首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monitoring of biofilms subjected to different operating conditions was performed using a flow cell system. The system was fed by chlorine-free tap water, with and without added nutrients (0.5 mg l(-1) carbon, 0.1 mg l(-1) nitrogen and 0.01 mg l(-1) phosphorus), and biofilms were grown on polyvinyl chloride (PVC) and stainless steel (SS) coupons, both in laminar and turbulent flow. The parameters analysed were culturable cells, using R2A, and total bacteria, which was assessed using the 4,6-diamino-2-phenylindole (DAPI) staining method. The impact of the different operating conditions in the studied parameters was established using Multivariate Analysis of Variance (MANOVA). From the most relevant to the least relevant factor, the total and culturable bacteria in biofilms increased due to the addition of nutrients to water (F = 20.005; p < 0.001); the use of turbulent (Re = 11000) instead of laminar (Re = 2000) hydrodynamic flows (F = 9.173; p < 0.001); and the use of PVC instead of SS as the support material (F = 2.848; p = 0.060). Interactions between these conditions, namely between surface and flow (F = 8.235; p < 0.001) and also flow and nutrients (F = 5.498; p < 0.05) have also proved to significantly influence biofilm formation. This work highlights the need for a deeper understanding of how the large spectrum of conditions interact and affect biofilm formation potential and accumulation with the final purpose of predicting the total and culturable bacteria attached to real drinking water distribution pipes based on the system characteristics.  相似文献   

2.
Monocyte adhesion to the endothelium depends on concentrations of receptors/ligands, local concentrations of chemoattractants, monocyte transport to the endothelial surface and hemodynamic forces. Monocyte adhesion to the inert surface of a three-dimensional perfusion model was shown to correlate inversely with wall shear stress, but was also affected by flow patterns which influenced the near-wall cell availability. We hypothesized that (a) under the same flow conditions, insolubilized E-selectin on the model's surface may mediate adhesive interactions at higher wall shear stresses, compared to an uncoated model, and (b) pulsatile flow may modify the adhesion profile obtained under steady flow. An axisymmetric flow model with a stenosis and a sudden expansion produced a range of wall shear stresses and a separated flow with recirculation and reattachment. Pre-activated U937 cells were perfused through the model under either steady (Re = 100, 140) or pulsatile (Remean = 107) flow. The velocity field was characterized through computational fluid dynamics and validated by inert particle tracking. Surface E-selectin greatly increased cell adhesion in all regions at Re = 100 and 140, compared to an uncoated model under the same flow conditions. In regions where the cells near the wall were abundant (taper and stenosis), adhesion to E-selectin correlated with the reciprocal of local wall shear stress when flow was steady. Pulsatile flow distributed the adherent cells more evenly throughout the coated model. Hence, characterizing both the local hemodynamics and the biological activity on the vessel wall is important in leukocyte adhesion.  相似文献   

3.
T Yamaguchi  S Hanai 《Biorheology》1988,25(1-2):31-36
An electrochemical surface shear stress measurement was applied to a model of very thin unilateral arterial stenosis (height of 1/8 of the model pipe diameter with very smooth surface). Three dimensional wall shear stress distribution was measured under steady flow field from a relatively low Reynolds number, Re = 270, to a high Reynolds number, Re = 1200. There was a characteristic high and low wall shear distribution pattern around the stenosis. There were also remarkable high shear stress areas on the opposite wall and both side walls of the stenosis. It was clearly shown that three dimensional structure of the flow field, hence, the wall shear stress distribution, is affected by a minimal change on the arterial wall.  相似文献   

4.
动脉粥样硬化的非随机分布与当地的血流动力环境有关,为了研究复杂的流体动力学条件对血和皮细胞生理功能的影响,构建了平行板式平直流槽和突然扩张流槽,通过数值模拟分析了流型的特征,并探讨流型改变对人脐静脉血管内皮细胞表面粘附蛋白表达的影响,发现突然扩张流槽中流动的空间变化使得总体细胞表面粘附蛋白ICAM-1的表达显著高于平直流槽中的均匀定常剪切作用,表明局部流动空间变化的性质可以影响血管内皮细胞的功能。  相似文献   

5.
The pH dependences of electrokinetic potentials (EKP) of the cells of two Escherichia coli K-12 strains (D21 and JM 103) with known lipopolysaccharide (LPS) core composition have been determined by the method of microelectrophoresis. At pH 4.6-5.2, the negative surface charge of the cells with Re core LPS was reliably higher. It was shown that the interaction of bacteria with lysozyme results in a decrease of optical density of suspensions due to higher sensitivity of the cells with complete LPS core to hypotonic shock. LPS release from bacterial cell wall depended also on bacterial LPS core composition and increased with LPS core extension. Electrokinetic measurements and the study of the interaction of cells with lysozyme suggest that higher negative surface charge of E. coli JM 103 cells (Re type LPS) is associated with higher quantity and density of LPS packing in the cell wall as compared with the cells of E. coli D21 (Ra type LPS).  相似文献   

6.
The relationship between biofilm formation and Reynolds number in laminar flow has been investigated usingPseudomonas fluorescens EX101. It was shown using a Modified Robbins Device that in laminar flow, numbers of viable cells in a developed biofilm increased with Reynolds number (Re 2, 17 and 51.5), as would be expected in a system where molecular transport to the wall is limited by diffusion. By monitoring fluorescent beads in a flowcell with a scanning confocal laser microscope at similar low Reynolds numbers, the velocity profile close to the solid surface was determined. It was shown that the presence of a thin bacterial film (up to 12 m) displaced the flow profile away from the wall by a distance equivalent to the film thickness. Total cell counts from the Modified Robbins Device samples were not significantly different at the different flow rates but were higher than viable counts. Interruption of the flow had no significant effect on colonisation by the bacteria through the Modified Robbins Device in the first few hours. However, viable numbers were reduced when the flow was stopped at 7 h after initial colonisation.  相似文献   

7.
This work was undertaken to examine the electrooptical characteristics of cells of Azospirillum brasilense Sp245 during their interaction with antibodies developed to various cell surface epitopes. We used the dependences of the cell suspension optical density changes induced by electroorientation on the orienting field frequency (740, 1000, 1450, 2000, and 2800kHz). Cell interactions with homologous strain-specific antibodies to the A. brasilense Sp245 O antigen and with homologous antibodies to whole bacterial cells brought about considerable changes in the electrooptical properties of the bacterial suspension. When genus-specific antibodies to the flagellin of the Azospirillum sheathed flagellum and antibodies to the serologically distinct O antigen of A. brasilense Sp7 were included in the A. brasilense Sp245 suspension, the changes caused in the electrooptical signal were slight and had values close to those for the above changes. These findings agree well with the immunochemical characteristics of the Azospirillum O antigens and with the data on the topographical distribution of the Azospirillum major cell surface antigens. The obtained results can serve as a basis for the development of a rapid test for the intraspecies detection of microorganisms.  相似文献   

8.
The effect of four-wall shear rates (34.9, 74.8, 142.5, and 194.5 s(-1)) on bacterial deposition on glass slides in drinking water flow chambers was studied. Biofilm image acquisition was performed over a 50-day period. Bacterial accumulation and surface coverage curves were obtained. Microscopic observations allowed us to obtain information about the dynamics and spatial distribution of the biofilm. During the first stage of biofilm formation (210-518 h), bacterial accumulation was a function of the wall shear rate: the higher the wall shear rate, the faster the bacterial deposition (1.1 and 1.9 x 10(4) bacterial cells . cm(-2) for wall shear rates of 34.9 and 142.5 s(-1), respectively). A new similarity relationship characteristic of a non-dimensional time and function of the wall shear rate was proposed to describe initial bacterial deposition. After 50 days of exposure to drinking water, surface coverage was more or less identical under the entire wall shear rates (7.44 +/- 0.9%), suggesting that biofilm bacterial density cannot be controlled using hydrodynamics. However, the spatial distribution of the biofilm was clearly different. Under low wall shear rate, aggregates were composed of bacterial cells able to "vibrate" independently on the surface, whereas, under a high wall shear rate, aggregates were more cohesive. Therefore, susceptibility to the hydraulic discontinuities occurring in drinking water system may not be similar. In all the flow chambers, significant decreases in bacterial biomass (up to 77%) were associated with the presence of amoebae. This grazing preferentially targeted small, isolated cells.  相似文献   

9.
The pH dependences of electrokinetic potentials (EKP) of the cells of two Escherichia coli K-12 strains (D21 and JM 103) with known lipopolysaccharide (LPS) core composition have been determined by the method of microelectrophoresis. At pH 4.6–5.2, the negative surface charge of the cells with Re core LPS was reliably higher. It was shown that the interaction of bacteria with lysozyme results in a decrease of optical density of suspensions due to higher sensitivity of the cells with complete LPS core to hypotonic shock. LPS release from bacterial cell wall depended also on bacterial LPS core composition and increased with LPS core extension. Electrokinetic measurements and the study of the interaction of cells with lysozyme suggest that higher negative surface charge of E. coli JM 103 cells (Re type LPS) is associated with higher quantity and density of LPS packing in the cell wall as compared with the cells of E. coli D21 (Ra type LPS).  相似文献   

10.
The influence of bacterial growth stage and the evolution of surface macromolecules on cell adhesion have been examined by using a mutant of Escherichia coli K-12. To better understand the adhesion kinetics of bacteria in the mid-exponential and stationary growth phases under flow conditions, deposition experiments were conducted in a well-controlled radial stagnation point flow (RSPF) system. Complementary cell characterization techniques were conducted in combination with the RSPF experiments to evaluate the hydrophobicity, electrophoretic mobility, size, and titratable surface charge of the cells in the two growth phases considered. It was observed that cells in stationary phase were notably more adhesive than those in mid-exponential phase. This behavior is attributed to the high degree of local charge heterogeneity on the outer membranes of stationary-phase cells, which results in decreased electrostatic repulsion between the cells and a quartz surface. The mid-exponential-phase cells, on the other hand, have a more uniform charge distribution on the outer membrane, resulting in greater electrostatic repulsion and, subsequently, less adhesion. Our results suggest that the macromolecules responsible for this phenomenon are outer membrane-bound proteins and lipopolysaccharide-associated functional groups.  相似文献   

11.
The processes leading to bacterial colonization on solidwater interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 mum (for silicon) to 0.015 mum (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varried by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.  相似文献   

12.
The influence of bacterial growth stage and the evolution of surface macromolecules on cell adhesion have been examined by using a mutant of Escherichia coli K-12. To better understand the adhesion kinetics of bacteria in the mid-exponential and stationary growth phases under flow conditions, deposition experiments were conducted in a well-controlled radial stagnation point flow (RSPF) system. Complementary cell characterization techniques were conducted in combination with the RSPF experiments to evaluate the hydrophobicity, electrophoretic mobility, size, and titratable surface charge of the cells in the two growth phases considered. It was observed that cells in stationary phase were notably more adhesive than those in mid-exponential phase. This behavior is attributed to the high degree of local charge heterogeneity on the outer membranes of stationary-phase cells, which results in decreased electrostatic repulsion between the cells and a quartz surface. The mid-exponential-phase cells, on the other hand, have a more uniform charge distribution on the outer membrane, resulting in greater electrostatic repulsion and, subsequently, less adhesion. Our results suggest that the macromolecules responsible for this phenomenon are outer membrane-bound proteins and lipopolysaccharide-associated functional groups.  相似文献   

13.
The phage mini-antibodies to bacterial cells of strain Azospirillum brasilense Sp245 were obtained and the possibility of using them for detection of microbial cells by means of a lateral field excited piezoelectric resonator was studied. It has been found that the frequency dependencies of the real and imaginary parts of the electrical impedance of the resonator loaded by the cell suspension A. brasilense Sp245 with the mini-antibodies, significantly differ from those of the resonator with the control cell suspension without mini-antibodies. The concentration limit of possible determination of the microbial cells in their interaction with the mini-antibodies is equal to 10(3) cells/ml. It has been ascertained that detection of A. brasilense Sp245 cells using the mini-antibodies is possible even in the presence of other cultures, for example, E. coli BL-Ril and A. brasilense Sp7 cells. Therefore, it has been shown for the first time that detection of microbial cells by an electro-acoustic sensor is feasible.  相似文献   

14.
The present study investigated the effect of As(2)O(3)on malignant lymphoma cells. Cell apoptosis was detected by cell staining and TdT-mediated dUTP Nick-end Labelling (TUNEL). Cellular DNA and protein expression content were determined by immunohistochemistry and flow cytometry. It was found that 0.5-2.0 microm /l As(2)O(3)could inhibit cell growth, including Raji cells and lymphoma cells from patients, and induce apoptosis, such as condensed chromatin and nuclear fragmentation with intact cell membrane, i.e. apoptotic body. It was also found that the cells of the sub-G(1)phase increased significantly and bcl-2 gene expression was greatly downregulated. However, this effect was not observed for Jurkat cells under the same conditions. We concluded that As(2)O(3)at a range of 0.5-2.0 microm /l can inhibit the growth and induce apoptosis in malignant lymphoma cells, which may have therapeutic potential.  相似文献   

15.
We describe a method that enabled us to observe large numbers of individual bacterial cells during a long period of cell growth and proliferation. We designed a flow chamber in which the cells attached to a transparent solid surface. The flow chamber was mounted on a microscope equipped with a digital camera. The shear force of the flow removed the daughter cells, making it possible to monitor the consecutive divisions of a single cell. In this way, kinetic parameters and their distributions, as well as some physiological characteristics of the bacteria, could be analyzed based on more than 1,000 single-cell observations. The method which we developed enabled us to study the history effect on the distribution of the lag times of single cells.  相似文献   

16.
We describe a method that enabled us to observe large numbers of individual bacterial cells during a long period of cell growth and proliferation. We designed a flow chamber in which the cells attached to a transparent solid surface. The flow chamber was mounted on a microscope equipped with a digital camera. The shear force of the flow removed the daughter cells, making it possible to monitor the consecutive divisions of a single cell. In this way, kinetic parameters and their distributions, as well as some physiological characteristics of the bacteria, could be analyzed based on more than 1,000 single-cell observations. The method which we developed enabled us to study the history effect on the distribution of the lag times of single cells.  相似文献   

17.
J Shen  M A Gimbrone  Jr  F W Luscinskas    C F Dewey  Jr 《Biophysical journal》1993,64(4):1323-1330
The action of adenine nucleotides on vascular endothelial cells is apparently mediated by the local flow conditions. Because nucleotides are sequentially degraded from ATP-->ADP-->AMP-->adenosine by ecto-enzymes at the endothelial surface, it has been hypothesized that the observed flow effect is caused by the flow-dependent change of nucleotide concentration at the cell surface. In this study, we have calculated the concentration profiles of adenine nucleotides at the cell surface under flow conditions encountered in an in vitro parallel-plate flow system, as has been used in several related experimental studies. When medium containing uniformly distributed ATP is perfused over endothelial monolayers, our results show that ATP concentration in the cell vicinity gradually decreases in the streamwise direction as a result of enzymatic degradation. This hydrolysis of ATP results in the generation of ADP, and ADP concentration in turn gradually increases at the cell surface. The concentration profiles of nucleotides are dependent on the levels of applied wall shear rate. As the corresponding shear stress increases from 0.1 to 30 dynes/cm2, ATP concentration at the cell surface at the center of coverslip increases from 0.66 to 0.93. Under no-flow conditions, our model predicts a steady decline of ATP concentration and a transient increase of ATP-derived ADP, comparable to the published results of previous experiments. These numerical results, combined with our recent experimental data, provide insights into the cellular mechanisms by which hemodynamic flow modulates the effects of vasoactive agents on endothelium.  相似文献   

18.
Centrifugal compaction causes changes in the surface properties of bacterial cells. It has been shown previously that the surface properties of planktonic cells change with increasing centrifugal compaction. This study aimed to analyze the influences of centrifugal compaction and environmental conditions on the visco-elastic properties of oral biofilms. Biofilms were grown out of a layer of initially adhering streptococci, actinomyces or a combination of these. Different uni-axial deformations were induced on the biofilms and the load relaxations were measured over time. Linear-Regression-Analysis demonstrated that both the centrifugation coefficient for streptococci and induced deformation influenced the percentage relaxation. Centrifugal compaction significantly influenced relaxation only upon compression of the outermost 20% of the biofilm (p < 0.05), whereas biofilm composition became influential when 50% deformation was induced, invoking re-arrangement of the bacteria in deeper biofilm structures. In summary, the effects of centrifugal compaction of initially adhering, centrifuged bacteria extend to the visco-elastic properties of biofilms, indicating that the initial bacterial layer influences the structure of the entire biofilm.  相似文献   

19.
The effects of non-uniform hydrodynamic conditions resulting from flow cell geometry (square and rectangular cross-section) on Pseudomonas aeruginosa 01 (PAO1) biofilm formation, location, and structure were investigated for nominally similar flow conditions using a combination of confocal scanning laser microscope (CSLM) and computational fluid dynamics (CFD). The thickness and surface coverage of PAO1 biofilms were observed to vary depending on the location in the flow cell and thus also the local wall shear stress. The biofilm structure in a 5:1 (width to height) aspect ratio rectangular flow cell was observed to consist mainly of a layer of bacterial cells with thicker biofilm formation observed in the flow cell corners. For square cross-section (1:1 aspect ratio) flow cells, generally thicker and more uniform surface coverage biofilms were observed. Mushroom shaped structures with hollow centers and wall breaks, indicative of ‘seeding’ dispersal structures, were found exclusively in the square cross-section tubes. Exposure of PAO1 biofilms grown in the flow cells to gentamicin revealed a difference in susceptibility. Biofilms grown in the rectangular flow cell overall exhibited a greater susceptibility to gentamicin compared to those grown in square flow cells. However, even within a given flow cell, differences in susceptibility were observed depending on location. This study demonstrates that the spanwise shear stress distribution within the flow cells has an important impact on the location of colonization and structure of the resultant biofilm. These differences in biofilm structure have a significant impact on the susceptibility of the biofilms grown within flow channels. The impact of flow modification due to flow cell geometry should be considered when designing flow cells for laboratory investigation of bacterial biofilms.  相似文献   

20.
The relationship between flow cytometry data and epifluorescence microscopy measurements was assessed in bacterioplankton samples from 80 lakes to estimate bacterial biovolume and cell size distribution. The total counts of 4',6'-diamidino-2-phenylindole-stained cells estimated by both methods were significantly related, and the slope of their linear regression was not significantly different from 1, indicating that both methods produce very similar estimates of bacterial abundance. The relationships between side scatter (SSC) and 4',6'-diamidino-2-phenylindole fluorescence and cell volume (microscopy values) were improved by binning of the data in three frequency classes for each, but further increases in the number of classes did not improve these relationships. Side scatter was the best cell volume predictor, and significant relationships were observed between the SSC classes and the smallest (R2 = 0.545, P < 0.001, n = 80) and the largest (R2 = 0.544, P < 0.001, n = 80) microscopy bacterial-size classes. Based on these relationships, a reliable bacterial biomass estimation was obtained from the SSC frequency classes. Our study indicates that flow cytometry can be used to properly estimate bacterioplankton biovolume, with an accuracy similar to those of more time-consuming microscopy methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号