首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Owing to the quality control mechanisms operating in the early secretory compartment, only native proteins are secreted. Despite the difficulties in assembling planar immunoglobulin M (IgM) polymers, antibody‐secreting cells can release up to thousands of IgM per second. The finding that secretory μ (μs) chains bind to ERGIC‐53, a lectin transporter that cycles in the early secretory compartment, suggested that ERGIC‐53 hexamers could provide a polymerization platform. Here, we show that ERGIC‐53 binds to the conserved Asn563 glycan in the C‐terminal μs tailpiece (μstp). Removal of this glycan inhibits ERGIC‐53 binding and results in the rapid formation of larger polymeric assemblies. In contrast, removal of the Asn402 oligosaccharides prevents both polymerization and secretion. ERp44, a chaperone that interacts with ERGIC‐53, binds to Cys575 in the μstp, providing a fail‐safe mechanism that retrieves unpolymerized IgM subunits and promotes polymerization. The coordinated action of ERGIC‐53 and ERp44 provides a way to improve the efficiency of IgM secretion without perturbing its fidelity.  相似文献   

2.
In the early secretory compartment (ESC), a network of chaperones and enzymes assists oxidative folding of nascent proteins. Ero1 flavoproteins oxidize protein disulfide isomerase (PDI), generating H2O2 as a byproduct. Peroxiredoxin 4 (Prx4) can utilize luminal H2O2 to oxidize PDI, thus favoring oxidative folding while limiting oxidative stress. Interestingly, neither ER oxidase contains known ER retention signal(s), raising the question of how cells prevent their secretion. Here we show that the two proteins share similar intracellular localization mechanisms. Their secretion is prevented by sequential interactions with PDI and ERp44, two resident proteins of the ESC-bearing KDEL-like motifs. PDI binds preferentially Ero1α, whereas ERp44 equally retains Ero1α and Prx4. The different binding properties of Ero1α and Prx4 increase the robustness of ER redox homeostasis.  相似文献   

3.
Sun M  Yang Y  Yang P  Lei B  Du L  Kijlstra A 《PloS one》2011,6(5):e19870

Background

Experimental autoimmune uveoretinitis (EAU) serves as a model for human intraocular inflammation. IFN-β has been used in the treatment of certain autoimmune diseases. Earlier studies showed that it ameliorated EAU; however, the mechanisms involved in this inhibition are still largely unknown.

Methodology/Principal Findings

B10RIII mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 161–180 in Complete Freund''s adjuvant. Splenocytes from different time points after immunization were used to evaluate the expression of IFN-β. An increased expression of IFN-β was observed during EAU and its highest expression was observed on day 16, 3 days after the peak of intraocular inflammation. Splenocytes and draining lymph node cells from mice immunized with IRBP161-180 on day 13 and control mice were activated with anti-CD3/anti-CD28 antibodies or IRBP161-180 to evaluate the production of IFN-γ and IL-17. The results showed that IFN-γ and IL-17 were significantly higher in immunized mice as compared to the control mice when exposed to anti-CD3/anti-CD28 antibodies. However, the production of IFN-γ and IL-17 was detected only in immunized mice, but not in the control mice when stimulated with IRBP161-180. Multiple subcutaneous injections of IFN-β significantly inhibited EAU activity in association with a down-regulated expression of IFN-γ, IL-17 and an enhanced IL-10 production. In an in vitro system using cells from mice, IFN-β suppressed IFN-γ production by CD4+CD62L T cells, IL-17 production by CD4+CD62L+/- T cells and proliferation of CD4+CD62L+/- T cells. IFN-β inhibited the secretion of IL-6, but promoted the secretion of IL-10 by monocytes. IFN-β-treated monocytes inhibited IL-17 secretion by CD4+CD62L+/- T cells, but did not influence IFN-γ expression and T cell proliferation.

Conclusions/Significance

IFN-β may exert its inhibitory effect on EAU by inhibiting Th1, Th17 cells and modulating relevant cytokines. IFN-β may provide a potential treatment for diseases mediated by Th1 and Th17 cells.  相似文献   

4.
The role of the L-type calcium channel (Cav1.2) as a molecular switch that triggers secretion prior to Ca2+ transport has previously been demonstrated in bovine chromaffin cells and rat pancreatic beta cells. Here, we examined the effect of specific Cav1.2 allosteric modulators, BayK 8644 (BayK) and FPL64176 (FPL), on the kinetics of catecholamine release, as monitored by amperometry in single bovine chromaffin cells. We show that 2 μm BayK or 0.5 μm FPL accelerates the rate of catecholamine secretion to a similar extent in the presence either of the permeable Ca2+ and Ba2+ or the impermeable charge carrier La3+. These results suggest that structural rearrangements generated through the binding of BayK or FPL, by altering the channel activity, could affect depolarization-evoked secretion prior to cation transport. FPL also accelerated the rate of secretion mediated by a Ca2+-impermeable channel made by replacing the wild type α11.2 subunit was replaced with the mutant α11.2/L775P. Furthermore, BayK and FPL modified the kinetic parameters of the fusion pore formation, which represent the initial contact between the vesicle lumen and the extracellular medium. A direct link between the channel activity and evoked secretion lends additional support to the view that the voltage-gated Ca2+ channels act as a signaling molecular switch, triggering secretion upstream to ion transport into the cell.  相似文献   

5.
Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines displaying a multi-drug resistance phenotype. Only 2 out of 28 sublines adapted to various cytotoxic drugs harboured p53 mutations. Nutlin-3-adapted UKF-NB-3 cells (UKF-NB-3rNutlin10 μM, harbouring a G245C mutation) were also radiation resistant. Analysis of UKF-NB-3 and UKF-NB-3rNutlin10 μM cells by RNA interference experiments and lentiviral transduction of wild-type p53 into p53-mutated UKF-NB-3rNutlin10 μM cells revealed that the loss of p53 function contributes to the multi-drug resistance of UKF-NB-3rNutlin10 μM cells. Bioinformatics PANTHER pathway analysis based on microarray measurements of mRNA abundance indicated a substantial overlap in the signalling pathways differentially regulated between UKF-NB-3rNutlin10 μM and UKF-NB-3 and between UKF-NB-3 and its cisplatin-, doxorubicin-, or vincristine-resistant sublines. Repeated nutlin-3 adaptation of neuroblastoma cells resulted in sublines harbouring various p53 mutations with high frequency. A p53 wild-type single cell-derived UKF-NB-3 clone was adapted to nutlin-3 in independent experiments. Eight out of ten resulting sublines were p53-mutated harbouring six different p53 mutations. This indicates that nutlin-3 induces de novo p53 mutations not initially present in the original cell population. Therefore, nutlin-3-treated cancer patients should be carefully monitored for the emergence of p53-mutated, multi-drug-resistant cells.  相似文献   

6.
Metabolic control analysis was applied to intact HepG2 cells. The effect on the control coefficient of cytochrome c oxidase (CcOX) over cell respiration of both the electrical (Δψ) and chemical (ΔpH) component of the mitochondrial transmembrane proton electrochemical gradient (ΔμH+) was investigated. The overall O2 consumption and specific CcOX activity of actively phosphorylating cells were titrated with cyanide under conditions in which Δψ and ΔpH were selectively modulated by addition of ionophores. In the absence of ionophores, CcOX displayed a high control coefficient (CIV = 0.73), thus representing an important site of regulation of mitochondrial oxidative phosphorylation. A high control coefficient value (CIV = 0.85) was also measured in the presence of nigericin, i.e. when Δψ is maximal, and in the presence of nigericin and valinomycin (CIV = 0.77), when ΔμH+ is abolished. In contrast, CcOX displayed a markedly lower control coefficient (CIV = 0.30) upon addition of valinomycin, when Δψ is converted into ΔpH. These results show that Δψ is responsible for the tight control of CcOX over respiration in actively phosphorylating cells.  相似文献   

7.
When radiolabeled precursors and autoradiography are used to investigate turnover of protein components in photoreceptive cone outer segments (COSs), the labeled components—primarily visual pigment molecules (opsins)—are diffusely distributed along the COS. To further assess this COS labeling pattern, we derive a simplified mass-transfer model for quantifying the contributions of advective and diffusive mechanisms to the distribution of opsins within COSs of the frog retina. Two opsin-containing regions of the COS are evaluated: the core axial array of disks and the plasmalemma. Numerical solutions of the mass-transfer model indicate three distinct stages of system evolution. In the first stage, plasmalemma diffusion is dominant. In the second stage, the plasmalemma density reaches a metastable state and transfer between the plasmalemma and disk region occurs, which is followed by an increase in density that is qualitatively similar for both regions. The final stage consists of both regions slowly evolving to the steady-state solution. Our results indicate that autoradiographic and cognate approaches for tracking labeled opsins in the COS cannot be effective methodologies for assessing new disk formation at the base of the COS.Abbreviations used: A, area (μm2), COS, cone outer segment, D, mass diffusion coefficient (μm2/s), hm, mass transfer coefficient (μm/s), L, cone outer segment length (μm), PDE, partial differential equation, r, radius (μm), t, time (s), T, plasmalemma thickness (μm), u, plasmalemma or disk region (axial) velocity (μm/s), V, volume (μm3), W, plasmalemma width (μm), x, axial direction, v, disk to plasmalemma velocity (μm/s), ρ1, disk label density, ρ2, plasmalemma label density, ϕ, nonvoid fraction  相似文献   

8.
Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO4) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO4 and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4–16 μM is essential for DNA damage prevention in cultured human oral keratinocytes.  相似文献   

9.
The P2X7 purinergic receptor is an ATP-gated cation channel with an emerging role in neoplasia. In this study we demonstrate that the human KG-1 cell line, a model of acute myelogenous leukaemia, expresses functional P2X7. RT-PCR and immunochemical techniques demonstrated the presence of P2X7 mRNA and protein respectively in KG-l cells, as well as in positive control multiple myeloma RPMI 8226 cells. Flow cytometric measurements demonstrated that ATP induced ethidium+ uptake into KG-l cells suspended in sucrose medium (EC50 of ∼3 μM), but not into cells in NaCl medium. In contrast, ATP induced ethidium+ uptake into RPMI 8226 cells suspended in either sucrose or NaCl medium (EC50 of ∼3 or ∼99 μM, respectively), as well as into RPMI 8226 cells in KCl medium (EC50 of ∼18 μM). BzATP and to a lesser extent ATPγS and αβ-methylene ATP, but not ADP or UTP, also induced ethidium+ uptake into KG-1 cells. ATP-induced ethidium+ uptake was completely impaired by the P2X7 antagonists, AZ10606120 and A-438079. ATP-induced ethidium+ uptake was also impaired by probenecid but not by carbenoxolone, both pannexin-1 antagonists. ATP induced YO-PRO-12+ and propidium2+ uptake into KG-1 cells. Finally, sequencing of full-length P2X7 cDNA identified several single nucleotide polymorphisms (SNPs) in KG-1 cells including H155Y, A348T, T357S and Q460R. RPMI 8226 cells contained A348T, A433V and H521Q SNPs. In conclusion, the KG-1 cell line expresses functional P2X7. This cell line may help elucidate the signalling pathways involved in P2X7-induced survival and invasiveness of myeloid leukaemic cells.  相似文献   

10.
11.
12.
Collagen fibers expose distinct domains allowing for specific interactions with other extracellular matrix proteins and cells. To investigate putative collagen domains that govern integrin αVβ3-mediated cellular interactions with native collagen fibers we took advantage of the streptococcal protein CNE that bound native fibrillar collagens. CNE specifically inhibited αVβ3-dependent cell-mediated collagen gel contraction, PDGF BB-induced and αVβ3-mediated adhesion of cells, and binding of fibronectin to native collagen. Using a Toolkit composed of overlapping, 27-residue triple helical segments of collagen type II, two CNE-binding sites present in peptides II-1 and II-44 were identified. These peptides lack the major binding site for collagen-binding β1 integrins, defined by the peptide GFOGER. Peptide II-44 corresponds to a region of collagen known to bind collagenases, discoidin domain receptor 2, SPARC (osteonectin), and fibronectin. In addition to binding fibronectin, peptide II-44 but not II-1 inhibited αVβ3-mediated collagen gel contraction and, when immobilized on plastic, supported adhesion of cells. Reduction of fibronectin expression by siRNA reduced PDGF BB-induced αVβ3-mediated contraction. Reconstitution of collagen types I and II gels in the presence of CNE reduced collagen fibril diameters and fibril melting temperatures. Our data indicate that contraction proceeded through an indirect mechanism involving binding of cell-produced fibronectin to the collagen fibers. Furthermore, our data show that cell-mediated collagen gel contraction does not directly depend on the process of fibril formation.  相似文献   

13.
The objective of this study was to investigate the mechanism of uridine 5′-triphosphate (UTP)-dependent inhibition of Na+ absorption in porcine endometrial epithelial cells. Acute stimulation with UTP (5 μM) produced inhibition of sodium absorption and stimulation of chloride secretion. Experiments using basolateral membrane–permeabilized cell monolayers demonstrated a reduction in benzamil-sensitive Na+ conductance in the apical membrane after UTP stimulation. The UTP-dependent inhibition of sodium transport could be mimicked by PMA (1 μM). Several PKC inhibitors, including GF109203X and Gö6983 (both nonselective PKC inhibitors) and rottlerin (a PKCδ selective inhibitor), were shown to prevent the UTP-dependent decrease in benzamil-sensitive current. The PKCα-selective inhibitors, Gö6976 and PKC inhibitor 20–28, produced a partial inhibition of the UTP effect on benzamil-sensitive Isc. Inhibition of the benzamil-sensitive Isc by UTP was observed in the presence of BAPTA-AM (50 μM), confirming that activation of PKCs, and not increases in [Ca2+]i, were directly responsible for the inhibition of apical Na+ channels and transepithelial Na+ absorption.  相似文献   

14.
Glucagon, secreted from pancreatic islet α cells, stimulates gluconeogenesis and liver glycogen breakdown. The mechanism regulating glucagon release is debated, and variously attributed to neuronal control, paracrine control by neighbouring β cells, or to an intrinsic glucose sensing by the α cells themselves. We examined hormone secretion and Ca2+ responses of α and β cells within intact rodent and human islets. Glucose-dependent suppression of glucagon release persisted when paracrine GABA or Zn2+ signalling was blocked, but was reversed by low concentrations (1–20 μM) of the ATP-sensitive K+ (KATP) channel opener diazoxide, which had no effect on insulin release or β cell responses. This effect was prevented by the KATP channel blocker tolbutamide (100 μM). Higher diazoxide concentrations (≥30 μM) decreased glucagon and insulin secretion, and α- and β-cell Ca2+ responses, in parallel. In the absence of glucose, tolbutamide at low concentrations (<1 μM) stimulated glucagon secretion, whereas high concentrations (>10 μM) were inhibitory. In the presence of a maximally inhibitory concentration of tolbutamide (0.5 mM), glucose had no additional suppressive effect. Downstream of the KATP channel, inhibition of voltage-gated Na+ (TTX) and N-type Ca2+ channels (ω-conotoxin), but not L-type Ca2+ channels (nifedipine), prevented glucagon secretion. Both the N-type Ca2+ channels and α-cell exocytosis were inactivated at depolarised membrane potentials. Rodent and human glucagon secretion is regulated by an α-cell KATP channel-dependent mechanism. We propose that elevated glucose reduces electrical activity and exocytosis via depolarisation-induced inactivation of ion channels involved in action potential firing and secretion.  相似文献   

15.
16.
To more closely understand the mechanisms of how BCG vaccination confers immunity would help to rationally design improved tuberculosis vaccines that are urgently required. Given the established central role of CD4 T cells in BCG induced immunity, we sought to characterise the generation of memory CD4 T cell responses to BCG vaccination and M. bovis infection in a murine challenge model. We demonstrate that a single systemic BCG vaccination induces distinct systemic and mucosal populations of T effector memory (TEM) cells in vaccinated mice. These CD4+CD44hiCD62LloCD27 T cells concomitantly produce IFN-γ and TNF-α, or IFN-γ, IL-2 and TNF-α and have a higher cytokine median fluorescence intensity MFI or ‘quality of response’ than single cytokine producing cells. These cells are maintained for long periods (>16 months) in BCG protected mice, maintaining a vaccine–specific functionality. Following virulent mycobacterial challenge, these cells underwent significant expansion in the lungs and are, therefore, strongly associated with protection against M. bovis challenge. Our data demonstrate that a persistent mucosal population of TEM cells can be induced by parenteral immunization, a feature only previously associated with mucosal immunization routes; and that these multifunctional TEM cells are strongly associated with protection. We propose that these cells mediate protective immunity, and that vaccines designed to increase the number of relevant antigen-specific TEM in the lung may represent a new generation of TB vaccines.  相似文献   

17.

Background

CD44 has long been associated with glioma invasion while, more recently, CD155 has been implicated in playing a similar role. Notably, these two receptors have been shown closely positioned on monocytes.

Methods and Findings

In this study, an up-regulation of CD44 and CD155 was demonstrated in established and early-passage cultures of glioblastoma. Total internal reflected fluorescence (TIRF) microscopy revealed close proximity of CD44 and CD155. CD44 antibody blocking and gene silencing (via siRNA) resulted in greater inhibition of invasion than that for CD155. Combined interference resulted in 86% inhibition of invasion, although in these investigations no obvious evidence of synergy between CD44 and CD155 in curbing invasion was shown. Both siRNA-CD44 and siRNA-CD155 treated cells lacked processes and were rounder, while live cell imaging showed reduced motility rate compared to wild type cells. Adhesion assay demonstrated that wild type cells adhered most efficiently to laminin, whereas siRNA-treated cells (p<0.0001 for both CD44 and CD155 expression) showed decreased adhesion on several ECMs investigated. BrdU assay showed a higher proliferation of siRNA-CD44 and siRNA-CD155 cells, inversely correlated with reduced invasion. Confocal microscopy revealed overlapping of CD155 and integrins (β1, αvβ1 and αvβ3) on glioblastoma cell processes whereas siRNA-transfected cells showed consequent reduction in integrin expression with no specific staining patterns. Reduced expression of Rho GTPases, Cdc42, Rac1/2/3, RhoA and RhoB, was seen in siRNA-CD44 and siRNA-CD155 cells. In contrast to CD44-knockdown and ‘double’-knockdown cells, no obvious decrease in RhoC expression was observed in CD155-knockdown cells.

Conclusions

This investigation has enhanced our understanding of cell invasion and confirmed CD44 to play a more significant role in this biological process than CD155. Joint CD44/CD155 approaches may, however, merit further study in therapeutic targeting of infiltrating glioma cells.  相似文献   

18.
Li J  Liu R  Lam KS  Jin LW  Duan Y 《Biophysical journal》2011,100(4):1076-1082
Deposition of amyloid fibrils, consisting primarily of Aβ40 and Aβ42 peptides, in the extracellular space in the brain is a major characteristic of Alzheimer''s disease (AD). We recently developed new (to our knowledge) drug candidates for AD that inhibit the fibril formation of Aβ peptides and eliminate their neurotoxicity. We performed all-atom molecular-dynamics simulations on the Aβ42 monomer at its α-helical conformation and a pentamer fibril fragment of Aβ42 peptide with or without LRL and fluorene series compounds to investigate the mechanism of inhibition. The results show that the active drug candidates, LRL22 (EC50 = 0.734 μM) and K162 (EC50 = 0.080 μM), stabilize hydrophobic core I of Aβ42 peptide (residues 17–21) to its α-helical conformation by interacting specifically in this region. The nonactive drug candidates, LRL27 (EC50 > 10 μM) and K182 (EC50 > 5 μM), have little to no similar effect. This explains the different behavior of the drug candidates in experiments. Of more importance, this phenomenon indicates that hydrophobic core I of the Aβ42 peptide plays a major mechanistic role in the formation of amyloid fibrils, and paves the way for the development of new drugs against AD.  相似文献   

19.
20.
This study investigated whether KMUP-1, a xanthine-derivative K+ channel opener, could prevent serotonin-induced hypertrophy in H9c2 cardiomyocytes via L-type Ca2+ channels (LTCCs). Rat heart-derived H9c2 cells were incubated with serotonin (10 μM) for 4 days. The cell size increased by 155.5%, and this was reversed by KMUP-1 (≥1 μM), and attenuated by the LTCC blocker verapamil (1 μM) and the 5-HT2A antagonist ketanserin (0.1 μM), but unaffected by the 5-HT2B antagonist SB206553. A perforated whole-cell patch-clamp technique was used to investigate Ca2+ currents through LTCCs in serotonin-induced H9c2 hypertrophy, in which cell capacitance and current density were increased. The LTCC current (ICa,L) increased ~2.9-fold in serotonin-elicited H9c2 hypertrophy, which was attenuated by verapamil and ketanserin, but not affected by SB206553 (0.1 μM). Serotonin-increased ICa,L was reduced by KMUP-1, PKA and PKC inhibitors (H-89, 1 μM and chelerythrine, 1 μM) while the current was enhanced by the PKC activator PMA, (1 μM) but not the PKA activator 8-Br-cAMP (100 μM), and was abolished by KMUP-1. In contrast, serotonin-increased ICa,L was blunted by the PKG activator 8-Br-cGMP (100 μM), but unaffected by the PKG inhibitor KT5823 (1 μM). Notably, KMUP-1 blocked serotonin-increased ICa,L but this was partially reversed by KT5823. In conclusion, serotonin-increased ICa,L could be due to activated 5-HT2A receptor-mediated PKA and PKC cascades, and/or indirect interaction with PKG. KMUP-1 prevents serotonin-induced H9c2 cardiomyocyte hypertrophy, which can be attributed to its PKA and PKC inhibition, and/or PKG stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号