detailed examination of this group for determination of the major mutations typical of the NC CAH cases from northwestern Russia is discussed.  相似文献   

16.
There is limited knowledge of the neurotoxin gene diversity among Clostridium botulinum type Ab strains. Only the sequences of the bont/A and bont/B genes in C. botulinum type Ab strain CDC1436 and the sequence of the bont/B gene in C. botulinum type Ab strain CDC588 have been reported. In this study, we sequenced the entire bont/A- and bont/B-associated neurotoxin gene clusters of C. botulinum type Ab strain CDC41370 and the bont/A gene of strain CDC588. In addition, we analyzed the organization of the neurotoxin gene clusters in strains CDC588 and CDC1436. The bont/A nucleotide sequence of strain CDC41370 differed from those of the known bont/A subtypes A1 to A4 by 2 to 7%, and the predicted amino acid sequence differed by 4% to 14%. The bont/B nucleotide sequence in strain CDC41370 showed 99.7% identity to the sequence of subtype B1. The bont/A nucleotide sequence of strain CDC588 was 99.9% identical to that of subtype A1. Although all of the C. botulinum type Ab strains analyzed contained the two sets of neurotoxin clusters, similar to what has been found in other bivalent strains, the intergenic spacing of p21-orfX1 and orfX2-orfX3 varied among these strains. The type Ab strains examined in this study had differences in their toxin gene cluster compositions and bont/A and bont/B nucleotide sequences, suggesting that they may have arisen from separate recombination events.Clostridium botulinum is a gram-positive anaerobic bacterium that produces an extremely potent toxin, the botulinum neurotoxin (BoNT). There are seven serologically distinct types of BoNT (serotypes A through G). Although most strains of C. botulinum express a single toxin serotype, some isolates have been shown to produce more than one, namely, Ab, Af, Ba, and Bf (11). In addition, many strains designated type A by mouse bioassay harbor nucleotide sequences for both type A and B toxins (6). These strains have been designated A(B) to indicate the presence of the bont/B gene without type B-specific toxicity.Based on phylogenetic analysis of the neurotoxin gene sequences, four subtypes have been identified within serotype A and five subtypes within serotype B (12). The neurotoxin gene nucleotide sequences of these subtypes differ by up to 8%, and the predicted amino acid sequences differ by up to 16%. In addition, the genes encoding components of the toxin complexes are arranged in clusters that differ in composition and organization (14) (Fig. (Fig.1).1). The toxin gene cluster of subtype A1 (termed ha cluster) includes the gene encoding the nontoxic nonhemagglutinin (ntnh), a regulatory gene (botR), and an operon encoding three hemagglutinins (ha70, ha33, and ha17). The toxin gene clusters containing bont/A2 or bont/A3 (termed orfX cluster) include the ntnh and p21 (analogous to botR) genes and several genes of unknown function (orfX1, orfX2, orfX3, and p47). Type Ba and A(B) strains contain two sets of neurotoxin cluster genes in which ha70, ha33, and ha17 are associated with the bont/B gene, and orfX1, orfX2, orfX3, and p47 are associated with the bont/A gene. In addition, some A1 strains contain a neurotoxin gene cluster that is similar to those in A2 and A3, but the bont/A nucleotide sequence is 99.9% identical to that in other A1 strains. These strains have been designated HA Orfx+ A1 (14). The neurotoxin gene cluster in type B strains includes the ntnh, botR, ha70, ha33, and ha17 genes. Notably, no differences in the neurotoxin gene cluster arrangements among the subtypes within serotype B have been reported.Open in a separate windowFIG. 1.Toxin gene cluster arrangements for BoNT type A-producing strains, including Ab, A(B), and Ba strains.Although several studies have described the organization and the nucleotide sequences of the neurotoxin gene cluster components among type A and B strains [including type Ba and A(B) strains], there is limited information regarding the diversity of the neurotoxin cluster genes among C. botulinum type Ab strains. The nucleotide sequences of the bont/A and bont/B genes in C. botulinum type Ab strain CDC1436 and the sequence of the bont/B gene of C. botulinum type Ab strain CDC588 have been previously reported; strain CDC1436 harbors a bont/A2 gene, and both strains CDC1436 and CDC588 harbor a bont/bvB gene (12, 15). Four additional type Ab strains from Italy have been analyzed by a restriction fragment length polymorphism method to determine the bont/A and bont/B subtypes (7, 9). To the best of our knowledge, the complete nucleotide sequences of the neurotoxin gene clusters in C. botulinum type Ab strains have not been reported. Thus, the objective of this study was to analyze the neurotoxin gene cluster composition in three C. botulinum type Ab strains (CDC41370, CDC588, and CDC1436) available in the CDC strain collection. We report differences in bont/A gene sequence among type Ab strains, including the identification of a novel bont/A nucleotide sequence in strain CDC41370, and describe differences in the organization of the neurotoxin gene clusters among these strains.  相似文献   

17.
Adaptions of the polymerase chain reaction were used to isolate cDNA sequences encoding the Major histocompatibility complex(Mhc) class II A gene(s) of the striped bass (Morone saxatilis). Four complete Mhc class II A genes were cloned and sequenced from a specimen originating in the Roanoke River, North Carolina, and another three A genes from a specimen originating from the Santee-Cooper Reservoir, South Carolina, identifying a total of seven unique sequences. The sequence suggests the presence of at least two Mhc class II A loci. The extensive sequence variability observed between the seven different Mhc class II clones was concentrated in the 1 encoding domain. The encoded 2, transmembrane, and cytoplasmic regions of all seven striped genes correlated well with those of known vertebrate Mhc class II proteins. Overall, the striped bass sequences showed greatest similarity to the Mhc class II A genes of the zebrafish. Southern blot analysis demonstrated extensive polymorphism in the Mhc class II A genes in members of a Roanoke river-caught population of striped bass versus a lesser degree of polymorphism in an aquacultured Santee-Cooper population of striped bass.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers (Mosa-A-S5) L35062, (Mosa-A-S8) L35066, (Mosa-A-R7) L35067, and (Mosa-A-S7) L35072 L35066, (Mossa-A-R7) L35067, and (Mosa-A-S7) L35072  相似文献   

18.
Summary We have cloned and sequenced all five members of the gene family for the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato, Lycopersicon esculentum cv. VFNT LA 1221 cherry line. Two of the five genes, designated Rbcs-1 and Rbcs-2, are present as single genes at individual loci. Three genes, designated Rbcs-3A, Rbcs-3B and Rbcs-3C, are organized in a tandem array within 10 kb at a third independent locus. The Rbcs-2 gene contains three introns; all the other members of the tomato gene family contain two introns. The coding sequence of Rbcs-1 differs by 14.0% from that of Rbcs-2 and by 13.3% from that of Rbcs-3 genes. Rbcs-2 shows 10.4% divergence from Rbcs-3. The exon and intron sequences of Rbcs-3A are identical to those of Rbcs-3C, and differ by 1.9% from those of Rbcs-3B. Nucleotide sequence analysis suggests that the five rbcS genes encode four different precursors, and three different mature polypeptides. S1 nuclease mapping of the 5 end of rbcS mRNAs revealed that the mRNA leader sequences vary in length from 8 to 75 nucleotides. Northern analysis using gene-specific oligonucleotide probes from the 3 non-coding region of each gene reveals a four to five-fold difference among the five genes in maximal steady-state mRNA levels in leaves.  相似文献   

19.
Summary The sequence of a segment of theDrosophila virilis mitochondrial DNA (mtDNA) molecule that contains the A+T-rich region, the small rRNA gene, the tRNAf-met, tRNAgln, and tRNAile genes, and portions of the ND2 and tRNAval genes is presented and compared with the corresponding segment of theD. yakuba mtDNA molecule. The A+T-rich regions ofD. virilis andD. yakuba contain two correspondingly located sequences of 49 and 276/274 nucleotides that appear to have been conserved during evolution. In each species the replication origin of the mtDNA molecule is calculated to lie within a region that overlaps the larger conserved sequence, and within this overlap is found a potential hairpin structure. Substitutions between the larger conserved sequences of the A+T-rich regions, the small mt-rRNA genes, and the ND2 genes are biased in favor of transversions, 71–97% of which are AT changes. There is a 13.8 times higher frequency of nucleotide differences between the 5 halves than between the 3 halves of theD. virilis andD. yakuba small mt-rRNA genes. Considerations of the effects of observed substitutions and deletion/insertions on possible nucleotide pairing within the small mt-rRNA genes ofD. virilis andD. yakuba strongly support the secondary structure model for theDrosophila small mt-rRNA that we previously proposed.  相似文献   

20.
A complete sequence of the rice sucrose synthase-1 (RSs1) gene   总被引:5,自引:0,他引:5  
Using a fragment of the maize sucrose synthase gene Sh-1 as probe, the rice genome was shown to contain at least three genes encoding sucrose synthase. One of these genes was isolated from a genomic library, and its full sequence, including 1.7 kb of 5 flanking sequence and 0.9 kb of 3 flanking sequence, is reported. The new rice gene, designated RSs1, is highly homologous to maize Sh-1 (approx. 94% identity in derived amino acid sequence), and contains an identical intron-exon structure (16 exons and 15 introns). Both RSs1 and maize Sh-1 show similar sequence homologies to a second rice sucrose synthase gene described recently (designated RSs2, Yu et al. (1992) Plant Mol Biol 18: 139–142), although both the rice genes predict an extra 6 amino acids at the C-terminus of the protein when compared to the maize gene. The RSs1 5 flanking sequence contains a number of promoter-like sequences, including putative protein-binding regions similar to maize zein genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号