共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes 总被引:1,自引:0,他引:1
The performance of a new glucose biosensor based on the combination of biocatalytic activity of glucose oxidase (GOx) with the electrocatalytic properties of CNTs and neutral red (NR) for the determination of glucose is described. This sensor is comprised of a multiwalled carbon nanotubes (MWNTs) conduit functionalized with NR and Nafion (Nf) as a binder and glucose oxidase as a biocatalyst. Neutral red was covalently immobilized on carboxylic acid groups of the CNTs via carbodiimide reaction. The functionalized MWNTs were characterized by microscopic, spectroscopic and thermal methods. The MWNT-NR-GOx-Nf nanobiocomposite was prepared by mixing the GOx solution with NR functionalized CNTs followed by mixing homogeneously with Nafion. The performance of the MWNT-NR-GOx-Nf nanobiocomposite modified electrode was examined by electrochemical impedance spectroscopy and cyclic voltammetry. The catalytic reduction of hydrogen peroxide liberated from the enzymatic reaction of glucose oxidase upon glucose with NR functionalized CNTs leads to the selective detection of glucose. The excellent electrocatalytic activity and the influence of nanobiocomposite film result in good characteristics such as low potential detection of glucose with a large determination range from 1 x 10(-8) to 1 x 10(-3)M with a detection limit of 3 x 10(-9)M glucose, a short response time (with 4s), good stability and anti-interferent ability. The improved electrocatalytic activity and stability made the MWNT-NR-GOx-Nf nanobiocomposite biosensor system a potential platform to immobilize different enzymes for other bioelectrochemical applications. 相似文献
2.
P. G. Osborne K. Yamamoto 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1998,707(1-2)
Disposable screen-printed, film carbon electrodes (PFCE) were modified with cast-coated Osmium–polyvinylpyrridine-wired horse radish peroxidase gel polymer (Os-gel-HRP) to enable the detection of the reduction at 0 mV of hydrogen peroxide (H2O2) derived from a post-column immobilized enzyme reactor (IMER) containing acetylcholinesterase and choline oxidase. In another series of experiments PFCE were initially modified with cast-coated Os-gel-HRP and then treated with glucose oxidase in bovine serum albumin (BSA) and cross-linked with glutaraldehyde to form a bi-layer glucose–Os-gel-HRP PFCE. This bi-layer glucose–Os-gel-HRP PFCE generated a reduction current at 0 mV to H2O2 derived from the reaction of glucose oxidase and glucose in solution. These enzyme-modified PFCE were housed in a radial flow cell and coupled with cation-exchange liquid chromatographic methods to temporally separate substrates in solution for the determination of acetylcholine (ACh) and choline (Ch) in the first experimental series, or glucose in the second experimental series. These two disposable enzyme-modified PFCE exhibited linear current vs. substrate relations, were durable, being usable for approximately 40 determinations, and were sufficiently sensitive to be employed in biological sampling. Both assays utilized the same HPLC equipment. The limit of detection for ACh was 16 fmol/10 μl and that for glucose was 12 μmol/7.5 μl. ACh and Ch were measured from a microdialysate from the frontal cortex of a rat. Glucose in human urine was determined using the bi-layer glucose oxidase–Os-gel-HRP PFCE. 相似文献
3.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme. 相似文献
4.
This work reports a novel strategy for the development of an O2-rich biosensor. The principle is based on an enzymatic reaction between catalase and H2O2 to release O2, thus to increase the O2 amount in the enzyme matrix. This method improves the determination reliability by alleviating the O2 dependence. 相似文献
5.
Wu BY Hou SH Yin F Zhao ZX Wang YY Wang XS Chen Q 《Biosensors & bioelectronics》2007,22(12):2854-2860
A novel amperometric glucose biosensor based on the nine layers of multilayer films composed of multi-wall carbon nanotubes (MWCNTs), gold nanoparticles (GNp) and glucose oxidase (GOD) was developed for the specific detection of glucose. MWCNTs were chemically modified with the H2SO4–HNO3 pretreatment to introduce carboxyl groups which were used to interact with the amino groups of poly(allylamine) (PAA) and cysteamine via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide cross-linking reaction, respectively. A cleaned Pt electrode was immersed in PAA, MWCNTs, cysteamine and GNp, respectively, followed by the adsorption of GOD, assembling the one layer of multilayer films on the surface of Pt electrode (GOD/GNp/MWCNTs/Pt electrode). Repeating the above process could assemble different layers of multilayer films on the Pt electrode. PBS washing was applied at the end of each assembly deposition for dissociating the weak adsorption. Film assembling and characterization were studied by transmission electron microscopy and quartz crystal microbalance, and properties of the resulting glucose biosensors were measured by electrochemical measurements. The marked electrocatalytic activity of Pt electrode based on multilayer films toward H2O2 produced during GOD enzymatic reactions with glucose permitted effective low-potential amperometric measurement of glucose. Taking the sensitivity and selectivity into consideration, the applied potential of 0.35 V versus Ag/AgCl was chosen for the oxidation detection of H2O2 in this work. Among the resulting glucose biosensors, the biosensor based on nine layers of multilayer films was best. It showed a wide linear range of 0.1–10 mM glucose, with a remarkable sensitivity of 2.527 μA/mM, a detection limit of 6.7 μM estimated at a signal-to-noise ratio of 3 and fast response time (within 7 s). Moreover, it exhibited good reproducibility, long-term stability and the negligible interferences of ascorbic acid, uric acid and acetaminophen. The study can provide a feasible approach on developing new kinds of oxidase-based amperometric biosensors, and can be used as an illustration for constructing various hybrid structures. 相似文献
6.
The formation of neodymium hexacyanoferrate (NdHCF) nanoparticles (NPs) on the surface of glucose oxidase/chitosan (GOx/CHIT) modified glass carbon electrode induced by enzymatic reaction was described and characterized. CHIT can be used not only as enzyme immobilizer, but also to provide active sites for NPs growth. Results showed that the optimized conditions of the GOx/CHIT film induced NdHCF NPs for the biosensing of glucose were 1.0mM Nd(3+) and 20.0mM Fe(CN)(6)(3-). The biocatalyzed generation of NdHCF NPs enabled the development of an electrochemical biosensor for glucose. The calculated apparent Michaelis-Menten constant was 7.5mM. The linear range for glucose detection was 0.01-10.0mM with the correlation coefficient of 0.9946, and the detection limit was 5muM (S/N=3). Furthermore, this system avoids the interferences of other species during the biosensing process and can be used for the determination of glucose in human plasma samples. 相似文献
7.
A bilayer of the polyelectrolytes poly(dimethyldiallylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) was formed on a 3-mercapto-1-propanesulfonic-acid-modified Au electrode. Subsequently, multiwall carbon nanotubes (MWCNTs) wrapped by positively charged PDDA were assembled layer-by-layer with negatively charged glucose oxidase (GOx) onto the PSS-terminated bilayer. Electrochemical impedance spectroscopy and atomic force microscopy were adopted to monitor the regular growth of the PDDA-MWCNTs/GOx bilayers. Using GOx as a model enzyme, the assembled multilayer membranes showed some striking features such as the adsorbed form of GOx on individual MWCNT, uniformity, good stability, and electrocatalytic activity toward oxygen reduction. Based on the consumption of dissolved oxygen during the oxidation process of glucose catalyzed by the immobilized GOx, a sensitive amperometric biosensor was developed for the detection of glucose up to 5.0 mM with a detection limit of 58 microM. The sensitivity increased with increasing sensing layers up to five bilayers. Ascorbic acid and uric acid did not cause any interference due to the use of a low operating potential. The present method showed high reproducibility for the fabrication of carbon-nanotubes-based amperometric biosensors. 相似文献
8.
Because of their unique chemical, physical and electronic properties, Quantum dots (QDs) and carbon nanotubes (CNTs) are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, CdTe QDs with the size of about 3 nm were prepared and a novel electrochemical biosensing platform of glucose based on CdTe/CNTs electrode was explored. This CdTe/CNTs electrode was prepared by first mixing CdTe QDs, CNTs, Nafion, and glucose oxidase (GOD) in appropriate amounts and then modifying this mixture on the glass carbon electrode (GC). Transmission electron microscopy (TEM) was used to observe the dispersion of CdTe QDs on carbon nanotubes and cyclic voltammetry (CV) was used to investigate the electrochemical behavior of the CdTe/CNTs electrode. A pair of well-defined quasi-reversible redox peaks of glucose oxidase were obtained at the CdTe/CNTs based enzyme electrode by direct electron transfer between the protein and the electrode. The immobilized glucose oxidase could retain bioactivity and catalyze the reduction of dissolved oxygen. Due to the synergy between the CdTe QDs and CNTs, this novel biosensing platform based on QDs/CNTs electrode responded even more sensitively than that based on GC electrode modified by CdTe QDs or CNTs alone. The inexpensive, reliable and sensitive sensing platform based on QDs/CNTs electrode provides wide potential applications in clinical, environmental, and food analysis. 相似文献
9.
Guifang Xu Xiaoxue Zeng Shuangyan Lu Hong Dai Lingshan Gong Yanyu Lin Qingping Wang Yuejin Tong Guonan Chen 《Luminescence》2013,28(4):456-460
A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon nanotubes modified electrode 总被引:4,自引:0,他引:4
Due to their unique physicochemical properties, doped carbon nanotubes are now extremely attractive and important nanomaterials in bioanalytical applications. In this work, selecting glucose oxidase (GOD) as a model enzyme, we investigated the direct electrochemistry of GOD based on the B-doped carbon nanotubes/glassy carbon (BCNTs/GC) electrode with cyclic voltammetry. A pair of well-defined, quasi-reversible redox peaks of the immobilized GOD was observed at the BCNTs based enzyme electrode in 0.1M phosphate buffer solution (pH 6.98) by direct electron transfer between the protein and the electrode. As a new platform in glucose analysis, the new glucose biosensor based on the BCNTs/GC electrode has a sensitivity of 111.57 microA mM(-1)cm(-2), a linear range from 0.05 to 0.3mM and a detection limit of 0.01mM (S/N=3). Furthermore, the BCNTs modified electrode exhibits good stability and excellent anti-interferent ability to the commonly co-existed uric acid and ascorbic acid. These indicate that boron-doped carbon nanotubes are the good candidate material for the direct electrochemistry of the redox-active enzyme and the construction of the related enzyme biosensors. 相似文献
11.
Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode 总被引:7,自引:0,他引:7
A new amperometric biosensor, based on adsorption of glucose oxidase (GOD) at the platinum nanoparticle-modified carbon nanotube (CNT) electrode, is presented in this article. CNTs were grown directly on the graphite substrate. The resulting GOD/Pt/CNT electrode was covered by a thin layer of Nafion to avoid the loss of GOD in determination and to improve the anti-interferent ability. The morphologies and electrochemical performance of the CNT, Pt/CNT, and Nafion/GOD/Pt/CNT electrodes have been investigated by scanning electron microscopy, cyclic voltammetry, and amperometric methods. The excellent electrocatalytic activity and special three-dimensional structure of the enzyme electrode result in good characteristics such as a large determination range (0.1-13.5mM), a short response time (within 5s), a large current density (1.176 mA cm(-2)), and high sensitivity (91mA M(-1)cm(-2)) and stability (73.5% remains after 22 days). In addition, effects of pH value, applied potential, electrode construction, and electroactive interferents on the amperometric response of the sensor were investigated and discussed. The reproducibility and applicability to whole blood analysis of the enzyme electrode were also evaluated. 相似文献
12.
A novel graphitized ordered macroporous carbon (GMC, pore size 380 nm) with hierarchical mesopores (2–30 nm) and high graphitization degree was prepared by nickel-catalyzed graphitization of polystyrene arrays. The obtained GMC possessed high specific surface area, large pore volume, and good electrical conductivity, which was explored for the enzyme entrapment and biosensor fabrication by a facile method. With advantages of novel nanostructure and good electrical conductivity, direct electrochemistry of hemoglobin (a model protein) was observed on the GMC-based biocomposite with a formal potential of −0.36 V (vs. Ag/AgCl) and an apparent heterogeneous electron transfer rate constant (ks) of 1.2 s−1 in pH 7.0 buffer. Comparative studies revealed that GMC offered significant advantages over carbon nanotubes (CNTs) in facilitating direct electron transfer of entrapped Hb. The fabricated biosensor exhibited good sensitivity (101.6 mA cm−2 M−1) and reproducibility, wide linear range (1–267 μM), low detection limit (0.1 μM), and good long-term stability for H2O2 detection. GMC proved to be a promising matrix for enzyme entrapment and biosensor fabrication, and may find wide potential applications in biomedical detection and environmental analyses. 相似文献
13.
Wang SG Zhang Q Wang R Yoon SF 《Biochemical and biophysical research communications》2003,311(3):572-576
The bioelectrochemical characteristics of a novel multi-walled carbon nanotube (MWNT)-based biosensor for glucose detection are studied and compared with those of glassy carbon (GC)-based biosensor. The MWNT-based biosensor exhibits a strong glucose response at applied potentials of 0.65 and 0.45 V versus Ag/AgCl, respectively, while GC-based biosensor shows a weak glucose response at 0.65 V and no response at 0.45 V. Besides, the MWNT-based biosensor shows a high stability of 86.7% of the initial activity to glucose after four-month storage, much higher than 37.2%, the corresponding value for a GC-based biosensor. The detection mechanism of the MWNT-based biosensor is also discussed in detail. 相似文献
14.
Zhang L 《Biosensors & bioelectronics》2008,23(11):1610-1615
Three-dimensionally (3D) ordered macroporous active carbon has been fabricated and used as electrode substrate for the direct electrochemistry of horse heart cytochrome c (Cyt c). The Cyt c immobilized on the surface of the ordered macroporous active carbon shows a pair of well-defined and nearly reversible redox waves at the formal potential of −0.033 V in pH 6.8 phosphate buffer solution. The interaction between Cyt c and the 3D macroporous active carbon makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods have been used to investigate the interaction between Cyt c and the porous active carbon. The immobilized Cyt c maintains its biological activity, and shows a surface controlled electrode process with the electron-transfer rate constant (ks) of 17.6 s−1 and the charge-transfer coefficient (a) of 0.52, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide (H2O2). A potential application of the Cyt c-immobilized porous carbon electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2.0 × 10−5 to 2.4 × 10−4 mol l−1. The detection limit (3σ) for determination of H2O2 has been found to be 1.46 × 10−5 mol l−1. 相似文献
15.
A stable suspension of carbon nanotube (CNT) can be obtained by dispersing the CNT in the solution of the surfactant cetyltrimethylammonium bromide. CNT has promotion effects on the direct electron transfer of hemoglobin (Hb), which was immobilized onto the surface of CNT. The direct electron transfer rate of Hb was greatly enhanced after it was immobilized onto the surface of CNT. Cyclic voltammetric results showed a pair of well-defined redox peaks, which corresponded to the direct electron transfer of Hb, with the formal potential (E0′) at about −0.343 V (vs. saturated calomel electrode) in the phosphate buffer solution (pH 6.8). The electrochemical parameters such as apparent heterogeneous electron transfer rate constant (ks) and the value of formal potential (E0′) were estimated. The dependence of E0′ on solution pH indicated that the direct electron transfer reaction of Hb is a one-electron transfer coupled with a one-proton transfer reaction process. The experimental results also demonstrated that the immobilized Hb retained its bioelectrocatalytic activity to the reduction of H2O2. The electrocatalytic current was proportional to the concentration of H2O2 at least up to 20 mM. 相似文献
16.
Shreedhar Gautam Bhagwan S Batule Hyo Yong Kim Ki Soo Park Hyun Gyu Park 《Biotechnology journal》2017,12(2)
Rapid and accurate on‐site wireless measurement of hazardous molecules or biomarkers is one of the biggest challenges in nanobiotechnology. A novel smartphone‐based Portable and Wireless Optical System (PAWS) for rapid, quantitative, and on‐site analysis of target analytes is described. As a proof‐of‐concept, we employed gold nanoparticles (GNP) and an enzyme, horse radish peroxidase (HRP), to generate colorimetric signals in response to two model target molecules, melamine and hydrogen peroxide, respectively. The colorimetric signal produced by the presence of the target molecules is converted to an electrical signal by the inbuilt electronic circuit of the device. The converted electrical signal is then measured wirelessly via multimeter in the smartphone which processes the data and displays the results, including the concentration of analytes and its significance. This handheld device has great potential as a programmable and miniaturized platform to achieve rapid and on‐site detection of various analytes in a point‐of‐care testing (POCT) manner. 相似文献
17.
A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT‐based tissue engineering applications. This review focuses on the recent developments of CNT‐based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT's biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenecity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 相似文献
18.
Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode 总被引:1,自引:0,他引:1
A method for rapid sensitive detection of DNA or RNA was designed using a composite screen-printed carbon electrode modified with multi-walled carbon nanotubes (MWNTs). MWNTs showed catalytic characteristics for the direct electrochemical oxidation of guanine or adenine residues of signal strand DNA (ssDNA) and adenine residues of RNA, leading to indicator-free detection of ssDNA and RNA concentrations. With an accumulation time of 5 min, the proposed method could be used for detection of calf thymus ssDNA ranging from 17.0 to 345 microg ml(-1) with a detection limit of 2.0 microg ml(-1) at 3 sigma and yeast tRNA ranging from 8.2 microg ml(-1) to 4.1 mg ml(-1). AC impedance was employed to characterize the surface of modified electrodes. The advantages of convenient fabrication, low-cost detection, short analysis time and combination with nanotechnology for increasing the sensitivity made the subject worthy of special emphasis in the research programs and sources of new commercial products. 相似文献
19.
Xiao-mei Chen Zhi-min Cai Zhi-jie Lin Tian-tian Jia Hai-zhu Liu Ya-qi Jiang Xi Chen 《Biosensors & bioelectronics》2009,24(12):3475-3480
A novel non-enzymatic electrochemiluminescence (ECL) sensor based on palladium nanoparticles (PdNPs)–functional carbon nanotubes (FCNTs) was discovered for glucose detection. PdNPs were homogeneously modified on FCNTs using a facile spontaneous redox reaction method. Their morphologies were characterized by transmission electron microscopy (TEM). Based on ECL experimental results, the PdNPs–FCNTs–Nafion film modified electrode displayed high electrocatalytic activity towards the oxidation of glucose. The free radicals generated by the glucose oxidation reacted with the luminol anion (LH−), and enhanced the ECL signal. Under the optimized conditions, the linear response of ECL intensity to glucose concentration was valid in the range from 0.5 to 40 μmol L−1 (r2 = 0.9974) with a detection limit (S/N = 3) of 0.09 μmol L−1. In addition, the modified electrode presented high resistance towards the poisoning of chloride ion, high selectivity and long-term stability. In order to verify the sensor reliability, it was applied to the determination of glucose in glucose injection samples. The results indicated that the proposed approach provided a highly sensitive, more facile method with good reproducibility for glucose determination, promising the development of a non-enzymatic ECL glucose sensor. 相似文献
20.
This work describes a new electrochemical sensor for hydrogen peroxide based on tin pentacyanonitrosylferrate (SnPCNF)-modified carbon ceramic electrode (CCE). The modified electrode was constructed by using a sol-gel technique involving two steps: construction of CCE containing metallic tin (Sn) powder and then electrochemical creation of SnPCNF film on the surface of CCE. The modified electrode was characterized by energy-dispersive X-ray, Fourier transform infrared, scanning electron microscopy, and cyclic voltammetry (CV) techniques. The charge transfer coefficient (α) and charge transfer rate constant (ks) for the modifying film were calculated. The electrocatalytic activity of the modified electrode toward the reduction of hydrogen peroxide was studied by CV and chronoamperometry. A linear calibration curve was obtained over the hydrogen peroxide concentration range of 0.5 to 69.4 μM using a hydrodynamic amperometric technique. The limit of detection (for a signal-to-noise ratio of 3) and sensitivity were found to be 92 nM and 0.89 μA/μM, respectively. Furthermore, the diffusion coefficient of hydrogen peroxide (D) and catalytic rate constant (kcat) were calculated. 相似文献