首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Collagen-related peptide (CRP), a collagen homologue, induces platelet activation through a tyrosine kinase-dependent pathway, leading to sequential tyrosine phosphorylation of Fc receptor (FcR) gamma-chain, Syk, and phospholipase C-gamma2. Here we report that CRP and the platelet low affinity immune receptor FcgammaRIIA stimulate tyrosine phosphorylation of the T cell adapter SLP-76, whereas the G protein-coupled receptor agonist thrombin induces only minor tyrosine phosphorylation. This suggests that SLP-76 has a specific role downstream of receptors that signal via an immunoreceptor tyrosine-based activation motif. Immunoprecipitation studies demonstrate association of SLP-76 with SLAP-130, Vav, Fyn, Lyn, and the FcR gamma-chain in CRP-stimulated platelets. Several of these proteins, including SLP-76, undergo tyrosine phosphorylation in in vitro kinase assays performed on SLP-76 immunoprecipitates. Tyrosine phosphorylation of all of these proteins in the in vitro kinase assay was abrogated by the Src family kinase inhibitor PP1, suggesting that it is mediated by either Fyn or Lyn. The physiological significance of this is uncertain, however, since tyrosine phosphorylation of SLP-76 in vivo is not altered in either Fyn- or Lyn-deficient platelets. CRP stimulation of Syk-deficient platelets demonstrated that in vivo tyrosine phosphorylation of SLP-76 is downstream of Syk. The absence of Syk in the SLP-76 immunoprecipitates raises the possibility that another protein is responsible for bringing SLP-76 to Syk. Candidates for this include those proteins that co-immunoprecipitate with SLP-76, including the FcR gamma-chain. Tyrosine phosphorylation of PLC-gamma2 and Ca2+ mobilization is markedly attenuated in SLP-76-deficient platelets following CRP stimulation, suggesting that the adapter plays a critical role in the regulation of the phospholipase. The increase in tyrosine phosphorylation of SLAP-130 in response to CRP is also inhibited in SLP-76-deficient platelets, placing it downstream of SLP-76. This work identifies SLP-76 as an important adapter molecule that is regulated by Syk and lies upstream of SLAP-130 and PLC-gamma2 in CRP-stimulated platelets.  相似文献   

2.
In the present study, we have addressed the role of the linker for activation of T cells (LAT) in the regulation of phospholipase Cgamma2 (PLCgamma2) by the platelet collagen receptor glycoprotein VI (GPVI). LAT is tyrosine phosphorylated in human platelets heavily in response to collagen, collagen-related peptide (CRP), and FcgammaRIIA cross-linking but only weakly in response to the G-protein-receptor-coupled agonist thrombin. LAT tyrosine phosphorylation is abolished in CRP-stimulated Syk-deficient mouse platelets, whereas it is not altered in SLP-76-deficient mice or Btk-deficient X-linked agammaglobulinemia (XLA) human platelets. Using mice engineered to lack the adapter LAT, we showed that tyrosine phosphorylation of Syk and Btk in response to CRP was maintained in LAT-deficient platelets whereas phosphorylation of SLP-76 was slightly impaired. In contrast, tyrosine phosphorylation of PLCgamma2 was substantially reduced in LAT-deficient platelets but was not completely inhibited. The reduction in phosphorylation of PLCgamma2 was associated with marked inhibition of formation of phosphatidic acid, a metabolite of 1,2-diacylglycerol, phosphorylation of pleckstrin, a substrate of protein kinase C, and expression of P-selectin in response to CRP, whereas these parameters were not altered in response to thrombin. Activation of the fibrinogen receptor integrin alpha(IIb)beta(3) in response to CRP was also reduced in LAT-deficient platelets but was not completely inhibited. These results demonstrate that LAT tyrosine phosphorylation occurs downstream of Syk and is independent of the adapter SLP-76, and they establish a major role for LAT in the phosphorylation and activation of PLCgamma2, leading to downstream responses such as alpha-granule secretion and activation of integrin alpha(IIb)beta(3). The results further demonstrate that the major pathway of tyrosine phosphorylation of SLP-76 is independent of LAT and that there is a minor, LAT-independent pathway of tyrosine phosphorylation of PLCgamma2. We propose a model in which LAT and SLP-76 are required for PLCgamma2 phosphorylation but are regulated through independent pathways downstream of Syk.  相似文献   

3.
The role of integrin-mediated signaling events in T cell function remains incompletely characterized. We report here that alpha4beta1 integrin stimulation of H9 T cells and normal human T cell blasts results in rapid and transient tyrosine phosphorylation of the adapter protein, SH2 domain-containing 76-kDa protein (SLP-76)-associated phosphoprotein of 130 kDa (SLAP-130)/FYB at levels comparable to those observed following TCR stimulation. Stimulation of T cells via the alpha4beta1 integrin enhances the association of tyrosine phosphorylated SLAP-130/FYB with the SH2 domain of the src tyrosine kinase p59fyn. Activation of normal T cells, but not H9 T cells, via alpha4beta1 leads to tyrosine phosphorylation of SLP-76 as well as SLAP-130/FYB. Overexpression of SLAP-130/FYB in normal T cells enhances T cell migration through fibronectin-coated filters in response to the chemokine stromal cell-derived factor (SDF)-1alpha. These results identify SLAP-130/FYB as a new tyrosine phosphorylated substrate in beta1 integrin signaling and suggest a novel function for SLAP-130/FYB in regulating T lymphocyte motility.  相似文献   

4.
Integrins regulate cell adhesion and motility through tyrosine kinases, but initiation of this process is poorly understood. We find here that Src associates constitutively with integrin alphaIIbbeta3 in platelets. Platelet adhesion to fibrinogen caused a rapid increase in alphaIIbbeta3-associated Src activity, and active Src localized to filopodia and cell edges. Csk, which negatively regulates Src by phosphorylating Tyr-529, was also constitutively associated with alphaIIbbeta3. However, fibrinogen binding caused Csk to dissociate from alphaIIbbeta3, concomitant with dephosphorylation of Src Tyr-529 and phosphorylation of Src activation loop Tyr-418. In contrast to the behavior of Src and Csk, Syk was associated with alphaIIbbeta3 only after fibrinogen binding. Platelets multiply deficient in Src, Hck, Fgr, and Lyn, or normal platelets treated with Src kinase inhibitors failed to spread on fibrinogen. Inhibition of Src kinases blocked Syk activation and inhibited phosphorylation of Syk substrates (Vav1, Vav3, SLP-76) implicated in cytoskeletal regulation. Syk-deficient platelets exhibited Src activation upon adhesion to fibrinogen, but no spreading or phosphorylation of Vav1, Vav3, and SLP-76. These studies establish that platelet spreading on fibrinogen requires sequential activation of Src and Syk in proximity to alphaIIbbeta3, thus providing a paradigm for initiation of integrin signaling to the actin cytoskeleton.  相似文献   

5.
pp72syk is essential for development and function of several hematopoietic cells, and it becomes activated through tandem SH2 interaction with ITAM motifs in immune response receptors. Since Syk is also activated through integrins, which do not contain ITAMs, a CHO cell model system was used to study Syk activation by the platelet integrin, alpha IIb beta 3. As in platelets, Syk underwent tyrosine phosphorylation and activation during CHO cell adhesion to alpha IIb beta 3 ligands, including fibrinogen. This involved Syk autophosphorylation and the tyrosine kinase activity of Src, and it exhibited two novel features. Firstly, unlike alpha IIb beta 3-mediated activation of pp125FAK, Syk activation could be triggered by the binding of soluble fibrinogen and abolished by truncation of the alpha IIb or beta 3 cytoplasmic tail, and it was resistant to inhibition by cytochalasin D. Secondly, it did not require phosphorylated ITAMs since it was unaffected by disruption of an ITAM-interaction motif in the SH2(C) domain of Syk or by simultaneous overexpression of the tandem SH2 domains. These studies demonstrate that Syk is a proximal component in alpha IIb beta 3 signaling and is regulated as a consequence of intimate functional relationships with the alpha IIb beta 3 cytoplasmic tails and with Src or a closely related kinase. Furthermore, there are fundamental differences in the activation of Syk by alpha IIb beta 3 and immune response receptors, suggesting a unique role for integrins in Syk function.  相似文献   

6.
Studies with inhibitors have implicated protein kinase C (PKC) in the adhesive functions of integrin alpha(IIb)beta(3) in platelets, but the responsible PKC isoforms and mechanisms are unknown. Alpha(IIb)beta(3) interacts directly with tyrosine kinases c-Src and Syk. Therefore, we asked whether alpha(IIb)beta(3) might also interact with PKC. Of the several PKC isoforms expressed in platelets, only PKC beta co-immunoprecipitated with alpha(IIb)beta(3) in response to the interaction of platelets with soluble or immobilized fibrinogen. PKC beta recruitment to alpha(IIb)beta(3) was accompanied by a 9-fold increase in PKC activity in alpha(IIb)beta(3) immunoprecipitates. RACK1, an intracellular adapter for activated PKC beta, also co-immunoprecipitated with alpha(IIb)beta(3), but in this case, the interaction was constitutive. Broad spectrum PKC inhibitors blocked both PKC beta recruitment to alpha(IIb)beta(3) and the spread of platelets on fibrinogen. Similarly, mouse platelets that are genetically deficient in PKC beta spread poorly on fibrinogen, despite normal agonist-induced fibrinogen binding. In a Chinese hamster ovary cell model system, adhesion to fibrinogen caused green fluorescent protein-PKC beta I to associate with alpha(IIb)beta(3) and to co-localize with it at lamellipodial edges. These responses, as well as Chinese hamster ovary cell migration on fibrinogen, were blocked by the deletion of the beta(3) cytoplasmic tail or by co-expression of a RACK1 mutant incapable of binding to beta(3). These studies demonstrate that the interaction of alpha(IIb)beta(3) with activated PKC beta is regulated by integrin occupancy and can be mediated by RACK1 and that the interaction is required for platelet spreading triggered through alpha(IIb)beta(3). Furthermore, the studies extend the concept of alpha(IIb)beta(3) as a scaffold for multiple protein kinases that regulate the platelet actin cytoskeleton.  相似文献   

7.
Vav proteins belong to the family of guanine-nucleotide-exchange factors for the Rho/Rac family of small G-proteins. In addition, they serve as important adapter proteins for the activation of PLCgamma (phospholipase Cgamma) isoforms by ITAM (immunoreceptor tyrosine-based activation motif) receptors, including the platelet collagen receptor GPVI (glycoprotein VI). Vav proteins are also regulated downstream of integrins, including the major platelet integrin alphaIIbbeta3, which has recently been shown to regulate PLCgamma2. In the present study, we have investigated the role of Vav family proteins in filopodia and lamellipodia formation on fibrinogen using platelets deficient in Vav1 and Vav3. Wild-type mouse platelets undergo a limited degree of spreading on fibrinogen, characterized by the formation of numerous filopodia and limited lamellipodia structures. Platelets deficient in Vav1 and Vav3 exhibit reduced filopodia and lamellipodia formation during spreading on fibrinogen. This is accompanied by reduced alphaIIbbeta3-mediated PLCgamma2 tyrosine phosphorylation and reduced Ca(2+) mobilization. In contrast, the G-protein agonist thrombin stimulates full spreading of control and Vav1/3-deficient platelets. Consistent with this, stimulation of F-actin (filamentous actin) formation and Rac activation by thrombin is not altered in Vav-deficient cells. These results demonstrate that Vav1 and Vav3 are required for optimal spreading and regulation of PLCgamma2 by integrin alphaIIbbeta3, but that their requirement is by-passed upon G-protein receptor activation.  相似文献   

8.
There are only three human isoforms of the small GTPase Rac, which together regulate a variety of cellular processes, including those related to actin cytoskeletal reorganization. A role for Rac3 in integrin-mediated adhesion and spreading has not been defined. We here report that CIB, a protein that binds to the alpha(IIb)beta(3) fibrinogen receptor, interacts exclusively with activated (V12) Rac3 but not Rac1 or Rac2. Binding of V12Rac3 to CIB was mediated by the C-terminal end of Rac3 and by Rac3 membrane localization. Adhesion of cells on fibrinogen was accompanied by a specific increase in the levels of Rac3 but not Rac1 or Rac2 in the Triton-insoluble fraction of the cell. Also, CIB co-localized with active Rac3 to the periphery of cells adhering to fibrinogen. Expression of V12Rac3 and CIB stimulated alpha(IIb)beta(3)-mediated adhesion and spreading on fibrinogen. Moreover, adhesion through alpha(IIb)beta(3) caused a marked increase in the levels of endogenous GTP-bound Rac3 but not Rac1. These combined results strongly implicate Rac3 and CIB in integrin-associated cytoskeletal reorganization during alpha(IIb)beta(3)-mediated adhesion.  相似文献   

9.
Integrins are the major receptor type known to facilitate cell adhesion and lamellipodia formation on extracellular matrix proteins. However, collagen-related peptide and thrombin have recently been shown to mediate platelet lamellipodia formation when presented as immobilized surfaces. The aims of this study were to establish if there exists a role for the platelet integrin alpha(IIb)beta(3) in this response; and if so, whether signalling from the integrin is required for lamellipodia formation on these surfaces. Real-time analysis was used to compare platelet morphological changes on surfaces of fibrinogen, collagen-related peptide or thrombin in the presence of various pharmacological inhibitors and platelets from 'knockout' mice. We demonstrate that collagen-related peptide and thrombin stimulate distinct patterns of platelet lamellipodia formation and elevation of intracellular Ca(2+) to that induced by the integrin alpha(IIb)beta(3) ligand, fibrinogen. Nevertheless, lamellipodia formation on collagen-related peptide and thrombin is dependent upon engagement of alpha(IIb)beta(3), consistent with release of alpha(IIb)beta(3) ligand(s) from platelet granules. However, the requirement for signalling by the integrin on fibrinogen can be bypassed by the addition of thrombin to the solution. These observations reveal a critical role for alpha(IIb)beta(3) in forming lamellipodia on collagen-related peptide and thrombin which is dependent on its ability to function as an adhesive receptor but not necessarily on its ability to signal. These results suggest that integrins may play an important role in lamellipodia formation triggered by nonintegrin ligands in platelets and possibly in other cell types.  相似文献   

10.
T cell receptor (TCR)-driven activation of helper T cells induces a rapid polarization of their cytoskeleton towards bound antigen presenting cells (APCs). We have identified the Fyn- and SLP-76-associated protein Fyb/SLAP as a new ligand for Ena/ vasodilator-stimulated phosphoprotein (VASP) homology 1 (EVH1) domains. Upon TCR engagement, Fyb/SLAP localizes at the interface between T cells and anti-CD3-coated beads, where Evl, a member of the Ena/VASP family, Wiskott-Aldrich syndrome protein (WASP) and the Arp2/3 complex are also found. In addition, Fyb/SLAP is restricted to lamellipodia of spreading platelets. In activated T cells, Fyb/SLAP associates with Ena/VASP family proteins and is present within biochemical complexes containing WASP, Nck, and SLP-76. Inhibition of binding between Fyb/SLAP and Ena/VASP proteins or WASP and the Arp2/3 complex impairs TCR-dependent actin rearrangement, suggesting that these interactions play a key role in linking T cell signaling to remodeling of the actin cytoskeleton.  相似文献   

11.
T cell antigen receptor (TCR) engagement results in protein-tyrosine kinase activation which initiates signaling cascades leading to induction of the interleukin-2 gene. Previous studies identified two substrates of the TCR-induced protein-tyrosine kinases, SH2 domain-containing leukocyte specific protein of 76 kDa (SLP-76) and SLP-76-associated phosphoprotein of 130 kDa (SLAP-130). While SLP-76 appears to couple the TCR with downstream signals, SLAP-130 may play a negative regulatory role in T cell activation. In this study, we demonstrate that consistent with its ability to abrogate the SLP-76 augmentation of TCR-induced activation of the NFAT/AP1 region of the interleukin-2 promoter, overexpression of SLAP-130 also interferes with the rescue of signaling in SLP-76-deficient Jurkat cells in co-transfection experiments. The effect of SLAP-130 on SLP-76 function is specific for regulating TCR-induced ERK activation, but not phospholipase Cgamma 1 phosphorylation. By generating both deletion and point mutants of SLAP-130, we identified tyrosine 559 as critical for the interaction between SLP-76 and SLAP-130. We show that mutation of this residue in context of full-length SLAP-130 diminishes the ability of SLAP-130 to abrogate SLP-76 function. These data suggest that the SLAP-130/SLP-76 association is important for the negative regulatory role that SLAP-130 appears to play in T cell signaling.  相似文献   

12.
Collagen plays a critical role in hemostasis by promoting adhesion and activation of platelets at sites of vessel injury. In the present model of platelet-collagen interaction, adhesion is mediated via the inside-out regulation of integrin alpha2beta1 and activation through the glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex. The present study extends this model by demonstrating that engagement of alpha2beta1 by an integrin-specific sequence from within collagen or by collagen itself generates tyrosine kinase-based intracellular signals that lead to formation of filopodia and lamellipodia in the absence of the GPVI-FcR gamma-chain complex. The same events do not occur in platelet suspensions. alpha2beta1 activation of adherent platelets stimulates tyrosine phosphorylation of many of the proteins in the GPVI-FcR gamma-chain cascade, including Src, Syk, SLP-76, and PLCgamma2 as well as plasma membrane calcium ATPase and focal adhesion kinase. alpha2beta1-mediated spreading is dramatically inhibited in the presence of the Src kinase inhibitor PP2 and in PLCgamma2-deficient platelets. Spreading is abolished by chelation of intracellular Ca2+. Demonstration that adhesion of platelets to collagen via alpha2beta1 generates intracellular signals provides a new insight into the mechanisms that control thrombus formation and may explain the unstable nature of beta1-deficient thrombi and why loss of the GPVI-FcR gamma-chain complex has a relatively minor effect on bleeding.  相似文献   

13.
The snake venom toxin convulxin activates platelets through the collagen receptor glycoprotein VI (GPVI)/Fc receptor gamma-chain (FcR gamma-chain) complex leading to tyrosine phosphorylation and activation of the tyrosine Syk and phospholipase Cgamma2 (PLCgamma2). In the present study, we demonstrate that convulxin is a considerably more powerful agonist than collagen or the GPVI-selective collagen-related peptide (CRP). Confirmation that the response to convulxin is mediated solely via Syk was provided by studies on Syk-deficient platelets. The increase in phosphorylation of the FcR gamma-chain is associated with marked increases in tyrosine phosphorylation of downstream proteins including Syk, linker for activation of T cells (LAT), SLP-76, and PLCgamma2. The transmembrane adapter LAT coprecipitates with SLP-76 and PLCgamma2, as well as with a number of other adapter proteins, some of which have not been previously described in platelets, including Cbl, Grb2, Gads, and SKAP-HOM. Gads is constitutively associated with SLP-76 and is probably the protein bridging its association with LAT. There was no detectable association between Grb2 and SLP-76 in control or stimulated cells, suggesting that the interaction of LAT with Grb2 is present in a separate complex to that of LAT-Gads-SLP-76. These results show that the trimeric convulxin stimulates a much greater phosphorylation of the FcR gamma-chain and subsequent downstream responses relative to CRP and collagen, presumably because of its ability to cause a greater degree of cross-linking of GPVI. The adapter LAT appears to play a critical role in recruiting a number of other adapter proteins to the surface membrane in response to activation of GPVI, presumably at sites of glycolipid-enriched microdomains, enabling an organized signaling cascade that leads to platelet activation.  相似文献   

14.
Activation or ligand binding induces conformational changes in alpha IIb beta3, resulting in exposure of neoepitopes named ligand-induced binding sites. We reported here a novel monoclonal antibody developed by using Chinese hamster ovary (CHO) cells expressing an activated alpha IIb beta3 mutant (CHO alpha IIb beta3Delta717) as the immunogen. This IgG 2b kappa named 3C7 was specific for the complex of alpha IIb beta3 as demonstrated by flow cytometry, immunoprecipitation, and EDTA chelating. The binding of 3C7 to platelets increased significantly when platelets were activated by ADP/thrombin or occupied by RGDS peptides, fibrinogen, or PAC-1, suggesting that 3C7 was an anti-ligand-induced binding site antibody. The antibody failed to bind to the CHO cells expressing another alpha IIb beta3 mutant (beta3Y178A) suggesting that the Cys177-Cys184 loop of beta3 was likely the epitope for 3C7. 3C7 inhibited platelet aggregation, which was initiated by ADP or thrombin in a dose-dependent manner (IC50s of 5.6 and 0.05 microg/ml, respectively). The antibody also inhibited platelet adhesion to immobilized fibrinogen but not to fibronectin or collagen. These findings suggested that 3C7 was a potent antagonist of integrin alpha IIb beta3 and a potential anti-thrombotic agent.  相似文献   

15.
Leukocytes form zones of close apposition when they adhere to ligand- coated surfaces. Because plasma proteins are excluded from these contact zones, we have termed them protected zones of adhesion. To determine whether platelets form similar protected zones of adhesion, gel-filtered platelets stimulated with thrombin or ADP were allowed to adhere to fibrinogen- or fibronectin-coated surfaces. The protein- coated surfaces with platelets attached were stained with either fluorochrome-conjugated goat anti-human fibrinogen or anti-human fibronectin antibodies, or with rhodamine-conjugated polyethylene glycol polymers. Fluorescence microscopy revealed that F(ab')2 anti- fibrinogen (100 kD) did not penetrate into the contact zones between stimulated platelets and the underlying fibrinogen-coated surface, while Fab antifibrinogen (50 kD) and 10 kD polyethylene glycol readily penetrated and stained the substrate beneath the platelets. Thrombin- or ADP-stimulated platelets also formed protected zones of adhesion on fibronectin-coated surfaces. F(ab')2 anti-fibronectin and 10 kD polyethylene glycol were excluded from these adhesion zones, indicating that they are much less permeable than those formed by platelets on fibrinogen-coated surfaces. The permeability properties of protected zones of adhesion formed by stimulated platelets on surfaces coated with both fibrinogen and fibronectin were similar to the zones of adhesion formed on fibronectin alone. mAb 7E3, directed against the alpha IIb beta 3 integrin blocked the formation of protected adhesion zones between thrombin-stimulated platelets and fibrinogen or fibronectin coated surfaces. mAb C13 is directed against the alpha 5 beta 1 integrin on platelets. Stimulated platelets treated with this mAb formed protected zones of adhesion on surfaces coated with fibronectin. These protected zones were impermeable to F(ab')2 antifibronectin but were permeable to 10 kD polyethylene glycol. These results show that activated platelets form protected zones of adhesion and that the size of molecules excluded from these zones depends upon the composition of the matrix proteins to which the platelets adhere. They also show that formation of protected zones of adhesion by platelets requires alpha IIb beta 3 integrins while the permeability properties of these zones of adhesion are regulated by both alpha IIb beta 3 and alpha 5 beta 1 integrins.  相似文献   

16.
Binding of von Willebrand factor (VWF) to GP Ib-IX mediates initial platelet adhesion and increases the subsequent adhesive function of alpha(IIb)beta(3). Because these responses are promoted most effectively by large VWF multimers, we hypothesized that receptor clustering modulates GP Ib-IX function. To test this, GP IX was fused at its cytoplasmic tail to tandem repeats of FKBP, and GP Ib-IX(FKBP)(2) and alpha(IIb)beta(3) were expressed in Chinese hamster ovary cells. Under flow conditions at wall shear rates of up to 2000 s(-1), GP Ib-IX(FKBP)(2) mediated cell tethering to immobilized VWF, just as in platelets. Conditional oligomerization of GP Ib-IX(FKBP)(2) by AP20187, a cell-permeable FKBP dimerizer, caused a decrease in cell translocation velocities on VWF (p < 0.001). Moreover, clustering of GP Ib-IX(FKBP)(2) by AP20187 led to an increase in alpha(IIb)beta(3) function, manifested under static conditions by increased cell adhesion to fibrinogen (p < 0.01) and under flow by increased stable cell adhesion to VWF (p < 0.04). Clustering of GP Ib-IX(FKBP)(2) also stimulated rapid tyrosine phosphorylation of ectopically expressed Syk, a putative downstream effector of GP Ib-IX in platelets. These studies establish that GP Ib-IX oligomerization, per se, affects the interaction of this receptor with VWF and its ability to influence the adhesive function of alpha(IIb)beta(3). By extrapolation, GP Ib-IX clustering in platelets may promote thrombus formation.  相似文献   

17.
Stimulation by chemokines of integrin α4β1–dependent T-lymphocyte adhesion is a crucial step for lymphocyte trafficking. The adaptor Vav1 is required for chemokine-activated T-cell adhesion mediated by α4β1. Conceivably, proteins associating with Vav1 could potentially modulate this adhesion. Correlating with activation by the chemokine CXCL12 of T-lymphocyte attachment to α4β1 ligands, a transient stimulation in the association of Vav1 with SLP-76, Pyk2, and ADAP was observed. Using T-cells depleted for SLP-76, ADAP, or Pyk2, or expressing Pyk2 kinase–inactive forms, we show that SLP-76 and ADAP stimulate chemokine-activated, α4β1-mediated adhesion, whereas Pyk2 opposes T-cell attachment. While CXCL12-promoted generation of high-affinity α4β1 is independent of SLP-76, ADAP, and Pyk2, the strength of α4β1-VCAM-1 interaction and cell spreading on VCAM-1 are targets of regulation by these three proteins. GTPase assays, expression of activated or dominant-negative Rac1, or combined ADAP and Pyk2 silencing indicated that Rac1 activation by CXCL12 is a common mediator response in SLP-76–, ADAP-, and Pyk2-regulated cell adhesion involving α4β1. Our data strongly suggest that chemokine-stimulated associations between Vav1, SLP-76, and ADAP facilitate Rac1 activation and α4β1-mediated adhesion, whereas Pyk2 opposes this adhesion by limiting Rac1 activation.  相似文献   

18.
19.
To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment.  相似文献   

20.
The chemokine CXCL12 promotes T lymphocyte adhesion mediated by the integrin alpha4beta1. CXCL12 activates the GTPase Rac, as well as Vav1, a guanine-nucleotide exchange factor for Rac, concomitant with up-regulation of alpha4beta1-dependent adhesion. Inhibition of CXCL12-promoted Rac and Vav1 activation by transfection of dominant negative Rac or Vav1 forms, or by transfection of their siRNA, remarkably impaired the increase in T lymphocyte attachment to alpha4beta1 ligands in response to this chemokine. Importantly, inhibition of Vav1 expression by RNA interference resulted in a blockade of Rac activation in response to CXCL12. Adhesions in flow chambers and soluble binding assays using these transfectants indicated that initial ligand binding and adhesion strengthening mediated by alpha4beta1 were dependent on Vav1 and Rac activation by CXCL12. Finally, CXCL12-promoted T-cell transendothelial migration involving alpha4beta1-mediated adhesion was notably inhibited by expression of dominant negative Vav1 and Rac. These results indicate that activation of Vav1-Rac signaling pathway by CXCL12 represents an important inside-out event controlling efficient up-regulation of alpha4beta1-dependent T lymphocyte adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号