首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied 10 male subjects who were administered chlormadinone acetate (CMA), a potent synthetic progesterone, to clarify the physiological basis of its respiratory effects. Arterial blood gas tension, resting ventilation, and respiratory drive assessed by ventilatory and occlusion pressure response to CO2 with and without inspiratory flow-resistive loading were measured before and 4 wk after CMA administration. In all subjects, arterial PCO2 decreased significantly by 5.7 +/- 0.6 (SE) Torr with an increase in minute ventilation by 1.8 +/- 0.6 l X min-1, whereas no significant changes were seen in O2 uptake. During unloaded conditions, both slopes of occlusion pressure and ventilatory response to CO2 increased, being statistically significant in the former but showing nonsignificant trends in the latter. Furthermore, inspiratory flow-resistive loading (16 cmH2O X l(-1) X s) increased both slopes more markedly after CMA. The magnitudes of load compensation, assessed by the ratio of loaded to unloaded slope of the occlusion pressure response curve, were increased significantly. We concluded CMA is a potent respiratory stimulant that increases the CO2 chemosensitivity and neuromechanical drives in the load-compensation mechanism.  相似文献   

2.
Pregnancy increases ventilation and ventilatory sensitivity to hypoxia and hypercapnia. To determine the role of the carotid body in the increased hypoxic ventilatory response, we measured ventilation and carotid body neural output (CBNO) during progressive isocapnic hypoxia in 15 anesthetized near-term pregnant cats and 15 nonpregnant females. The pregnant compared with nonpregnant cats had greater room-air ventilation [1.48 +/- 0.24 vs. 0.45 +/- 0.05 (SE) l/min BTPS, P less than 0.01], O2 consumption (29 +/- 2 vs. 19 +/- 1 ml/min STPD, P less than 0.01), and lower end-tidal PCO2 (30 +/- 1 vs. 35 +/- 1 Torr, P less than 0.01). Lower end-tidal CO2 tensions were also observed in seven awake pregnant compared with seven awake nonpregnant cats (28 +/- 1 vs. 31 +/- 1 Torr, P less than 0.05). The ventilatory response to hypoxia as measured by the shape of parameter A was twofold greater (38 +/- 5 vs. 17 +/- 3, P less than 0.01) in the anesthetized pregnant compared with nonpregnant cats, and the CBNO response to hypoxia was also increased twofold (58 +/- 11 vs. 29 +/- 5, P less than 0.05). The increased CBNO response to hypoxia in the pregnant compared with the nonpregnant cats persisted after cutting the carotid sinus nerve while recording from the distal end, indicating that the increased hypoxic sensitivity was not due to descending central neural influences. We concluded that greater carotid body sensitivity to hypoxia contributed to the increased hypoxic ventilatory responsiveness observed in pregnant cats.  相似文献   

3.
Progesterone receptors and ventilatory stimulation by progestin   总被引:1,自引:0,他引:1  
Progestin is thought to be a ventilatory stimulant but its effectiveness in raising ventilation is variable in humans and other species. We hypothesized that the level of progesterone receptors was an important determinant of the ventilatory response to progestin. Since estradiol induces progesterone receptor formation, we compared the ventilatory effect of the synthetic progestin medroxyprogesterone acetate (MPA) given in combination with estradiol with the effects of estradiol alone, MPA alone, or vehicle (saline) in ovariectomized rats. Animals receiving MPA alone had low numbers of progesterone receptors (2.43 pmol/g uterine wt) and had no change in ventilation, arterial Pco2, or Po2. MPA administration raised ventilation 23 +/- 5%, lowered arterial Pco2 3.2 +/- 0.9 Torr (both P less than 0.01) and tended to raise arterial Po2 when given in combination with estradiol to animals with increased numbers of progesterone receptors (4.85 pmol/g uterine wt). Estradiol alone produced the highest number of progesterone receptors (12.3 pmol/g uterine wt) but had no effect on ventilation or arterial Pco2 and decreased arterial Po2. Combined estradiol plus MPA treatment produced a greater fall in arterial Pco2 than did treatment with MPA alone, estradiol, or saline (all P less than 0.05). These results suggest that both an elevation in progestin levels and progesterone receptor numbers are required to stimulate ventilation.  相似文献   

4.
The major objective of this study was to test the hypothesis that in ponies the change in plasma [H+] resulting from a change in PCO2 (delta H+/delta PCO2) is less under acute in vivo conditions than under in vitro conditions. Elevation of inspired CO2 and lowering of inspired O2 (causing hyperventilation) were used to respectively increase and decrease arterial PCO2 (Paco2) by 5-8 Torr from normal. Arterial and mixed venous blood were simultaneously sampled in 12 ponies during eucapnia and 5-60 min after Paco2 had changed. In vitro data were obtained by equilibrating blood in a tonometer at five different levels of PCO2. The in vitro slopes of the H+ vs. PCO2 relationships were 0.73 +/- 0.01 and 0.69 +/- 0.01 neq.1-1.Torr-1 for oxygenated and partially deoxygenated blood, respectively. These slopes were greater (P less than 0.001) than the in vivo H+ vs. PCO2 slopes of 0.61 +/- 0.03 and 0.57 +/- 0.03 for arterial and mixed venous blood, respectively. The delta HCO3-/delta pH (Slykes) was 15.4 +/- 1.1 and 17.0 +/- 1.1 for in vitro oxygenated and partially deoxygenated blood, respectively. These values were lower (P less than 0.001) than the in vivo values of 23.3 +/- 2.7 and 25.2 +/- 4.7 Slykes for arterial and mixed venous blood, respectively. In vitro, plasma strong ion difference (SID) increased 4.5 +/- 0.2 meq/l (P less than 0.001) when Pco2 was increased from 25 to 55 Torr. A 3.5-meq/l decrease in [Cl-] (P less than 0.001) and a 1.3 +/- 0.1 meq/l increase in [Na+] (P less than 0.001) accounted for the SID change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The effect of oral caffeine on resting ventilation (VE), ventilatory responsiveness to progressive hyperoxic hypercapnia (HCVR), isocapnic hypoxia (HVR), and moderate exercise (EVR) below the anaerobic threshold (AT) was examined in seven healthy adults. Ventilatory responses were measured under three conditions: control (C) and after ingestion of either 650 mg caffeine (CF) or placebo (P) in a double-blind randomized manner. None of the physiological variables of interest differed significantly for C and P conditions (P greater than 0.05). Caffeine levels during HCVR, HVR, and EVR were 69.5 +/- 11.8, 67.8 +/- 10.8, and 67.8 +/- 10.9 (SD) mumol/l, respectively (P greater than 0.05). Metabolic rate at rest and during exercise was significantly elevated during CF compared with P. An increase in VE from 7.4 +/- 2.5 (P) to 10.5 +/- 2.1 l/min (CF) (P less than 0.05) was associated with a decrease in end-tidal PCO2 from 39.1 +/- 2.7 (P) to 35.1 +/- 1.3 Torr (CF) (P less than 0.05). Caffeine increased the HCVR, HVR, and EVR slopes (mean increase: 28 +/- 8, 135 +/- 28, 14 +/- 5%, respectively) compared with P; P less than 0.05 for each response. Increases in resting ventilation, HCVR, and HVR slopes were associated with increases in tidal volume (VT), whereas the increase in EVR slope was accompanied by increases in both VT and respiratory frequency. Our results indicate that caffeine increases VE and chemosensitivity to CO2 inhalation, hypoxia, and CO2 production during exercise below the AT.  相似文献   

6.
Adenosine infusion (100 micrograms X kg-1 X min-1) in humans stimulates ventilation but also causes abdominal and chest discomfort. To exclude the effects of symptoms and to differentiate between a central and peripheral site of action, we measured the effect of adenosine infused at a level (70-80 micrograms X kg-1 X min-1) below the threshold for symptoms. Resting ventilation (VE) and progressive ventilatory responses to isocapnic hypoxia and hyperoxic hypercapnia were measured in six normal men. Compared with a control saline infusion given single blind on the same day, adenosine stimulated VE [mean increase: 1.3 +/- 0.8 (SD) l/min; P less than 0.02], lowered resting end-tidal PCO2 (PETCO2) (mean fall: -3.9 +/- 0.9 Torr), and increased heart rate (mean increase: 16.1 +/- 8.1 beats/min) without changing systemic blood pressure. Adenosine increased the hypoxic ventilatory response (control: -0.68 +/- 0.4 l X min-1 X %SaO2-1, where %SaO2 is percent of arterial O2 saturation; adenosine: -2.40 +/- 1.2 l X min-1 X %SaO2-1; P less than 0.01) measured at a mean PETCO2 of 38.3 +/- 0.6 Torr but did not alter the hypercapnic response. This differential effect suggests that adenosine may stimulate ventilation by a peripheral rather than a central action and therefore may be involved in the mechanism of peripheral chemoreception.  相似文献   

7.
Effect of brain blood flow on hypoxic ventilatory response in humans   总被引:1,自引:0,他引:1  
To assess the effect of brain blood flow on hypoxic ventilatory response, we measured arterial and internal jugular venous blood gases and ventilation simultaneously and repeatedly in eight healthy male humans in two settings: 1) progressive and subsequent sustained hypoxia, and 2) stepwise and progressive hypercapnia. Ventilatory response to progressive isocapnic hypoxia [arterial O2 partial pressure 155.9 +/- 4.0 (SE) to 46.7 +/- 1.5 Torr] was expressed as change in minute ventilation per change in arterial O2 saturation and varied from -0.16 to -1.88 [0.67 +/- 0.19 (SE)] l/min per % among subjects. In the meanwhile, jugular venous PCO2 (PjCO2) decreased significantly from 51.0 +/- 1.1 to 47.3 +/- 1.0 Torr (P less than 0.01), probably due to the increase in brain blood flow, and stayed at the same level during 15 min of sustained hypoxia. Based on the assumption that PjCO2 reflects the brain tissue PCO2, we evaluated the depressant effect of fall in PjCO2 on hypoxic ventilatory response, using a slope for ventilation-PjCO2 line which was determined in the second set of experiments. Hypoxic ventilatory response corrected with this factor was -1.31 +/- 0.33 l/min per %, indicating that this factor modulated hypoxic ventilatory response in humans. The ventilatory response to progressive isocapnic hypoxia did not correlate with this factor but significantly correlated with the withdrawal test (modified transient O2 test), which was performed on a separate day. Accordingly we conclude that an increase in brain blood flow during exposure to moderate hypoxia may substantially attenuate the ventilatory response but that it is unlikely to be the major factor of the interindividual variation of progressive isocapnic hypoxic ventilatory response in humans.  相似文献   

8.
The ventilatory effects of inspiratory flow-resistive loading and increased chemical drive were measured in ten neonates during progressive hypercapnia in control and loaded states. Hypercapnia (mean increase PCO2 = 15-20) resulted from inspiring 8% CO2 in room air and inspiratory loading by a flow-resistive load = 100 cmH2O X l-1) X s. Hypercapnia produced an increase in group minute ventilation secondary to increasing tidal volumes and breathing frequencies. Loading shifted the minute ventilation-CO2 response to the right, and slopes decreased significantly (P less than 0.05) consequent to a significant decrease in the frequency-CO2 slopes (P less than 0.05), which became negative in four of the ten subjects. Mouth pressure measured at 100 ms after onset of inspiratory effort (P100) occlusion pressure-CO2 slopes measured in five subjects showed no significant increase with load application. Resistive loading produced significant increases in inspiratory time (P less than 0.02) and the inspiratory time/total breath time ratio (P less than 0.01). Airway occlusion elicited the Hering-Breuer reflex, with a significant increase in inspiratory time-to-total breath time ratio (P less than 0.01). The results show that the inspiratory resistive load produced ventilatory compromise in newborns and insufficient compensatory augmentation of central drive.  相似文献   

9.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

10.
The aims of this study were to determine 1) whether ventilatory adaptation occurred over a 5-day exposure to a constant elevation in end-tidal PCO2 and 2) whether such an exposure altered the sensitivity of the chemoreflexes to acute hypoxia and hypercapnia. Ten healthy human subjects were studied over a period of 13 days. Their ventilation, chemoreflex sensitivities, and acid-base status were measured daily before, during, and after 5 days of elevated end-tidal PCO2 at 8 Torr above normal. There was no major adaptation of ventilation during the 5 days of hypercapnic exposure. There was an increase in ventilatory chemosensitivity to acute hypoxia (from 1.35 +/- 0.08 to 1.70 +/- 0.07 l/min/%; P < 0.01) but no change in ventilatory chemosensitivity to acute hypercapnia. There was a degree of compensatory metabolic alkalosis. The results do not support the hypothesis that the ventilatory adaptation to chronic hypercapnia would be much greater with constant elevation of alveolar PCO2 than with constant elevation of inspired PCO2, as has been used in previous studies and in which the feedback loop between ventilation and alveolar PCO2 is left intact.  相似文献   

11.
Seven human spinal cord-lesioned subjects (SPL) underwent electrically induced muscle contractions (EMC) of the quadriceps and hamstring muscles for 10 min: 5 min control, 2 min with venous return from the legs occluded, and 3 min postocclusion. Group mean changes in CO2 output compared with rest were +107 +/- 30.6, +21 +/- 25.7, and +192 +/- 37.0 (SE) ml/min during preocclusion, occlusion, and postocclusion EMC, respectively. Mean arterial CO2 partial pressure (PaCO2) obtained from catheterized radial arteries at 15- to 30-s intervals showed a significant (P less than 0.05) hypocapnia (36.2 Torr) during occlusion and a significant (P less than 0.05) hypercapnia (38.1 Torr) postocclusion relative to a group mean preocclusion EMC PaCO2 of 37.5 Torr. Relative to preocclusion EMC, expired ventilation (VE) decreased during occlusion and increased after release of occlusion. However, changes in VE always occurred after changes in end-tidal PCO2 (mean 41 s after occlusion and 10 s after release of occlusion). In the two subjects investigated during hyperoxia, the VE and PaCO2 responses to occlusion and release did not differ from normoxia. We conclude that the data do not support mediation of the EMC hyperpnea in SPL by humoral mechanisms that others have proposed for mediation of the exercise hyperpnea in spinal cord-intact humans.  相似文献   

12.
Static exercise increases arterial pressure, heart rate, and ventilation, effects which are believed in part to arise reflexly from a metabolic stimulus in the working muscle. In anesthetized cats, we tested the hypothesis that intra-arterial injections of lactic and hydrochloric acid, which created levels of these substances in muscle similar to those seen during contraction, reflexly increased cardiovascular and ventilatory function. Hydrochloric acid (32 and 57 mM; 1 ml) injected into the arterial supply of the triceps surae decreased intramuscular pH from 7.26 +/- 0.05 to 7.17 +/- 0.05 (P less than 0.01) and reflexly increased arterial pressure (23 +/- 7 mmHg; P less than 0.01), heart rate (11 +/- 2 beats/min; P less than 0.001), and ventilation (187 +/- 72 ml/min; P less than 0.05). Static contraction of the triceps surae decreased intramuscular pH from 7.28 +/- 0.06 to 7.13 +/- 0.06 (P less than 0.01). Lactic acid was more potent in causing reflexes than was equimolar HCl. For example, lactic acid containing 4 mM lactate and 0.87 mM H+ reflexly increased arterial pressure, heart rate, and ventilation, whereas 0.87 mM HCl did not. Intra-arterial sodium lactate (13 and 33 mM) at a neutral pH had no effect on these variables. We conclude that contraction-induced accumulation of H+, especially that arising from lactic acid, might provide a metabolic stimulus to evoke reflex autonomic effects.  相似文献   

13.
Minute ventilation (VE) during sustained hypoxia is not constant but begins to decline within 10-25 min in adult humans. The decrease in brain tissue PCO2 may be related to this decline in VE, because hypoxia causes an increase in brain blood flow, thus resulting in enhanced clearance of CO2 from the brain tissue. To examine the validity of this hypothesis, we measured VE and arterial and internal jugular venous blood gases simultaneously and repeatedly in 15 healthy male volunteers during progressive and subsequent sustained isocapnic hypoxia (arterial PO2 = 45 Torr) for 20 min. It was assumed that jugular venous PCO2 was an index of brain tissue PCO2. Mean VE declined significantly from the initial (16.5 l/min) to the final phase (14.1 l/min) of sustained hypoxia (P less than 0.05). Compared with the control (50.9 Torr), jugular venous PCO2 significantly decreased to 47.4 Torr at the initial phase of hypoxia but did not differ among the phases of hypoxia (47.2 Torr for the intermediate phase and 47.7 Torr for the final phase). We classified the subjects into two groups by hypoxic ventilatory response during progressive hypoxia at the mean value. The decrease in VE during sustained hypoxia was significant in the low responders (n = 9) [13.2 (initial phase) to 9.3 l/min (final phase of hypoxia), P less than 0.01], but not in the high responders (n = 6) (20.9-21.3 l/min, NS). This finding could not be explained by the change of arterial or jugular venous gases, which did not significantly change during sustained hypoxia in either group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Previous studies have shown that normal arterial PCO2 can be maintained during apnea in anesthetized dogs by delivering a continuous stream of inspired ventilation through cannulas aimed down the main stem bronchi, although this constant-flow ventilation (CFV) was also associated with a significant increase in ventilation-perfusion (VA/Q) inequality, compared with conventional mechanical ventilation (IPPV). Conceivably, this VA/Q inequality might result from differences in VA/Q ratios among lobes caused by nonuniform distribution of ventilation, even though individual lobes are relatively homogeneous. Alternatively, the VA/Q inequality may occur at a lobar level if those factors causing the VA/Q mismatch also existed within lobes. We compared the efficiency of gas exchange simultaneously in whole lung and left lower lobe by use of the multiple inert gas elimination technique in nine anesthetized open-chest dogs. Measurements of whole lung and left lower lobe gas exchange allowed comparison of the degree of VA/Q inequality within vs. among lobes. During IPPV with positive end-expiratory pressure, arterial PO2 and PCO2 (183 +/- 41 and 34.3 +/- 3.1 Torr, respectively) were similar to lobar venous PO2 and PCO2 (172 +/- 64 and 35.7 +/- 4.1 Torr, respectively; inspired O2 fraction = 0.44 +/- 0.02). Switching to CFV (3 l.kg-1.min-1) decreased arterial PO2 (112 +/- 26 Torr, P less than 0.001) and lobar venous PO2 (120 +/- 27 Torr, P less than 0.01) but did not change the shunt measured with inert gases (P greater than 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hypoxic and hypercapnic ventilatory responses were measured after two levels of acute inhalation of cigarette smoke, minimum-level nicotine smoke (smoke 1) and nicotine-containing smoke (smoke 2), in 10 normal men. Chemosensitivity to hypoxia and hypercapnia was assessed both in terms of slope factors for ventilation-alveolar PO2 curve (A) and ventilation-alveolar PCO2 line (S) and of absolute levels of minute ventilation (VE) at hypoxia or hypercapnia. Ventilatory response to hypoxia and absolute level of VE at hypoxia significantly increased from 23.5 +/- 22.6 (SD) to 38.6 +/- 31.3 l . min-1 . Torr and from 10.6 +/- 2.5 to 12.6 +/- 3.5 l . min-1, respectively, during inhalation of cigarette smoke 2 (P less than 0.05). Inhalation of cigarette smoke 2 tended to increase the ventilatory response to hypercapnia, and the absolute level of VE at hypercapnia rose from 1.42 +/- 0.75 to 1.65 +/- 0.58 l . min-1 . Torr-1 and from 23.7 +/- 4.9 to 25.5 +/- 5.9 l . min-1, respectively, but these changes did not attain significant levels. Cigarette smoke 2 inhalation induced an increase in heart rate from 64.7 +/- 5.7 to 66.4 +/- 6.3 beats . min-1 (P less than 0.05) during room air breathing, whereas resting ventilation and specific airway conductance did not change significantly. On the other hand, acute inhalation of cigarette smoke 1 changed none of these variables. These results indicate that hypoxic chemosensitivity is augmented after cigarette smoke and that nicotine is presumed to act on peripheral chemoreceptors.  相似文献   

16.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

17.
Ventral medullary extracellular fluid pH and PCO2 during hypoxemia   总被引:1,自引:0,他引:1  
We designed experiments to study changes in ventral medullary extracellular fluid (ECF) PCO2 and pH during hypoxemia. Measurements were made in chloralose-urethan-anesthetized spontaneously breathing cats (n = 12) with peripherial chemodenervation. Steady-state measurements were made during normoxemia [arterial PO2 (PaO2) = 106 Torr], hypoxemia (PaO2 = 46 Torr), and recovery (PaO2 = 105 Torr), with relatively constant arterial PCO2 (approximately 44 Torr). Mean values of ventilation were 945, 683, and 1,037 ml/min during normoxemia, hypoxemia, and recovery from hypoxemia, respectively. Ventilatory depression occurred in each cat during hypoxemia. Mean values of medullary ECF PCO2 were 57.7 +/- 7.2 (SD), 59.4 +/- 9.7, and 57.4 +/- 7.2 Torr during normoxemia, hypoxemia, and recovery to normoxemia, respectively; respective values for ECF [H+] were 60.9 +/- 8.0, 64.4 +/- 11.6, and 62.9 +/- 9.2 neq/l. Mean values of calculated ECF [HCO3-] were 22.8 +/- 3.0, 21.7 +/- 3.3, and 21.4 +/- 3.1 meq/l during normoxemia, hypoxemia, and recovery, respectively. Changes in medullary ECF PCO2 and [H+] were not statistically significant. Therefore hypoxemia caused ventilatory depression independent of changes in ECF acid-base variables. Furthermore, on return to normoxemia, ventilation rose considerably, still independent of changes in ECF PCO2, [H+], and [HCO3-].  相似文献   

18.
31P nuclear magnetic resonance spectroscopy (31P-NMRS) was performed on brain cross sections of four human subjects before and after 7 days in a hypobaric chamber at 447 Torr to test the hypothesis that brain intracellular acidosis develops during acclimatization to high altitude and accounts for the progressively increasing ventilation that develops (ventilatory acclimatization). Arterial blood gas measurements confirmed increased ventilation. At the end of 1 wk of hypobaria, brain intracellular pH was 7.023 +/- 0.046 (SD), unchanged from preexposure pH of 6.998 +/- 0.029. After return to sea level, however, it decreased to 6.918 +/- 0.032 at 15 min (P less than 0.01) and 6.920 +/- 0.046 at 12 h (P less than 0.01). The ventilatory response to hypoxia increased [from 0.35 +/- 0.11 (l/min)/(-%O2 saturation) before exposure to 0.69 +/- 0.19 after, P = 0.06]. Brain intracellular acidosis is probably not a supplemental stimulus to ventilatory acclimatization to high altitude. However, brain intracellular acidosis develops on return to normoxia from chronic hypoxia, suggesting that brain pH may follow changes in blood and cerebrospinal fluid pH as they are altered by changes in ventilation.  相似文献   

19.
Effect of physical training on the capacity to secrete epinephrine   总被引:5,自引:0,他引:5  
Epinephrine responses to hypoglycemia and to identical relative work loads have been shown to be higher in endurance-trained athletes than in untrained subjects. To test the hypothesis that training increases the adrenal medullary secretory capacity, we studied the effects of glucagon (1 mg/70 kg iv), acute hypercapnia (inspired O2 fraction = 7%), and acute hypobaric hypoxia (inspired Po2 = 87 Torr), respectively, on the epinephrine concentration in arterialized hand vein blood in eight endurance-trained athletes [T, O2 uptake = 66 (62-70) ml.min-1.kg-1] and seven sedentary males [C, O2 uptake = 46 (41-50)]. In response to identical increments in glucagon concentrations, plasma epinephrine increased more in T than in C subjects [0.87 +/- 0.11 vs. 0.38 +/- 0.14 (SE) nmol/l, P less than 0.05]. In response to hypercapnia [arterial PCO2 = 56 +/- 0.7 Torr (T) and 55 +/- 0.4 (C), P greater than 0.05], the increment in epinephrine was significant in T (0.38 +/- 0.11 nmol/l) but not (P less than 0.1) in C subjects (0.22 +/- 0.11). Hypoxia [arterial PO2 = 42 +/- 2 Torr (T) and 41 +/- 2 (C), P greater than 0.05] increased epinephrine in T (0.22 +/- 0.10 nmol/l, P less than 0.05) but not in C subjects (0.01 +/- 0.07). The plasma norepinephrine concentration never changed, whereas heart rate always increased, the increase being higher (P less than 0.05) in T than in C subjects only during hypercapnia. The results indicate that training increases the capacity to secrete epinephrine.  相似文献   

20.
We assessed the time course of changes in eupneic arterial PCO(2) (Pa(CO(2))) and the ventilatory response to hyperoxic rebreathing after removal of the carotid bodies (CBX) in awake female dogs. Elimination of the ventilatory response to bolus intravenous injections of NaCN was used to confirm CBX status on each day of data collection. Relative to eupneic control (Pa(CO(2)) = 40 +/- 3 Torr), all seven dogs hypoventilated after CBX, reaching a maximum Pa(CO(2)) of 53 +/- 6 Torr by day 3 post-CBX. There was no significant recovery of eupneic Pa(CO(2)) over the ensuing 18 days. Relative to control, the hyperoxic CO(2) ventilatory (change in inspired minute ventilation/change in end-tidal PCO(2)) and tidal volume (change in tidal volume/ change in end-tidal PCO(2)) response slopes were decreased 40 +/- 15 and 35 +/- 20% by day 2 post-CBX. There was no recovery in the ventilatory or tidal volume response slopes to hyperoxic hypercapnia over the ensuing 19 days. We conclude that 1) the carotid bodies contribute approximately 40% of the eupneic drive to breathe and the ventilatory response to hyperoxic hypercapnia and 2) there is no recovery in the eupneic drive to breathe or the ventilatory response to hyperoxic hypercapnia after removal of the carotid chemoreceptors, indicating a lack of central or aortic chemoreceptor plasticity in the adult dog after CBX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号