共查询到20条相似文献,搜索用时 0 毫秒
1.
P. G. Osborne K. Yamamoto 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1998,707(1-2)
Disposable screen-printed, film carbon electrodes (PFCE) were modified with cast-coated Osmium–polyvinylpyrridine-wired horse radish peroxidase gel polymer (Os-gel-HRP) to enable the detection of the reduction at 0 mV of hydrogen peroxide (H2O2) derived from a post-column immobilized enzyme reactor (IMER) containing acetylcholinesterase and choline oxidase. In another series of experiments PFCE were initially modified with cast-coated Os-gel-HRP and then treated with glucose oxidase in bovine serum albumin (BSA) and cross-linked with glutaraldehyde to form a bi-layer glucose–Os-gel-HRP PFCE. This bi-layer glucose–Os-gel-HRP PFCE generated a reduction current at 0 mV to H2O2 derived from the reaction of glucose oxidase and glucose in solution. These enzyme-modified PFCE were housed in a radial flow cell and coupled with cation-exchange liquid chromatographic methods to temporally separate substrates in solution for the determination of acetylcholine (ACh) and choline (Ch) in the first experimental series, or glucose in the second experimental series. These two disposable enzyme-modified PFCE exhibited linear current vs. substrate relations, were durable, being usable for approximately 40 determinations, and were sufficiently sensitive to be employed in biological sampling. Both assays utilized the same HPLC equipment. The limit of detection for ACh was 16 fmol/10 μl and that for glucose was 12 μmol/7.5 μl. ACh and Ch were measured from a microdialysate from the frontal cortex of a rat. Glucose in human urine was determined using the bi-layer glucose oxidase–Os-gel-HRP PFCE. 相似文献
2.
This work reports a novel strategy for the development of an O2-rich biosensor. The principle is based on an enzymatic reaction between catalase and H2O2 to release O2, thus to increase the O2 amount in the enzyme matrix. This method improves the determination reliability by alleviating the O2 dependence. 相似文献
3.
The composite film based on Nafion and hydrophilic room temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium chloride ([bmim]Cl) was used as an immobilization matrix to entrap myoglobin (Mb). The study of ionic liquid (IL)-Mb interaction by ultraviolet-visible (UV-vis) spectroscopy showed that Mb retains its native conformation in the presence of IL. The immobilized Mb displayed a pair of well-defined cyclic voltammetric peaks with a formal potential (Eo’) of −0.35 V in a 0.1 M phosphate buffer solution (PBS) of pH 7.0. The immobilized Mb exhibited excellent electrocatalytic response to the reduction of hydrogen peroxide, based on which a mediator-free amperometric biosensor for hydrogen peroxide was designed. The linear range for the determination of hydrogen peroxide was from 1.0 to 180 μM with a detection limit of 0.14 μM at a signal/noise ratio of 3. The apparent Michaelis constant () for the electrocatalytic reaction was 22.6 μM. The stability, repeatability, and selectivity of the sensor were evaluated. The proposed biosensor has a lower detection limit than many other IL-heme protein-based biosensors and is free from common interference in hydrogen peroxide biosensors. 相似文献
4.
Shreedhar Gautam Bhagwan S Batule Hyo Yong Kim Ki Soo Park Hyun Gyu Park 《Biotechnology journal》2017,12(2)
Rapid and accurate on‐site wireless measurement of hazardous molecules or biomarkers is one of the biggest challenges in nanobiotechnology. A novel smartphone‐based Portable and Wireless Optical System (PAWS) for rapid, quantitative, and on‐site analysis of target analytes is described. As a proof‐of‐concept, we employed gold nanoparticles (GNP) and an enzyme, horse radish peroxidase (HRP), to generate colorimetric signals in response to two model target molecules, melamine and hydrogen peroxide, respectively. The colorimetric signal produced by the presence of the target molecules is converted to an electrical signal by the inbuilt electronic circuit of the device. The converted electrical signal is then measured wirelessly via multimeter in the smartphone which processes the data and displays the results, including the concentration of analytes and its significance. This handheld device has great potential as a programmable and miniaturized platform to achieve rapid and on‐site detection of various analytes in a point‐of‐care testing (POCT) manner. 相似文献
5.
Yanxia Xu Jiangong Liang Chengguo Hu Fang Wang Shengshui Hu Zhike He 《Journal of biological inorganic chemistry》2007,12(3):421-427
Direct electron transfer of hemoglobin modified with quantum dots (QDs) (CdS) has been performed at a normal graphite electrode.
The response current is linearly dependent on the scan rate, indicating the direct electrochemistry of hemoglobin in that
case is a surface-controlled electrode process. UV–vis spectra suggest that the conformation of hemoglobin modified with CdS
is little different from that of hemoglobin alone, and the conformation changes reversibly in the pH range 3.0–10.0. The hemoglobin
in a QD film can retain its bioactivity and the modified electrode can work as a hydrogen peroxide biosensor because of its
peroxidase-like activity. This biosensor shows an excellent response to the reduction of H2O2 without the aid of an electron mediator. The catalytic current shows a linear dependence on the concentration of H2O2 in the range 5 × 10−7–3 × 10−4 M with a detection limit of 6 × 10−8 M. The response shows Michaelis–Menten behavior at higher H2O2 concentrations and the apparent Michaelis–Menten constant is estimated to be 112 μM. 相似文献
6.
Maggie K. Diamond-Stanic Elizabeth M. Marchionne Mary K. Teachey David E. Durazo John S. Kim Erik J. Henriksen 《Biochemical and biophysical research communications》2011,(3):2645
Increased cellular exposure to oxidants may contribute to the development of insulin resistance and type 2 diabetes. Skeletal muscle is the primary site of insulin-dependent glucose disposal in the body; however, the effects of oxidative stress on insulin signaling and glucose transport activity in mammalian skeletal muscle are not well understood. We therefore studied the effects of a low-level in vitro oxidant stress (30–40 μM H2O2) on basal and insulin-stimulated (5 mU/ml) glucose transport activity and insulin signaling at 2, 4, and 6 h in isolated rat soleus muscle. H2O2 increased basal glucose transport activity at 2 and 4 h, but not at 6 h. This low-level oxidant stress significantly impaired insulin-stimulated glucose transport activity at all time points, and was associated with inhibition of insulin-stimulated phosphorylation of Akt Ser473 and GSK-3β Ser9. In the presence of insulin, H2O2 decreased total protein expression of IRS-1 at 6 h and IRS-2 at 4 and 6 h. Phosphorylation of p38 MAPK Thr180/Tyr182 was transiently increased by H2O2 in the presence and absence of insulin at 2 and 4 h, but not at 6 h. Selective inhibition of p38 MAPK with A304000 partially rescued the H2O2-induced reduction in insulin-stimulated glucose transport activity. These results indicate that direct in vitro exposure of isolated mammalian skeletal muscle to a low-level oxidant stress impairs distal insulin signaling and insulin-stimulated glucose transport activity, at least in part, due to a p38 MAPK-dependent mechanism. 相似文献
7.
Many peroxidase inhibitors have been used in horseradish peroxidase (HRP) mediated immunostaining and in situ hybridization to quench background peroxidase activity. However, the efficacy of these inhibitors has been controversial, partially due to the lack of a quantitative study. Tyramide signal amplification (TSA) is much more sensitive than other HRP-mediated methods but its super-sensitivity also demands effective inhibition of background peroxidase activity. In searching for an effective peroxidase inhibitor, we have systematically evaluated the efficacy of several peroxidase inhibitors by quantifying the fluorescence intensity in cultured fibroblasts and tissue sections treated with the inhibitors. For cultured cells, 0.05 mM of phenylhydrazine and 1 unit/ml of glucose oxidase gave only moderate inhibition of HRP activity while 1 mM of sodium azide (NaN3), 3% of hydrogen peroxide (H2O2), NaN3/H2O2 combined and 0.02 N hydrochloric acid (HCl) provided more complete inhibition. However, the inhibitory effect of NaN3/H2O2 is reversible upon removal of the inhibitors and followed by incubation and wash to mimic antibody interactions. Similar results were obtained from rat skin wound tissues that have strong endogenous peroxidase activity. Our results recommend the use of HCl and caution the use of phenylhydrazine, glucose oxidase, NaN3 and H2O2 as potent peroxidase inhibitors. 相似文献
8.
A novel graphitized ordered macroporous carbon (GMC, pore size 380 nm) with hierarchical mesopores (2–30 nm) and high graphitization degree was prepared by nickel-catalyzed graphitization of polystyrene arrays. The obtained GMC possessed high specific surface area, large pore volume, and good electrical conductivity, which was explored for the enzyme entrapment and biosensor fabrication by a facile method. With advantages of novel nanostructure and good electrical conductivity, direct electrochemistry of hemoglobin (a model protein) was observed on the GMC-based biocomposite with a formal potential of −0.36 V (vs. Ag/AgCl) and an apparent heterogeneous electron transfer rate constant (ks) of 1.2 s−1 in pH 7.0 buffer. Comparative studies revealed that GMC offered significant advantages over carbon nanotubes (CNTs) in facilitating direct electron transfer of entrapped Hb. The fabricated biosensor exhibited good sensitivity (101.6 mA cm−2 M−1) and reproducibility, wide linear range (1–267 μM), low detection limit (0.1 μM), and good long-term stability for H2O2 detection. GMC proved to be a promising matrix for enzyme entrapment and biosensor fabrication, and may find wide potential applications in biomedical detection and environmental analyses. 相似文献
9.
Here we report on a novel platform based on buckypaper for the design of high-performance electrochemical biosensors. Using glucose oxidase as a model enzyme, we constructed a biocompatible mediator-free biosensor and studied the potential effect of the buckypaper on the stability of the biosensor with both amperometry and FTIR spectroscopy. The results showed that the biosensor responses sensitively and selectively to glucose with a considerable functional lifetime of over 80 days. The fabricated enzymatic sensor detects glucose with a dynamic linear range of over 9 mM and a detection limit of 0.01 mM. To examine the efficiency of enzyme immobilization, the Michaelis–Menten constant was calculated to be 4.67 mM. In addition, the fabricated electrochemical biosensor shows high selectivity; no amperometric response to the common interference species such as ascorbic acid, uric acid and acetamidophenol was observed. The facile and robust buckypaper-based platform proposed in this study opens the door for the design of high-performance electrochemical biosensors for medical diagnostics and environmental monitoring. 相似文献
10.
Meso-tetra(4-carboxyphenyl)porphine (CTPP(4)) binds reversibly to immobilized glucose oxidase (GOD), resulting in an absorbance peak for the CTPP(4)-GOD complex at 427nm. The absorbance intensity of the 427nm peak is reduced upon exposure to glucose, which causes the dissociation of CTPP(4) from GOD. The change in absorbance at 427nm shows linear dependence on glucose concentration from 20 to 200mg/dL (1.1-11.1mM). 相似文献
11.
Gregor Tegl Viktoria Stagl Anna Mensah Daniela Huber Walter Somitsch Stefanie Grosse‐Kracht Georg M. Guebitz 《Engineering in Life Science》2018,18(5):334-340
Silicate‐based microporous materials like zeolites are nano enabled particles and used for various applications including pharmaceutical formulations. This study reports on the chemo‐enzymatic functionalization of chitosan‐zeolite particles (CTS‐zeolites) with caffeic acid (CA) and glucose oxidase (GOX) to impart combined antioxidant and antimicrobial properties. CA was grafted on the chitosan moieties by using laccase generating stable particles (zeta potential –36.7 mV) of high antioxidant activity (44% DPPH inhibition). GOX was immobilized both on CTS‐zeolites and on CA modified CTS‐zeolites and creating a hydrogen peroxide generation system continuously and in‐situ producing this oxidative and antimicrobial agent. The system prevented bacterial growth of E. coli and S. aureus over 24 h whereby a steady‐state concentration of around 60 μM hydrogen peroxide in the culture medium was observed. CA and GOX functionalized CTS‐zeolite particles additionally showed combinatorial antioxidant and antimicrobial properties providing a powerful bioactive system for medical applications. These particles proved their suitability for incorporation in bioactive formulations which could be used, inter alia, for topical wound treatments. 相似文献
12.
Wang SG Zhang Q Wang R Yoon SF 《Biochemical and biophysical research communications》2003,311(3):572-576
The bioelectrochemical characteristics of a novel multi-walled carbon nanotube (MWNT)-based biosensor for glucose detection are studied and compared with those of glassy carbon (GC)-based biosensor. The MWNT-based biosensor exhibits a strong glucose response at applied potentials of 0.65 and 0.45 V versus Ag/AgCl, respectively, while GC-based biosensor shows a weak glucose response at 0.65 V and no response at 0.45 V. Besides, the MWNT-based biosensor shows a high stability of 86.7% of the initial activity to glucose after four-month storage, much higher than 37.2%, the corresponding value for a GC-based biosensor. The detection mechanism of the MWNT-based biosensor is also discussed in detail. 相似文献
13.
The formation of neodymium hexacyanoferrate (NdHCF) nanoparticles (NPs) on the surface of glucose oxidase/chitosan (GOx/CHIT) modified glass carbon electrode induced by enzymatic reaction was described and characterized. CHIT can be used not only as enzyme immobilizer, but also to provide active sites for NPs growth. Results showed that the optimized conditions of the GOx/CHIT film induced NdHCF NPs for the biosensing of glucose were 1.0mM Nd(3+) and 20.0mM Fe(CN)(6)(3-). The biocatalyzed generation of NdHCF NPs enabled the development of an electrochemical biosensor for glucose. The calculated apparent Michaelis-Menten constant was 7.5mM. The linear range for glucose detection was 0.01-10.0mM with the correlation coefficient of 0.9946, and the detection limit was 5muM (S/N=3). Furthermore, this system avoids the interferences of other species during the biosensing process and can be used for the determination of glucose in human plasma samples. 相似文献
14.
A novel approach for the simultaneous optical and electrochemical detection of biologically produced reactive oxygen species has been developed and applied. The set-up consists of a luminol-dependent chemiluminescence assay combined with two amperometric biosensors sensitive to superoxide anion radicals (O(2)(-)) and hydrogen peroxide (H(2)O(2)), respectively. The method permits direct, real-time in vitro determination of both extra- and intracellular O(2)(-) and H(2)O(2) produced by human neutrophil granulocytes. The rate of O(2)(-) production by stimulated neutrophils was calculated to about 10(-17)mol s(-1) per single cell. With inhibited NADPH oxidase, a distinct extracellular release of H(2)O(2) instead of O(2)(-) was obtained from stimulated neutrophils with the rate of about 3 x 10(-18)mol s(-1) per single cell. When the H(2)O(2) release was discontinued, fast H(2)O(2) utilisation was observed. Direct interaction with and possibly attachment of neutrophils to redox protein-modified gold electrodes, resulted in a spontaneous respiratory burst in the population of cells closely associated to the electrode surface. Hence, further stimulation of human neutrophils with a potent receptor agonist (fMLF) did not significantly increase the O(2)(-) sensitive amperometric response. By contrast, the H(2)O(2) sensitive biosensor, based on an HRP-modified graphite electrode, was able to reflect the bulk concentration of H(2)O(2), produced by stimulated neutrophils and would be very useful in modestly equipped biomedical research laboratories. In summary, the system would also be appropriate for assessment of several other metabolites in different cell types, and tissues of varying complexity, with only minor electrode modifications. 相似文献
15.
Zhao ZX Qiao MQ Yin F Shao B Wu BY Wang YY Wang XS Qin X Li S Yu L Chen Q 《Biosensors & bioelectronics》2007,22(12):3021-3027
Hydrophobins are a family of natural self-assembling proteins with high biocompability, which are apt to form strong and ordered assembly onto many kinds of surfaces. These physical-chemical and biological properties make hydrophobins suitable for surface modification and biomolecule immobilization purposes. A class II hydrophobin HFBI was used as enzyme immobilization matrix on platinum electrode to construct amperometric glucose biosensor. Permeability of HFBI self-assembling film was optimized by selecting the proper HFBI concentration for electrode modification, in order to allow H2O2 permeating while prevent interfering compounds accessing. HFBI self-assembly and glucose oxidase (GOx) immobilization was monitored by quartz crystal microbalance (QCM), and characterization of the modified electrode surface was obtained by scanning electron microscope (SEM). The resulting glucose biosensors showed rapid response time within 6 s, limits of detection of 0.09 mM glucose (signal-to-noise ratio = 3), wide linear range from 0.5 to 20 mM, high sensitivity of 4.214 × 10−3 A M−1 cm−2, also well selectivity, reproducibility and lifetime. The all-protein modified biosensor exhibited especially high efficiency of enzyme utilization, producing at most 712 μA responsive current for per unit activity of GOx. This work provided a promising new immobilization matrix with high biocompatibility and adequate electroactivity for further research in biosensing and other surface functionalizing. 相似文献
16.
A new glucose biosensor has been fabricated by immobilizing glucose oxidase into a sol-gel composite at the surface of a basal plane pyrolytic graphite (bppg) electrode modified with multiwall carbon nanotube. First, the bppg electrode is subjected to abrasive immobilization of carbon nanotubes by gently rubbing the electrode surface on a filter paper supporting the carbon nanotubes. Second, the electrode surface is covered with a thin film of a sol-gel composite containing encapsulated glucose oxidase. The carbon nanotubes offer excellent electrocatalytic activity toward reduction and oxidation of hydrogen peroxide liberated in the enzymatic reaction between glucose oxidase and glucose, enabling sensitive determination of glucose. The amperometric detection of glucose is carried out at 0.3 V (vs saturated calomel electrode) in 0.05 M phosphate buffer solution (pH 7.4) with linear response range of 0.2-20 mM glucose, sensitivity of 196 nA/mM, and detection limit of 50 microM (S/N=3). The response time of the electrode is < 5s when it is stored dried at 4 degrees C, the sensor showed almost no change in the analytical performance after operation for 3 weeks. The present carbon nanotube sol-gel biocomposite glucose oxidase sensor showed excellent properties for the sensitive determination of glucose with good reproducibility, remarkable stability, and rapid response and in comparison to bulk modified composite biosensors the amounts of enzyme and carbon nanotube needed for electrode fabrication are dramatically decreased. 相似文献
17.
The biosensing application of single-walled carbon nanohorns (SWCNHs) was demonstrated through fabrication of an amperometric glucose biosensor. The biosensor was constructed by encapsulating glucose oxidase in the Nafion-SWCNHs composite film. The cyclic voltammograms for glucose oxidase immobilized on the composite film displayed a pair of well-defined and nearly symmetric redox peaks with a formal potential of -0.453 V. The biosensor had good electrocatalytic activity toward oxidation of glucose. To decrease detection potential, ferrocene monocarboxylic acid was used as a redox mediator. The mediated glucose biosensor shows a linear range from 0 to 6.0 mM. The biosensor shows high sensitivity (1.06 microA/mM) and stability, and can avoid the commonly coexisted interference. Because of impressive properties of SWCNHs, such as high purity and high surface area, SWCNHs and their composites are expected to be promising material for biomolecular immobilization and biosensing applications. 相似文献
18.
The direct voltammetry and electrocatalytic properties of catalase, which was adsorbed on the surface of multiwall carbon nanotubes (MWCNTs), was investigated. A pair of well-defined and nearly reversible cyclic voltammetry peaks for Fe(III)/Fe(II) redox couple of catalase adsorbed on the surface of MWCNTs at approximately -0.05 V versus reference electrode in pH 6.5 buffer solution, indicating the direct electron transfer between catalase and electrode. The surface coverage of catalase immobilized on MWCNTs glassy carbon electrode was approximately 2.4x10(-10) molcm-2. The transfer coefficient (alpha) was calculated to be 0.4, and the heterogeneous electron transfer rate constant was 80 s-1 in pH 7, indicating great facilitation of the electron transfer between catalase and MWCNTs adsorbed on the electrode surface. The formal potential of catalase Fe(III)/Fe(II) couple in MWCNTs film had a linear relationship with pH values between 2 and 11 with a slope of 58 mV/pH, showing that the electron transfer is accompanied by single proton transportation. Catalase adsorbed on MWCNTs exhibits a remarkable electrocatalytic activity toward the reduction of oxygen and hydrogen peroxide. The value for calculated Michaelis-Menten constant (1.70 mM) was high, indicating the potential applicability of the films as a new type of reagentless biosensor based on the direct electrochemistry of the catalase enzyme. 相似文献
19.
An enzyme-chromogenic surface plasmon resonance biosensor probe for hydrogen peroxide determination using a modified Trinder's reagent 总被引:2,自引:0,他引:2
Nakamura H Mogi Y Akimoto T Naemura K Kato T Yano K Karube I 《Biosensors & bioelectronics》2008,24(3):455-460
An absorption-based surface plasmon resonance (SPR(Abs)) biosensor probe has been developed for simple and reproducible measurements of hydrogen peroxide using a modified Trinder's reagent (a chromogenic reagent). The reagent enabled the determination of the hydrogen peroxide concentration by the development of deep color dyes (lambda(max)=630nm) through the oxidative coupling reaction with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethylaniline sodium salt monohydrate (MAOS; C(13)H(20)NNaO(4)S.H(2)O) and 4-aminoantipyrine (4-AA) in the presence of hydrogen peroxide and horseradish peroxidase (HRP). In the present study, urea as an adduct of hydrogen peroxide for color development could be omitted from the measurement solution. The measurement solution containing 5mM hydrogen peroxide was deeply colored at a high absorbance value calculated as 46.7cm(-1) and was directly applied to the SPR(Abs) biosensing without dilution. The measurement was simply performed by dropping the measurement solution onto the surface of the SPR sensor probe, and the SPR(Abs) biosensor response to hydrogen peroxide was obtained as a reflectivity change in the SPR spectrum. After investigation of the pH profiles in the SPR(Abs) biosensor probe, a linear calibration curve was obtained between 1.0 and 50mM hydrogen peroxide (r=0.991, six points, average of relative standard deviation; 0.152%, n=3) with a detection limit of 0.5mM. To examine the applicability of this SPR(Abs) biosensor probe, 20mM glucose detection using glucose oxidase was also confirmed without influence of the refractive index in the measurement solution. Thus, the SPR(Abs) biosensor probe employing the modified Trinder's reagent demonstrated applicability to other analyte biosensing tools. 相似文献
20.
Agnieszka Piwkowska Dorota Rogacka Stefan Angielski Maciej Jankowski 《Biochemical and biophysical research communications》2014
Podocyte resistance to the actions of insulin on glucose transport could contribute to the pathogenesis of diabetic podocytopathy (DP) via disturbances in cyclic-dependent protein kinase signaling. To determine whether cGMP-dependent protein kinase (PKG) is involved in the insulin regulation of glucose transport, we measured insulin-dependent glucose uptake into cultured rat podocytes under conditions of modified PKG activity using pharmacological (PKG activator or inhibitor) and biochemical (siRNA PKGIα, siRNA insulin receptor β) means. Our findings indicate the participation of PKG in insulin-stimulated transport and provide new insights into how PKG may trigger the resistance of glucose transport to insulin in DP. 相似文献