首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) binds its putative physiological activator thioredoxin f (Trx f ) at pH 7.9, the pH in the stroma of the illuminated chloroplast. Since Trx m , described as specific in NADP+-malate dehydrogenase (NADPMDH) activation, appears in pea (Pisum sativum L.) also to be functional in FBPase modulation, we have here analyzed the effect of pH and the redox status of the chloroplast stroma in the pea FBPase binding of homologous Trx f and m . Both pea Trx were strongly bound by purified FBPase when they were preincubated at pH 7.9 with 2.5 m M dithiothreitol (DTT), but not when the reductant was omitted. As occurs with Trx f the Trx m /FBPase ratio of the complex was 4, but this was only observed with a Trx m /FBPase concentration ratio > 10 in the preincubation mixture. The FBPase-Trx m binding disappeared in the presence of 100 m M NaCl, even with 2.5 m M DTT at pH 7.9, with a concomitant appearance of different aggregation states of the FBPase subunit. A similar FBPase-Trx m complex was detected in the stromal solution when pea chloroplasts were lysed at pH 7.9 in the presence of DTT. No interaction was observed between NADP-MDH and Trx f or m , either in the presence or in the absence of DTT. Pea FBPase showed sigmoidal activation kinetics with pea Trx m , and an S0.5 of 133 n M versus 6.6 n M with pea Trx f . About 10-fold higher concentration of the former than that of the latter was required for obtaining maximum activity; however, the Vmax with Trx f was only 2-fold higher than that with Trx m . We conclude that pea FBPase binds and is activated by the homologous Trx m , even though to a lesser extent than with Trx f . We also deduce that in the light the conditions in the chloroplast stroma are optimal for forming an FBPase-Trx complex.  相似文献   

2.
The interaction between chloroplast fructose-1,6-bisphosphatase (FBPase) and thioredoxin (Trx) f , two plant proteins involved in the Benson-Calvin cycle, is mainly of an electrostatic nature [Hermoso et al. (1996) Plant Mol Biol 30: 455–465; Reche et al. (1997) Physiol Plant 101: 463–470; Sahrawy et al. (1997) J Mol Biol 269: 623–630; Hermoso et al. (1999) Physiol Plant 105: 756–762], possibly involving carboxyl groups of the enzyme and amino groups of Trx f . We carried out the covalent stabilization of that ionic complex, for the purpose of studying the interaction between both proteins and the factors that influence it. We have used 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, a reagent able to cross-link carboxyl and amino groups, which allows the formation of covalent bonds between the groups that, in solution, form ionic bonds. A stable functional complex between both proteins was formed. The efficiency in the formation of that complex depends on the redox state of Trx f , ionic strength and pH, showing a strong correlation with the Trx f -dependent enzyme activity. The complex also retains enzyme activity. This suggests that the formation of the covalent complex requires the previous stabilization of a specific functional ionic complex between both proteins, and that in this functional complex carboxyl groups of the enzyme and primary amines of Trx f are involved. This complex is not stable in a tetrameric structure of the enzyme. We could also detect covalent aggregates of FBPase subunits, which indicates the implication of ionic interactions in the stabilization of the tetrameric structure of the enzyme; besides, as molecular filtration experiments and electrophoresis suggest, hydrophobic forces would also be implicated in the enzyme structure.  相似文献   

3.
When we compare the primary structures of the six chloroplast fructose-1,6-bisphosphatases (FBPase) so far sequenced, the existence of a poorly conserved fragment in the region just preceding the redox regulatory cysteines cluster can be observed. This region is a good candidate for binding of FBPase to its physiological modulator thioredoxin (Td), as this association shows clear differences between species. Using a cDNA clone for pea chloroplast FBPase as template, we have amplified by PCR a DNA insert coding for a 19 amino acid fragment (149Pro-167Gly), which was expressed in pGEMEX-1 as a fusion protein. This protein strongly interacts with pea Td m, as shown by ELISA and Superose 12 gel filtration, depending on pH of the medium. Preliminary assays have shown inhibition of FBPase activity in the presence of specific IgG against the 19 amino acid insert. Surprisingly the fusion protein enhances the FBPase activation in competitive inhibition experiments carried out with FBPase and Td. These results show the fundamental role played by this domain in FBPase-Td binding, not only as docking point for Td, but also by inducing some structural modification in the Td molecule. Taking as model the structural data recently published for spinach photosynthetic FBPase [29], this sequence from a tertiary and quaternary structural point of view appears available for rearrangement.  相似文献   

4.
Thioredoxin (Td) f from pea (Pisum sativum L.) leaves was purified by a simple method, which provided a high yield of homogeneous Td f. Purified Td f had an isoelectric point of 5.4 and a relative molecular mass (Mr) of 12 kilodaltons (kDa) when determined by filtration through Superose 12, but an Mr of 15.8 kDa when determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified protein remained fully active for several months when conserved frozen at — 20° C. The pea protein was able to activate fructose1,6-bisphosphatase (FBPase; EC 3.1.3.11), but in contrast to other higher-plant Td f proteins, was not functional in the modulation of NADP+-malate dehydrogenase activity. In spite of the absence of immunological cross-reactions of pea and spinach Td f proteins with the corresponding antibodies, pea Td f activated not only the homologous FBPase, but also the spinach enzyme. The saturation curves for pea FBPase, either with fructose-1,6-bisphosphate in the presence of different concentrations of homologous Td f, or with pea Td f in the presence of excess substrate, showed sigmoid kinetics; this can be explained on the basis of a random distribution of fructose-1,6-bisphosphate, and of the oxidized and reduced forms of the activator, among the four Td f- and substrate-binding sites of this tetrameric enzyme. From the saturation curves of pea and spinach Td f proteins against pea FBPase, a 4:1 stoichiometry was determined for the Td f-enzyme binding. This is in contrast to the 2:1 stoichiometry found for the spinach FBPase. The UV spectrum of pea Td f had a maximum at 277 nm, which shifted to 281 nm after reduction with dithiothreitol (s at 280 nm for 15.8-kDa Mr = 6324 M–1 · cm–1). The fluorescence emission spectrum after 280-nm excitation had a maximum at 334 nm, related to tyrosine residues; after denaturation with guanidine isothiocyanate an additional maximum appeared at 350 nm, which is concerned with tryptophan groups. Neither the native nor the denatured form showed a significant increase in fluorescence after reduction by dithiothreitol, which means that the tyrosine and tryptophan groups in the reduced Td f are similarly exposed. Pea Td f appears to have one cysteine residue more than the three cysteines earlier described for spinach and Scenedesmus Td f proteins.Abbreviations DDT dithiothreitol - ELISA enzyme-linked immunosorbent assay - FBPase fructose- 1,6-bisphosphatase - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Td thioredoxin The authors are grateful to Mrs. Francisca Castro and Mr. Narciso Algaba for skilful technical assistance. This work was supported by grant PB87-0431 of Dirección General de Investigación Cientifica y Técnica (DGICYT, Spain).  相似文献   

5.
Light-mediated activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) in intact spinach chloroplasts (Spinacia oleracea L.) is enhanced in the presence of 10−5 molar external free Ca2+. The most pronounced effect is observed during the first minutes of illumination. Ruthenium red, an inhibitor of light-induced Ca2+ influx, inhibits this Ca2+ stimulated activation. In isolated stromal preparations, the activation of fructose-1,6-bisphosphatase is already enhanced by 2 minutes of exposure to elevated Ca2+ concentrations in the presence of physiological concentrations of Mg2+ and fructose-1,6-bisphosphate. Maximal activation of the enzyme is achieved between 0.34 and 0.51 millimolar Ca2+. The Ca2+ mediated activation decreases with increasing fructose-1,6-bisphosphate concentration and with increasing pH. The data are consistent with the proposal that the illumination of chloroplasts leads to a transient increase of free stromal Ca2+. In dark-kept chloroplasts the steady-state concentration of free stromal Ca2+ is 2.4 to 6.3 micromolar as determined by null point titration. These observations support our previous proposal that light-induced Ca2+ influx into chloroplasts does not only influence the cytosolic concentration of free Ca2+ but also regulates enzymatic processes inside the chloroplast.  相似文献   

6.
Intact chloroplasts capable of high rates of photosynthesis fail to reduce CO2 when illuminated in the absence of oxygen. While anaerobiosis limits proton gradient formation leading to ATP deficiency (Ziem-Hanck, U. and Heber, U. (1980) Biochim. Biophys. Acta 591, 266–274), light activation of fructose-1,6-bisphosphatase was also inhibited by anaerobiosis, whereas light activation of NADP-malate dehydrogenase was stimulated by anaerobiosis, indicating that reductant was still available for light activation. The chloroplast pool of NADP was largely reduced during illumination under anaerobiosis and electron transport to oxaloacetate was not inhibited by anaerobic conditions. Significant light activation of fructose-bisphosphatase was observed in anaerobic chloroplasts with 3-phosphoglycerate as substrate, but not with dihydroxyacetone phosphate (3-phosphoglycerate supports electron transport and hence proton gradient formation). In the absence of added substrates, illumination of anaerobic chloroplasts resulted in some light activation of fructose-bisphosphatase when the pH of the medium was increased. Under these conditions, light activation was stimulated by dihydroxyacetone phosphate. Dihydroxyacetone phosphate added together with oxaloacetate allowed light activation of fructose-bisphosphatase in anaerobic chloroplasts, while neither substrate added alone was effective. Formation of a transthylakoid proton gradient can therefore substitute for an alkaline suspension medium by causing an alkaline shift of the stromal pH on illumination. The data are interpreted as indicating that fructose-bisphosphatase, but not NADP-malate dehydrogenase, requires an alkaline pH and the presence of substrate for rapid reductive light activation and they bear on the interpretation of the lag observed in photosynthesis in chloroplasts and leaves on illumination after a prolonged dark period.  相似文献   

7.
8.
Amino acid sequence of spinach chloroplast fructose-1,6-bisphosphatase   总被引:4,自引:0,他引:4  
The amino acid sequence of the spinach chloroplast fructose-1,6-bisphosphatase (FBPase) subunit has been determined. Placement of the 358 residues in the polypeptide chain was based on automated Edman degradation of the intact protein and of peptides obtained by enzymatic or chemical cleavage. The sequence of spinach chloroplast FBPase shows clear homology (ca. 40%) to gluconeogenic (mammalian, yeast, and Escherichia coli) fructose-1,6-bisphosphatases and 80% homology with the wheat chloroplast enzyme. The two chloroplast enzymes show near the middle of the structure a unique sequence insert probably involved in light-dependent regulation of the chloroplast FBPase enzyme activity. This sequence insert contains two cysteines separated by only 4 amino acid residues, a characteristic feature of some enzymes containing redox-active cysteines. The recent X-ray crystallographic resolution of pig kidney FBPase (H. Ke, C. M. Thorpe, B. A. Seaton, F. Marcus, and W. N. Lipscomb, 1989, Proc. Natl. Acad. Sci. USA 86, 1475-1479) has allowed the discussion of the amino acid sequence of spinach chloroplast FBPase in structural terms. It is to be noted that most of pig kidney FBPase residues shown to be either at (or close to) the sugar bisphosphate binding site or located at the negatively charged metal binding pocket are conserved in the chloroplast enzyme. The unique chloroplast FBPase insert presumably involved in light-dependent activation of the enzyme via a thioredoxin-linked mechanism can be accommodated in the surface of the FBPase molecule.  相似文献   

9.
The incubation of chloroplast fructose-1,6-bisphosphatase with both dithiothreitol and protein denaturants made sulfhydryl groups available for reaction with [1-14C]iodoacetamide (10-12 mol iodoacetamide incorporated/mol enzyme). Digestion of S-carboxyamidomethylated enzyme with trypsin and polyacrylamide gel electrophoresis, in the presence of sodium dodecylsulfate, yielded two 14C-labeled fragments whose apparent molecular mass were 10 kDa and 16 kDa. In the absence of either dithiothreitol or protein denaturants the incorporation of iodoacetamide to the enzyme was lower than 4 mol. When chloroplast fructose-1,6-bisphosphatase was initially incubated with dithiothreitol (2.5 mM) and (a) high concentrations of both fructose 1,6-bisphosphate (4 mM) and Ca2+ (0.3 mM) or (b) low concentrations of both fructose 1,6-bisphosphate (0.8 mM) and Ca2+ (0.05 mM) in the presence of either 2-propanol (15%, by vol.), trichloroacetate (0.15 M) or chloroplast thioredoxin-f (0.5 microM) and subsequently subjected to proteolysis and electrophoresis, S-carboxyamidomethylated tryptic fragments had similar molecular masses. Thus, conditions that stimulated the specific activity of chloroplast fructose-1,6-bisphosphatase caused conformational changes which favoured both the reduction of disulfide bridges and the exposure of sulfhydryl groups. In this aspect, thioredoxin exerted structural and kinetic effects similar to compounds not involved in redox reactions (organic solvents, chaotropic anions). These results indicated that the modification of hydrophobic (intramolecular) interactions in chloroplast fructose-1,6-bisphosphatase constituted the underlying mechanism in light-activation by the ferredoxin-thioredoxin system.  相似文献   

10.
The regulatory properties of chloroplast fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, (EC 3.1.3.11) were examined with a homogeneous enzyme preparation isolated from spinach leaves. The activation of the enzyme, that was earlier shown to occur via reduced thioredoxin, was found to be accompanied by a structural change that took place more slowly than the rate of catalysis. The recently found deactivation of the thioredoxin-activated enzyme by physiological oxidants such as oxidized glutathione and dehydroascorbic acid was also slow relative to catalysis. Under the conditions used, the activated enzyme showed a pH optimum of about 8.0, whereas the corresponding value for the non-activated form was pH 8.8. The importance of the thioredoxin-linked mechanism of enzyme regulation that is effected through photoreduced ferredoxin and ferredoxin-thioredoxin reductase is discussed in relation to other light-controlled regulatory agents in chloroplasts.  相似文献   

11.
We previously demonstrated that a cluster in the available 150 Asn-170Glu region of pea chloroplast fructose-1,6-bisphosphatase (FBPase) could be involved in its interaction with the physiological modulator thioredoxin (Trx). Using as template a cDNA coding for pea chloroplast FBPase, a DNA insert coding for a 19 amino acid fragment ( 149 Pro-167Gly) was amplified by PCR. After insertion in the pGEX-4T vector-1, it was expressed in Escherichia coli as a fusion protein (GST-19) with the vector-coded glutathione transferase (GST). This protein appears in the supernatant of cell lysates, and was purified to homogeneity. After thrombin digestion, the 19 amino acid insert was isolated as a polypeptide which displayed a positive reaction against pea chloroplast FBPase antibodies. GST-19 linked to glutathione-Sepharose beads, but not the GST, strongly interacts with pea Trx f , suggesting that this binding depends on the 19 amino acid insert. ELISA and Western blot experiments also demonstrate the existence of a GST-19-Trx f interaction, as well as a negligible quantity of Trx f bound by the vector-coded GST. Putative competitive inhibition assays of FBPase activity carried out in the presence of increasing concentrations of the 19 amino acid insert do not demonstrate any enzyme inhibition. On the contrary, this protein fragment enhances the enzyme activity proportionally to its concentration in the assay mixture. This indicates that the FBPase-Trx f binding promotes some type of structural modification of the Trx molecule, or of the FBPase-Trx docking site, thus facilitating the reductive modulation of FBPase.  相似文献   

12.
The regulatory properties of chloroplast fructose-1,6-bisphosphatase (d-fructose-1,6-bisphosphate 1-phosphohydrolase, (EC 3.1.3.11) were examined with a homogeneous enzyme preparation isolated from spinach leaves. The activation of the enzyme, that was earlier shown to occur via reduced thioredoxin, was found to be accompanied by a structural change that took place more slowly than the rate of catalysis. The recently found deactivation of the thioredoxin-activated enzyme by physiological oxidants such as oxidized glutathione and dehydroascorbic acid was also slow relative to catalysis. Under the conditions used, the activated enzyme showed a pH optimum of about 8.0, whereas the corresponding value for the non-activated form was pH 8.8.The importance of the thioredoxin-linked mechanism of enzyme regulation that is effected through photoreduced ferredoxin and ferredoxin-thioredoxin reductase is discussed in relation to other light-controlled regulatory agents in chloroplasts.  相似文献   

13.
Chloroplast fructose-1,6-bisphosphatase hysteresis in response to modifiers was uncovered by carrying out the enzyme assays in two consecutive steps. The activity of chloroplast fructose-1,6-bisphosphatase, assayed at low concentrations of both fructose-1,6-bisphosphatase and Mg2+, was enhanced by preincubating the enzyme with dithiothreitol, thioredoxin f, fructose 1,6-bisphosphate, and Ca2+. In the time-dependent activation process, fructose 1,6-bisphosphate and Ca2+ could be replaced by other sugar biphosphates and Mn2+, respectively. Once activated, chloroplast fructose-1,6-bisphosphatase hydrolyzed fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate in the presence of Mg2+, Mn2+, or Fe2+. The A0.5 for fructose 1,6-bisphosphate (activator) was lowered by reduced thioredoxin f and remained unchanged when Mg2+ was varied during the assay of activity. On the contrary, the S0.5 for fructose 1,6-bisphosphate (substrate) was unaffected by reduced thioredoxin f and depended on the concentration of Mg2+. Ca2+ played a dual role on the activity of chloroplast fructose-1,6-bisphosphatase; it was a component of the concerted activation and an inhibitor in the catalytic step. Provided dithiothreitol was present, the activating effectors were not required to maintain the enzyme in the active form. Considered together these results strongly suggest that the regulation of fructose-1,6-bisphosphatase in chloroplast occurs at two different levels, the activation of the enzyme and the catalysis.  相似文献   

14.
The activation of chloroplast fructose-1,6-bisphosphatase by fructose-1,6-bisphosphate, Ca2+, DTT and chloroplast thioredoxin-f is prevented by either spermidine or spermine; on the contrary, other amino compounds do not replace polyamines in this reversible effect. On the other hand, neither spermidine nor spermine modify the catalysis of chloroplast fructose-1,6-bisphosphatase. The effect of spermidine, but not the effect of spermine, is reversed by increasing the concentration of Ca2+ in the activation; higher concentrations of Fructose-1,6-bisphosphate or thioredoxin-f do not restore the control activity. The present results suggest that other regulatory mechanisms may control the activation of fructose-1,6-bisphosphatase in chloroplasts.  相似文献   

15.
16.
An enriched IgG serum fraction obtained from rabbits immunized against pea chloroplast fructose-1,6-bisphosphatase (FBPase) was used, coupled to colloidal gold (15 nanometer particles) goat anti-rabbit IgG, to analyze by electron microscopy the location of photosynthetic FBPase in pea (Pisum sativum L.) leaf ultrathin sections. In accordance with earlier biochemical studies on distribution of FBPase activity, the enzyme was visualized both in the stromal space and bound to the chloroplast membranes. Some gold particles also appear in the cytoplasm, which can be related to the presence in the cytosol of a high molecular weight precursor of this nuclear coded enzyme.  相似文献   

17.
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites.  相似文献   

18.
Two kinetically and thermodynamically distinct thiol/disulfide redox changes are observed during the reversible thioredoxin fb-catalyzed reduction and oxidation of spinach chloroplast fructose-1,6-bisphosphatase by dithiothreitol. The two processes, which occur at different rates and with different equilibrium constants, can be observed independently in either the reduction (activation) or oxidation (inactivation) direction by assaying the enzyme activity at different magnesium and fructose-1,6-bisphosphate concentrations. The two processes, in both the reduction and oxidation directions, are kinetically zero-order in dithiothreitol concentration and first-order in thioredoxin fb concentration. The rate-limiting step in both directions is the reaction of fructose-1,6-bisphosphatase with thioredoxin. The more kinetically and thermodynamically favored reduction of fructose-1,6-bisphosphatase lowers the apparent Km for fructose-1,6-bisphosphate while the less favorable process lowers the Km for magnesium. Both of the thiol/disulfide redox changes reach equilibrium in redox buffers consisting of different ratios of reduced to oxidized dithiothreitol (Ered + DTTox in equilibrium Eox + DTTred). The equilibrium constants (Kox) are 0.12 +/- 0.02 and 0.39 +/- 0.08 for the fast and slow reduction processes at pH 8.0. The equilibrium constants for oxidation of the enzyme by glutathione disulfide (Ered + GSSG in equilibrium Eox + 2 GSH) can be estimated to be approximately 2400 and 7800 M, respectively. Thermodynamically the fructose-1,6-bisphosphatase/thioredoxin fb system is extremely sensitive to oxidation, comparable to disulfide bond formation in extracellular proteins.  相似文献   

19.
A two-stage assay was used to study the effect of organic solvents on the activation of and the catalysis by chloroplast fructose-1,6-bisphosphatase. Irrespective of chemical structure, all the organic solvents tested had a dual effect on the enzyme. In the activation they stimulated and inhibited at low and high concentrations, respectively, in a process that required dithiothreitol, fructose 1,6-bisphosphate, and Ca2+. Conversely, organic solvents inhibited catalysis. The enhancement in fructose-1,6-bisphosphatase activity did not arise from a change in the molecular weight of the enzyme and correlated positively with the hydrophobic character of the organic solvent. In the presence of 2-propanol, all the activation constants for modulators (fructose 1,6-bisphosphate, a2+, thioredoxin-f) were lower than in a strictly aqueous medium. Monothiols were also functional in the activation of chloroplast fructose-1,6-bisphosphatase, although they were less effective than dithiols. Sulfhydryl compounds decreased the concentration of fructose 1,6-bisphosphate required for the activation of the enzyme, and 2-propanol lowered this requirement further. Arrhenius plots were nonlinear for the enzyme activation and linear for the hydrolytic step. The anomalous temperature dependence of the chloroplast fructose-1,6-bisphosphatase activation was indicative of a cooperative process. The data obtained in this study indicate that the concerted activation of chloroplast fructose-1,6-bisphosphatase is favored in a medium less polar than water.  相似文献   

20.
Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号