首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

2.
The effect of heat stress on soluble proteins extracted from leaf tissues of bread (Triticum aestivum cv. Gönen-98, tolerant; cv. Cumhuriyet-75, susceptible; genome ABD) and durum (Triticum durum cv. Ege-88, tolerant; cv. Ankara-98, susceptible; genome AB) wheat cultivars differing in sensitivity to high temperature was examined by two-dimensional gel electrophoresis. At acclimation (37°C) and acclimation→high temperature (37°C→50°C) treatments compared to control (25°C), evaluation of gels revealed 31 proteins to be differentially expressed in first leaves as a result of heat stress in heat-susceptible and heat-tolerant cultivars of bread and durum wheats. All of the increased or decreased proteins in amount, newly synthesized and/or disappeared were in low-molecular-weight (LMW, 16.1–24.0 kDa) and generally acidic character (pI 4.8–6.9). The responses of the four cultivars were compared: Twenty-two of 31 proteins were detected as newly synthesized LMW heat shock proteins (LMW HSPs = small HSPs). The number of these sHSPs was different in cultivars which have the same genome. In addition, the number of the sHSPs in heat-tolerant cultivars was higher than in heat-susceptible cultivars. Some of the sHSPs were specific to cultivar. Most of the sHSPs synthesized at 37°C were also detected at 37°C→50°C treatment. It is suggested that sHSPs have special importance in two points: Firstly, sHSPs in cultivars showed abundance and diversity. Secondly, these proteins may play an important role in the acquiring of thermal tolerance.  相似文献   

3.
4.
5.
A thermosensitive wild-type strain (PP201) of Rhizobium sp. (Cajanus) and its 14 heat-resistant mutants were characterized biochemically with regard to their cell surface (exopolysaccharides (EPSs) and lipopolysaccharides (LPSs)) properties and protein profile. Differences were observed between the parent strain and the mutants in all these parameters under high temperature conditions. At normal temperature (30 °C), only half of the mutant strains produced higher amounts of EPSs than the parent strain, but at 43 °C, all the mutants produced higher quantities of EPS. The LPS electrophoretic pattern of the parent strain PP201 and the heat-resistant mutants was almost identical at 30 °C. At 43 °C, the parent strain did not produce LPS but the mutants produced both kinds of LPSs. The protein electrophoretic pattern showed that the parent strain PP201 formed very few proteins at high temperature, whereas the mutants formed additional new proteins. A heat shock protein (Hsp) of 63–74 kDa was overproduced in all mutant strains.  相似文献   

6.
Accumulation of class I small heat shock proteins (sHSPs) is induced by the proline analog, azetidine-2-carboxylic acid (Aze) in soybean seedlings to a level similar to that induced by exposure to 40 degrees C. However, only the treatment with 10 mM Aze for 6 h and subsequently with 10 mM proline for 24 h protected the seedlings from damage during subsequent exposure to 45 degrees C as assessed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. A chaperone activity assay showed that the purified class I sHSPs induced by Aze were functional in vitro and protected proteins from thermal denaturation. Amino acid composition analysis indicated that Aze was not incorporated into de novo synthesized class I sHSPs. Accumulation of class I sHSPs in the soluble post-ribosomal supernatant fraction was found to be important for acquisition of thermotolerance. We suggest that both the accumulation of class I sHSPs and their presence in the soluble fraction are important for establishment of thermotolerance.  相似文献   

7.
Non‐lethal heat‐shock (HS) treatment has previously been shown to induce thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. This acquired thermotolerance correlates with the de novo synthesis of heat‐shock proteins (HSPs). Interestingly, we found that ethanol treatments also elicited HS‐like responses in aetiolated soybean seedlings at their normal growth temperature of 28 °C. Northern blot analyses revealed that the expression of HS genes hsp17.5, hsp70 and hsc 70 was induced by ethanol. Radioactive amino acids were preferentially incorporated into high molecular weight (HMW) HSPs rather than class I low molecular weight (LMW) HSPs during non‐lethal ethanol treatments. Immunoblot analysis confirmed that no accumulation of class I LMW HSPs occurred after non‐lethal ethanol treatment. Pre‐treatment with a non‐lethal dose of ethanol did not provide thermotolerance, as the aetiolated soybean seedlings could not survive a subsequent heat shock of 45 °C for 2 h. In contrast, non‐lethal HS pre‐treatment, 40 °C for 2 h, conferred tolerance on aetiolated soybean seedlings to otherwise lethal treatments of 7·5% ethanol for 8 h or 10% ethanol for 4 h. These results suggest that plant class I LMW HSPs may play important roles in providing both thermotolerance and ethanol tolerance.  相似文献   

8.
Juan Carlos Argüelles   《FEBS letters》1994,350(2-3):266-270
Exponential cells of the Saccharomyces cerevisiae tps1 mutant underwent a rapid loss of viability upon a non-lethal heat exposure (from 28 to 42°C). However, a further more severe heat stress (52.5°C 5 min) induced an increase in the fraction of viable cells. This mutant can not synthesize trehalose either at 28° C or at 42°C due to the lack of a functional trehalose-6P synthase complex. In control experiments carried out with the wild-type W303-1 B, heat-stressed exponential phase cultures grown on YPgal at 28°C acquired thermotolerance to a higher extent than identical cultures grown on YPD, although in both cultures the level of stored trehalose was negligible. These data suggest that the bulk of trehalose accumulated in yeast upon mild heat treaments is not sufficient to account for the acquisition of thermotolerance.  相似文献   

9.
Since both heat and sodium arsenite induce thermotolerance, we investigated the differences in synthesis and redistribution of stress proteins induced by these agents in Chinese hamster ovary cells. Five major heat shock proteins (HSPs; Mr 110, 87, 70, 28, and 8.5 kDa) were preferentially synthesized after heat for 10 min at 45.5 degrees C, whereas four major HSPs (Mr 110, 87, 70, and 28 kDa) and one stress protein (33.3 kDa) were preferentially synthesized after treatment with 100 microM sodium arsenite (ARS) for 1 hr. Two HSP families (HSP70a,b,c, and HSP28a,b,c) preferentially relocalized in the nucleus after heat shock. In contrast, only HSP70b redistributed into the nucleus after ARS treatment. Furthermore, the kinetics of synthesis of each member of HSP70 and HSP28 families and their redistribution were different after these treatments. The maximum rates of synthesis of HSP70 and HSP28 families, except HSP28c, were 6-9 hr after heat shock, whereas those of HSP70b and HSP28b,c were 0-2 hr after ARS treatment. In addition, the maximum rates of redistribution of HSP70 and HSP28 families occurred 3-6 hr after heat shock, whereas that of HSP70b occurred immediately after ARS treatment. The degree of redistribution of HSP70b after ARS treatment was significantly less than that after heat treatment. These results suggest that heat treatment but not sodium arsenite treatment stimulates the entry of HSP70 and HSP28 families into the nucleus.  相似文献   

10.
Many cells and organisms are rendered transiently resistant to lethal heat shock by short exposure to sublethal temperatures. This induced thermotolerance is thought to be related to increased amounts of heat shock proteins (HSPs) which, as molecular chaperones, protect cells from stress-induced damage. As part of a study on bivalve stress and thermotolerance, work was undertaken to examine the effects of sublethal heat shock on stress tolerance of juveniles of the northern bay scallop, Argopecten irradians irradians, in association with changes in the levels of cytoplasmic HSP70 and 40. Juvenile bay scallops heat-shocked at a sublethal temperature of 32 °C survived an otherwise lethal heat treatment at 35 °C for at least 7 days. As determined by ELISA, acquisition of induced thermotolerance closely paralleled HSP70 accumulation, whereas HSP40 accrual appeared less closely associated with thermotolerance. Quantification of scallop HSPs following lethal heat treatment, with or without conditioning, suggested a causal role for HSP70 in stress tolerance, with HSP40 contributing to a lesser, but significant extent. Overall, this study demonstrated that sublethal heat shock promotes survival of A. irradians irradians juveniles upon thermal stress and the results support the hypothesis that HSPs have a role in this induced thermotolerance. Exploitation of the induced thermotolerance response shows promise as a means to improve survival of bay scallops in commercial culture.  相似文献   

11.
Hsieh MH  Chen JT  Jinn TL  Chen YM  Lin CY 《Plant physiology》1992,99(4):1279-1284
Two major polypeptides of the 15- to 18-kilodalton class of soybean (Glycine max) heat shock proteins (HSPs), obtained from an HSP-enriched (NH4)2SO4 fraction separated by two-dimensional polyacrylamide gel electrophoresis, were used individually as antigens to prepare antibodies. Each of these antibody preparations reacted with its antigen and cross-reacted with 12 other 15- to 18-kilodalton HSPs. With these antibodies, the accumulation of the 15- to 18-kilodalton HSPs under various heat shock (HS) conditions was quantified. The 15- to 18-kilodalton HSPs began to be detectable at 35° C, and after 4 hours at 40° C they had accumulated to a maximum level of 1.54 micrograms per 100 micrograms of total protein in soybean seedlings and remained almost unchanged up to 24 hours after HS. Accumulation of the HSPs was reduced at temperatures higher than 40° C. At 42.5° C the HSPs were reduced to 1.02 micrograms per 100 micrograms, and at 45° C they were hardly detectable. A brief HS at 45° C (10 minutes), followed by incubation at 28° C, which also induced HSP synthesis, resulted in synthesis of this class of HSPs at levels up to 1.06 micrograms per 100 micrograms of total protein. Taking into consideration the previous data concerning the acquisition of thermotolerance in soybean seedlings, our estimation indicates that the accumulation of the 15- to 18-kilodalton HSPs to 0.76 to 0.98% of total protein correlated well with the establishment of thermotolerance. Of course, other HSPs, in addition to this group of proteins, may be required for the development of thermotolerance.  相似文献   

12.
Tolerance of both protein synthesis and seedling growth to apreviously lethal high temperature can be induced by prior exposureto a sub-lethal temperature during which the synthesis of heatshock proteins (HSPs) occurs. In this study, a thermal gradientbar was used to measure the physiological effects of temperatureon seedlings of sorghum (Sorghum bicolor L.) in conjunctionwith studies of gene expression. The duration of HSP synthesis,both during continued high temperature treatment or on returnto normal temperatures, was found to be very finely modulatedand was dependent on the severity of the initial heat shock.The synthesis of heat shock proteins and the induction of thermotolerancewere rapid, reversible and reinducible phenomena. Maximal thermotolerancewas obtained after treatments that induced the full complementof HSPs. Subsequent treatments that repressed HSP synthesis,also abolished thermotolerance. The presence of HSPs, however,was not sufficient for the tissue to be in a thermotolerantstate and the results suggest that either their de novo synthesis,or some other factor, is required for the induction of thermotolerance.Pre-existing HSPs did not inhibit the synthesis of new HSPs.Although the kinetics of the synthesis of HSPs and the developmentof thermotolerance show a tight correlation, the kinetics ofthe decay of thermotolerance and the degradation of HSPs werenot linked. The functional state or distribution of HSPs maywell change during the recovery process. Key words: Heat shock, thermotolerance, Sorghum bicolor, growth, protein synthesis  相似文献   

13.
Heat shock protein 72 (HSP72) is the most inducible HSP, but is not always increased in lymphocytes following exercise. This field study examined whether lymphocyte HSP72 was increased in hyperthermic (Trec>39.0 °C) male athletes following a 14 km competitive race in cool conditions (ambient temperature 11.2 °C). A comparison was also made between control runners (n=7) and those treated for exertional heat illness (n=9). Lymphocyte HSP72 was not increased in control runners immediately post- compared with pre-race, and there was no difference between both groups of runners. A second study of the race (ambient temperature 14.6 °C) found that lymphocyte HSP72 in control (n=7) and treated (n=9) athletes was higher 2 days post- compared with immediately post-race (p<0.01) and these increases were correlated with post-exercise Trec (p<0.05).  相似文献   

14.

1. 1.Increased heat tolerance in FHM-cells from Pimephales promelas (Pisces) can be induced by culturing the cells at elevated temperatures (heat resistant acclimation) as well as by heat shock (heat hardening).

2. 2.After shift of culturing temperature (CT) from 16 to 32°C both effects are detectable with different temporal patterns.

3. 3.Cellular concentrations of heat-shock proteins correlate with the hardening effect but not with heat resistance acclimation.

4. 4.Several culturing temperature specific proteins were detected. The patterns of some enzymes are also altered by culturing temperature.

5. 5.Heat resistance acclimation is not caused by selection of a thermoresistant subpopulation of cells.

6. 6.Heat hardening and heat resistance acclimation must be distinguished as different phenomena in FHM-cells.

Author Keywords: Culturing temperature specific proteins; esterase isoenzymes; FHM-cells; heat hardening; heat-shock proteins; heat resistance acclimation; thermotolerance  相似文献   


15.
Aims: The objective of this study was to examine the induction of thermotolerance in the biocontrol agent Candida sake CPA‐1 cells by mild heat treatments to enhanced survival of formulations using spray‐drying. The possible role of heat‐shock proteins (HSPs) biosynthesis in induced thermotolerance and the role of sugars and sugar alcohols were also determined. Methods and Results: Studies were conducted on C. sake cells grown in molasses medium and exposed to mild temperatures of 30 and 33°C during mid‐ (16 h), late‐exponential (24 h), early‐ (30 h) and mid‐stationary (36 h) growth phases. The effect on viability was determined both before and after spray‐drying. Cycloheximide and chloramphenicol were used to examine the role of HSPs and HPLC was used to analyse the accumulation of sugar and sugar alcohols. The results indicate that both temperatures induced thermotolerance in cells of C. sake. Mild heat‐adapted cells at 33°C in the early‐ or mid‐stationary phases had survival values after spray‐drying significantly higher (P ≤ 0·05) than nonadapted cells. However, viabilities were not high enough to be considered for commercial use with values up to 17%. HSPs were not implicated in thermotolerance acquired by mild heat‐adapted cells as similar viabilities were obtained in the presence of protein inhibitors. Little change was observed in sugar and sugar alcohols with an increase in glucose and arabitol in some treatments. Conclusions: This study suggests that it is possible to induce thermotolerance in biocontrol yeasts such as C. sake. However, this does not improve survival of cells exposed to spray‐drying sufficiently to consider this a suitable formulation method for this biocontrol agent. HSPs, sugars and sugar polyols were not directly responsible for induced thermotolerance in yeast cells. Significance and Impact of the Study: This type of information can be effectively applied to improve the viability of cells in the process of formulation.  相似文献   

16.
The heat increment of feeding (HIF) was investigated in the tawny owl (Strix aluco) in central Norway (63°N, 10°E), close to the northern limit of its distribution. HIF was measured as the increase in heat production (measured as oxygen consumption) after force-feeding the owls with laboratory mice at thermoneutral conditions (20 °C) and during cold-exposure (5 °C and −5 °C). The basal metabolic rate of the owls (mean mass 419 g) was 4.39 kJ h−1 and the lower critical temperature was approximately 16 °C. During cold conditions, HIF substituted for thermogenesis, and at an ambient temperature of −5 °C the substitution was complete. Calculations indicate that the substitution by HIF may save the owls as much as 60% of their daily thermoregulatory costs. This corresponds to about 10% of their total daily energy budget.  相似文献   

17.
Molecular responses of plants to an increased incidence of heat shock   总被引:9,自引:0,他引:9  
Abstract. Climatic change as a result of the greenhouse effect is widely predicted to increase mean temperatures globally and, in turn, increase the frequency with which plants are exposed to heat shock conditions, particularly in the semi-arid tropics. The consequences of extreme high-temperature treatments on plants have been considered, particularly in relation to the synthesis of heat shock proteins (HSPs) and the capacity to acquire thermotolerance. The heat shock response is described using results obtained with seedlings of the tropical cereals, sorghum ( Sorghum bicolor ) and pearl millet ( Pennisetum glaucum ). A gradual temperature increase, as would occur in the field, is sufficient to induce thermotolerance. The synthesis of HSPs is a transient phenomenon and ceases once the stress is released. Despite the persistence of the HSPs themselves, de novo synthesis of HSPs is required for the induction of thermotolerance each time high temperatures are encountered. The effect of a repeated, diurnal heat shock was investigated and genotypic differences found in the ability to induce the heat shock response repeatedly.  相似文献   

18.

1. We studied responses of adult brine shrimp, Artemia franciscana, to high temperature, including LT50 determination, induced thermotolerance (ITT), the Hsp-70 family of stress proteins and protein synthesis before and after heat shock.

2. Adults were grown in laboratory cultures from encysted embryos (cysts) obtained from San Francisco Bay (SF) and much warmer culture ponds in Vietnam (V).

3. Adults from V cysts were more tolerant of high temperatures than those from SF cysts, but this difference essentially disappeared in the second generation of adults.

4. Levels of constitutive Hsc-70 were very low in adults of both groups, but were strongly upregulated by a sublethal heat shock (37°C, 30 min), with V adults showing the greater degree of upregulation. Heat shock also induced Hsp-67, to a greater extent in V compared to SF adults

5. Incorporation of 14C-leucine into protein did not result in the “classic” heat shock response, possibly due to increased permeability of heat-shocked animals to the tracer.

Author Keywords: Artemia; Heat shock; Induced thermotolerance; Hsp-70  相似文献   


19.
The present report describes the effects of paclobutrazol andheat hardening treatments on the protein synthesis patternsin imbibing and germinating wheat seedlings (Triticum aestivumL. cv Frederick) during heat stress. A heat hardening treatmentgiven during the imbibition period induced the transient expressionof 118, 90, 70 and 18 kDa heat shock proteins (HSPs). However,the hardening and paclobutrazol treatments did not enhance thethermotolerance of imbibed seeds or etiolated seedlings. Bycontrast, the hardening and paclobutrazol treatments enhancedthe thermotolerance of light-grown seedlings. While, both hardenedand unhardened control seedlings synthesized several HSPs duringa high temperature stress period, these proteins were not synthesizedby the paclobutrazol-treated, light-grown seedlings. Thus, HSPsynthesis during heat shock may have been a manifestation ofstress perception by the seedlings and may not have mediatedthe thermotolerance induced by the triazole treatments. Sincedifferential thermotolerance was only apparent in light-grownseedlings, it is suggested that chloroplasts may be requiredfor the expression of paclobutrazol- and hardening-induced thermoprotection.Additional evidence indicating that chloroplasts are an importantsite of injury during high temperature stress was obtained fromchlorophyll fluorescence measurements. (Received July 11, 1994; Accepted October 26, 1994)  相似文献   

20.
Summary The objectives of this study were to compare thermotolerance in whole plants vs. suspension cell cultures of winter wheat, and to evaluate the synthesis of heat shock proteins in relation to genotypic differences in thermotolerance in suspension cells. Whole plant genetic differences in the development of heat tolerance were identified for three wheat genotypes (ND 7532, KS 75210 and TAM 101). Suspension cell cultures of these genotypes were used to evaluatein vitro response to heat stress. Viability tests by triphenyl tetrazolium chloride (TTC) and by fluorescein diacetate (FD) were utilized to determine the relationship of cellular response to heat stress (37°C/24 h, 50°C/1h). KS 75210 and ND 7532 are relatively heat susceptible. TAM 101 is heat tolerant. Both tests at the cellular level were similar to the whole plant response. Thus, cellular selection for enhancing heat tolerance seems feasible. Heat shock protein (HSP) synthesis of two genotypes, ND 7532 and TAM 101 were determined for suspension cultured cells. In suspension cultures, HSPs of molecular weight 16 and 17 kD were found to be synthesized at higher levels in the heat tolerant genotype (TAM 101) than the susceptible genotype (ND 7532), both at 34° and 37°C treatments for 2 hours and 5 hours. HSP 22 kD was synthesized more at 34°C for TAM 101 than ND 7532, but not at 37°C; whereas, HSP 33 kD was synthesized at 37°C at similar abundance for both genotypes, but not at 34°C.These results indicated that there is a differential expression of HSP genes in wheat suspension cells at different temperature stress durations and between heat tolerant and heat susceptible genotypes. It appears that the levels of synthesis of HSPs 16 and 17 kD are correlated with genotypic differences in thermal tolerance at the cellular level in two genotypes of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号