首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous recovery of RNA and DNA from soils and sediments   总被引:29,自引:0,他引:29  
  相似文献   

2.
3.

Background

Retrospective studies of archived human specimens, with known clinical follow-up, are used to identify predictive and prognostic molecular markers of disease. Due to biochemical differences, however, formalin-fixed paraffin-embedded (FFPE) DNA and RNA have generally been extracted separately from either different tissue sections or from the same section by dividing the digested tissue. The former limits accurate correlation whilst the latter is impractical when utilizing rare or limited archived specimens.

Principal Findings

For effective recovery of genomic DNA and total RNA from a single FFPE specimen, without splitting the proteinase-K digested tissue solution, we optimized a co-extraction method by using TRIzol and purifying DNA from the lower aqueous and RNA from the upper organic phases. Using a series of seven different archived specimens, we evaluated the total amounts of genomic DNA and total RNA recovered by our TRIzol-based co-extraction method and compared our results with those from two commercial kits, the Qiagen AllPrep DNA/RNA FFPE kit, for co-extraction, and the Ambion RecoverAll™ Total Nucleic Acid Isolation kit, for separate extraction of FFPE-DNA and -RNA. Then, to accurately assess the quality of DNA and RNA co-extracted from a single FFPE specimen, we used qRT-PCR, gene expression profiling and methylation assays to analyze microRNAs, mRNAs, and genomic DNA recovered from matched fresh and FFPE MCF10A cells. These experiments show that the TRIzol-based co-extraction method provides larger amounts of FFPE-DNA and –RNA than the two other methods, and particularly provides higher quality microRNAs and genomic DNA for subsequent molecular analyses.

Significance

We determined that co-extraction of genomic DNA and total RNA from a single FFPE specimen is an effective recovery approach to obtain high-quality material for parallel molecular and high-throughput analyses. Our optimized approach provides the option of collecting DNA, which would otherwise be discarded or degraded, for additional or subsequent studies.  相似文献   

4.
5.
The soil microbiome is inherently complex with high biological diversity, and spatial heterogeneity typically occurring on the submillimetre scale. To study the microbial ecology of soils, and other microbiomes, biomolecules, that is, nucleic acids and proteins, must be efficiently and reliably co‐recovered from the same biological samples. Commercial kits are currently available for the co‐extraction of DNA, RNA and proteins but none has been developed for soil samples. We present a new protocol drawing on existing phenol–chloroform‐based methods for nucleic acids co‐extraction but incorporating targeted precipitation of proteins from the phenol phase. The protocol is cost‐effective and robust, and easily implemented using reagents commonly available in laboratories. The method is estimated to be eight times cheaper than using disparate commercial kits for the isolation of DNA and/or RNA, and proteins, from soil. The method is effective, providing good quality biomolecules from a diverse range of soil types, with clay contents varying from 9.5% to 35.1%, which we successfully used for downstream, high‐throughput gene sequencing and metaproteomics. Additionally, we demonstrate that the protocol can also be easily implemented for biomolecule co‐extraction from other complex microbiome samples, including cattle slurry and microbial communities recovered from anaerobic bioreactors, as well as from Gram‐positive and Gram‐negative pure cultures.  相似文献   

6.
7.
Current protocols of recombinant DNA research, including gene cloning and complementation, quantification of gene expression and tagging with reporter proteins, are usually limited by the availability of effective bacteria transformation tools different from Escherichia coli. This is particularly relevant with respect to the Pseudomonas species due to their biotechnological and sanitary importance. Here, we describe an optimized and efficient plasmid transference protocol based on the Yoshida effect, a method that relies on DNA uptake mediated by friction forces. The main advantages of this method are: (i) no competent cell preparation is needed, (ii) cells in any physiological state can be used, (iii) the procedure is performed directly on agar plates and (iv) the protocol, which is neither time-consuming nor labor-intensive, offers good efficiency. This approach promises to become the gold standard for day to day genetic manipulation in Pseudomonas.  相似文献   

8.
Better understanding of the mechanisms involved in adipose tissue growth and metabolism is critical for the development of more effective treatments for obesity. However, because of its high lipid and low protein content, adipose tissue can present unique problems in some experimental procedures. We describe three protocols that provide new or improved methods for analysis of DNA, RNA, and protein from different adipose tissues. The first protocol provides a simple and rapid method for separation of fragmented DNA and visualization of apoptotic DNA laddering without the need for radioisotopes. This technique allows for an estimate of the amount of DNA fragmentation, and hence, apoptosis. The second protocol details subcellular fractionation of adipose tissue for the extraction of protein in the mitochondrial and cytosol fractions and the measurement of apoptotic protein (Bcl-2 and Bax) levels in each fraction. The last protocol involves extraction of total RNA from adipose tissue and the measurement of uncoupling protein mRNA using real-time RT-PCR, a method that has not previously been used to measure expression of uncoupling proteins in adipose tissue.  相似文献   

9.
10.
11.
A descending paper chromatographic procedure for separating trichloracetic acid soluble from precipitable material is described. Its use for assaying DNA, RNA, or protein synthesis from a variety of sources with various states of purity attests to its general applicability to reactions of interest to molecular biologists. Large numbers of analyses can be carried out in a short period of time without compromising accuracy or reliability. The use of this procedure for still more enzymes, those involved in modifying DNA, RNA, or proteins, is discussed.  相似文献   

12.
13.
A procedure for the simultaneous banding of cellular DNA, RNA, and protein by centrifugation in cesium trifluoroacetate (CsTFA) gradients is described. Starting with homogenates of Day 11 rat embryos, this procedure was used to separate total DNA, RNA, and protein. Under the conditions used DNA banded at a peak density of 1.63 g/ml, RNA at a peak density of 1.83 g/ml, and protein at a peak density of 1.40 g/ml. Nucleic acids isolated from CsTFA gradients were judged to be protein free. RNA isolated by this method is apparently free of DNA contamination; however, DNA isolated by this method does contain some RNA (less than 5% contamination).  相似文献   

14.
A method has been developed for the electrophoretic transfer of DNA, RNA, protein and ribonucleoprotein particles from a variety of gels onto diazobenzyloxymethyl (DBM) - paper. Conditions for the electrophoretic transfer of these macromolecules have been optimized to allow for nearly quantitative transfer and covalent coupling. DNA and RNA electrophoretically transferred to DBM-paper retain their ability to hybridize with specific probes. The high efficiency of transfer and the high capacity of DBM-paper for nucleic acids makes possible the sensitive detection of specific nucleotide sequences. Similar efficiency is achieved in electrophoretic transfer and covalent coupling of proteins to DBM-paper. Macromolecules can also be electrophoretically transferred and bound to DBM-paper incapable of covalent bond formation. Their elution from the paper in high salt provides a new and useful preparative method for isolation of DNA, RNA and protein.  相似文献   

15.
Novel zinc-based fixative for high quality DNA, RNA and protein analysis   总被引:2,自引:0,他引:2  
We have developed a reliable, cost-effective and non-toxic fixative to meet the needs of contemporary molecular pathobiology research, particularly in respect of RNA and DNA integrity. The effects of 25 different fixative recipes on the fixed quality of tissues from C57BL/6 mice were investigated. Results from IHC, PCR, RT–PCR, RNA Agilent Bioanalyser and Real-Time PCR showed that a novel zinc-based fixative (Z7) containing zinc trifluoroacetate, zinc chloride and calcium acetate was significantly better than the standard zinc-based fixative (Z2) and neutral buffered formalin (NBF) for DNA, RNA and protein preservation. DNA sequences up to 2.4kb in length and RNA fragments up to 361bp in length were successfully amplified from Z7 fixed tissues, as demonstrated by PCR, RT–PCR and Real-Time PCR. Total protein analysis was achieved using 2-D gel electrophoresis. In addition, nucleic acids and proteins were very stable over a 6–14-month period. This improved, non-toxic and economical tissue fixative could be applied for routine use in pathology laboratories to permit subsequent genomic/proteomic studies.  相似文献   

16.
An extraction procedure for the simultaneous isolation of RNA and DNA from tissue culture cells is described. The procedure is a variation of the guanidium/lithium chloride method for RNA isolation which is rapid, simple, and avoids costly ultracentrifugation equipment. The genomic DNA yielded by this procedure is greater than 50 kb in length and may be readily cleaved by restriction endonucleases. Sufficient DNA for Southern blot analysis, and RNA for Northern blot or nuclease protection analysis, can be obtained from as few as 2 x 10(6) cells, making this method particularly suitable for the genetic screening of large numbers of individual, stably transfected cell clones.  相似文献   

17.
18.
Our interest in detecting genotoxic exposure in earthworms led us to isolate high quality DNA from theEisenia fetida species. For that, we compared a modification of the conventional phenol-chloroform extraction procedure, usually refered to as the Maniatis procedure, to two commercially available kits reportedly eliminating multiple partitions in phenol and chloroform, namely the Qiagen and Nucleon protocols. From the 260 nm optical density values, the commercial kits extracts hinted toward higher DNA recovery with those procedures. However, the 260/280 nm ratios indicated that the quality of the DNA isolated with the modified Maniatis procedure was purer than that isolated with the commercial kits, the latter being most probably contaminated by proteins and/or RNA. The Maniatis procedure was slightly modified by the introduction of a potassium acetate step for protein precipitation and by shortening the proteinase K treatment from 12–18 h to only 2 h. The higher quality of the DNA isolated by phenol-chloroform extraction was confirmed by quantification with the fluorescent 3,5-diaminobenzoic acid assay. Preliminary results suggest that the modified Maniatis procedure herein described is not only applicable for DNA adducts studies using32P-postlabelling techniques but is also suitable for DNA extraction from other earthworm species such asLumbricus terrestris.  相似文献   

19.
This is the first report about the simultaneous extraction of nucleic acids and proteins from tea leaf tissue. Using the present protocol, the DNA, RNA and protein were simultaneously isolated from a single tea leaf sample. The method also maintained the quality and quantity of the isolated biomolecules. The method is cost-effective and takes only 3 h to isolate the starting molecules (DNA, RNA and protein) of central dogma of biology. It was also demonstrated that the isolated DNA, RNA and protein could be successfully used for genomics and proteomic analysis in tea plant which was verified by performing marker study, gene cloning, cDNA preparation, gene expression study and 2-DE.  相似文献   

20.
A simple and rapid procedure for purifying large quantities of bacteriophage lambda particles and DNA is described. The procedure involves DEAE-cellulose column chromatography of the phage particles and elution of the phage particles from the column with a low-ionic-strength buffer. The resulting phage were well separated from RNA, DNA, and proteins derived from Escherichia coli host cells. The lambda DNA was prepared from the purified phage particles by the conventional method of phenol extraction and ethanol precipitation. This procedure did not use nucleases, proteases, detergents, or CsCl density gradient centrifugation. The lambda DNA obtained by this method was equivalent in purity to the material prepared by CsCl density gradient centrifugation and amenable to restriction enzyme digestion, ligation, radiolabeling, and double-stranded DNA sequencing. A detailed protocol is described for obtaining 0.5 to 1.0 mg DNA from a 1-liter liquid lysate in less than 5 h. This procedure is simple, inexpensive, and timesaving, and is particularly suitable for large-scale isolation of lambda DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号