首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
We report the solid-phase synthesis and receptor-binding properties of eleven oxytocin analogs (Mpa-Xxx-Ile-Gln-Asn-Cys-Sar-Arg-Gly-NH2) containing non-coded amino acids in position 2: D-- and L--(2-indanyl)glycine, R,S-6-methoxy-2-aminotetralin-2-carboxylic acid, D- and L-pentafluorophenylalanine, D,L-2,4-dimethylphenylalanine, D,L-2,4,6-trimethylphenylalanine, R,R- and S,S-1,2,3,4-tetrahydro-1-methyl--carboline-3-carboxylic acid and R- and S-1,2,3,4-tetrahydro--carboline-3-carboxylic acid. Some of these amino acid analogs (2-indanylglycine and D-pentafluorophenylalanine) were earlier successfully applied for the synthesis of potent bradykinin antagonists [1,2]. Their receptor bindings were tested on isolated guinea-pig uterus, rat liver and rat kidney inner medulla plasma membranes. The extent of binding of the peptides to the oxytocin receptor was in several cases was even higher than that of the parent hormone (oxytocin). However, the real pharmacological value of these analogs can be evaluated only after in vivo measurements of their inhibition of uterine motor activity.  相似文献   

2.
Summary Glyoxylic acid vapour is a most powerful reagent for the fluorescence histochemical visualization of biogenic monoamines. In the present investigation the mechanisms of fluorophore formation in the glyoxylic acid reaction has been studied in detail for tryptamine in histochemical models and in freeze-dried tissue, utilizing microspectrofluorometric, Chromatographic, and mass spectrometric techniques in combination with isotope measurements.The glyoxylic acid-tryptamine reaction proceeds through an initial Pictet-Spengler type cyclization to 1,2,3,4-tetrahydro--carboline-1-carboxylic acid, followed by two alternative fluorophore forming reactions yielding 3,4-dihydro--carboline, or the 2-carboxymethyl-3,4-dihydro--carbolinium and 2-methyl-3,4-dihydro--carbolinium salts, which are all strongly fluorescent. It is shown that the yield of fluorophores is considerably higher in the glyoxylic acid vapour reaction than in the formaldehyde vapour reaction of the standard Falck-Hillarp method, and that this higher efficiency of glyoxylic acid is due to the most favourable catalysing properties of the carboxylic group of the glyoxylic acid molecule.  相似文献   

3.
Summary The principal pancreatic islets of the teleost Scorpaena scropha are found ultrastructurally to contain four different kinds of parenchymal cells, viz. 1-(= D), 2-, -and agranular cells. The -cells show considerable variations in the shape of the secretory granules. A peculiar feature is that many of these granules are composed of fibrillar subunits, often in parallel arrangement. All -granules are surrounded by membranes and between the membrane and the granule core there is a moderately wide electron lucent space. The electron density of the cytoplasm in the -cells varies somewhat. The 2-cells possess typical secretory granules with an electron dense core and a closely applied membrane. The secretory granules in the 1-cells show also a closely applied membrane but a less dense core. Also in the -cells the electron opacity of the cytoplasm varies. The agranular cells are mainly characterized by low cytoplasmic electron density, narrow cisterns of endoplasmic reticulum and sometimes a laminated Golgi complex. Small immature secretory granules are occasionally seen in the cytoplasm of these cells. The significance of the fibrillar -granules remains obscure.This work was supported by grants from the Nordic Insulin Fund, the Town of Umeå, the Swedish Medical Research Council (Project No. B69-12X-718-04A), and by a postdoctoral fellowship from the United States Public Health Service.  相似文献   

4.
Summary Dehydrocholic acid (3,7,12-trioxo-5-cholanic acid) (0.5% concentration) was completely and selectively reduced to 12-ketoursodeoxycholic acid (3, 7-dihydroxy-12-oxo- 5-cholanic acid) in a membrane reactor by means of 3-hydroxysteroid dehydrogenase and 7-hydroxysteroid dehydrogenase. Coenzyme regeneration was carried out with the glucose-glucose dehydrogenase system.  相似文献   

5.
Summary Candida pelliculosa var. acetaetherius is a strain of yeast which can utilize cellobiose as the carbon source. From a gene library prepared from this yeast, the -glucosidase gene has been cloned in a S. cerevisiae host using a chromogenic substrate, 5-bromo-4-chloro-3-indolyl--glucoside as an indicator. It was proved by Southern analysis that the DNA fragment carrying the -glucosidase gene originated from C. pelliculosa. -Glucosidase produced by S. cerevisiae transformants was secreted into the periplasmic space. In Candida, -glucosidase was not induced by cellobiose but was derepressed by lowering the concentration of glucose. The regulation of -glucosidase synthesis in S. cerevisiae carrying the cloned -glucosidase was not clear compared with that in Candida, however, the enzyme activity in low glucose medium (0.05%) was reproducibly higher than in high glucose medium (2%). We have found the sequence that controls the expression of the -glucosidase gene negatively in S. cerevisiae.  相似文献   

6.
The polyamides based on 4-amino-1-methylpyrrol-2-carboxylic acid, 4-amino-1-methylimidazole-2-carboxylic acid, and -alanine that stabilize oligonucleotide duplexes consisting of GC pairs through parallel packing in the minor groove were studied. The initial duplex TTGCGCpGCGCAA melts at 28°C; the TTGCGCp[NH(CH2)3COPyImImNH(CH2)3NH(CH3)2][NH(CH2)3COImImPyNH(CH2)3N(CH3)2]GCGCAA duplex (bisphosphoramidate with parallel orientation of ligands, where Py, Im, and are the residues of 1-methyl-4-aminopyrrol-2-carboxylic and 1-methyl-4-aminoimidazole-2-carboxylic acids and -alanine, respectively), at 48°C; and the TTGCGCp[NH(CH2)3COImImPyNH(CH2)3COImImPyNH(CH2)3N(CH3)2]GCGCAA duplex (a hairpin structure with antiparallel orientation), at 56°C.  相似文献   

7.
The main carotenoid of Flavobacterium strain R1560 has been identified as (3R,3R)-zeaxanthin. Also present were small amounts of 15-cis-phytoene, phytofluene, -carotene (7,8,7,8-tetrahydro-, -carotene plus 7,8,11,12-tetrahydro-, -carotene), neurosporene, lycopene, -zeacarotene, -carotene, -carotene, -cryptoxanthin, rubixanthin, 3-hydroxy--zeacarotene and several apo-carotenals. Zeaxanthin production was inhibited by nicotine (10 mM), and lycopene and rubixanthin accumulated. The biosynthesis of zeaxanthin is discussed in terms of pathways and also of half-molecule reaction sequences. The presence of zeaxanthin may be a characteristic of a group of Flavobacterium species, and may thus be useful in the taxonomic classification of these organisms.  相似文献   

8.
Mixed membrane preparations from the coleoptiles and first leaves of young barley (Hordeum vulgare L. cv. Triumph) plants catalysed the synthesis of 55% methanol-insoluble labelled material from UDP[U-14C]glucose, the main components of which were identified as (1,3)(1,4)-- and (1,3)--D-glucans. The membrane preparations also catalysed the transformation of UDP-glucose into labelled low-molecular-weight products, mainly glucose (by phosphatase action), glucose-1-phosphate (by phosphodiesterase action) and glyco(phospho)lipids (by glycosyltransferase action). The formation of (1,3)(1,4)--glucans, (1,3)--glucans, and the other reactions competing for UDP-glucose, were monitored simultaneously and quantitatively by a novel procedure based on enzymatic analysis, thin-layer chromatography and digital autoradiography. Thus it was possible (i) to optimise conditions to obtain (1,3)(1,4)--glucan synthesis or (1,3)--glucan synthesis in isolation, and (ii) to study the influence of temperature, pH, cofactors, substrate concentration etc. on the (1,3)(1,4) and (1,3)--glucan synthesis reactions even when both occurred together. The synthesis of both -glucans was optimal at 20°C. In Tris-HCl buffer, the pH optima for (1,3)(1,4)--glucan synthesis and (1,3)--glucan synthesis were pH 8.5 and pH 7.0, respectively. Both glucan-synthesis reactions required Mg2+: (1,3)--glucan synthesis was optimal at 2 mM, whereas (1,3)(1,4)--glucan synthesis continued to increase up to 200 mM Mg2+, when the ion was supplied as the sulphate. (1,3)--Glucan synthesis was Ca2+ dependent and this dependence could be abolished by proteinase treatment. The K m with respect to UDP-glucose was 1.5 mM for (1,3)--glucan synthesis and approximately 1 mM for (1,3)(1,4)--glucan synthesis. The (1,3)(1,4)--glucan formed in vitro had the same ratio of trisaccharide to tetrasaccharide structural blocks irrespective of the experimental conditions used during the synthesis: its enzymatic fragmentation pattern was indistinguishable from that of barley endosperm (1,3)(1,4)--glucan. This indicates either a single synthase enzyme, which is responsible for the formation of both linkage types, or two enzymes which are very tightly coupled functionally.Abbreviations G4G4G3G Glc(1,4)Glc(1,4)Glc(1,3)Glc (-linked) - UDP-Glc uridine-5-diphosphate glucose We are grateful to the Commission of the European Communities for the award of Training Fellowships to Christine Vincent and Martin Becker.  相似文献   

9.
Summary Two specific -N-acetylglucosaminyltransferases involved in the branching and elongation of mucin oligosaccharide chains, namely, a 1,6 N-acetylglucosaminylsaminyltransferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3GalNAc-Mucin to yield Gal3(GlcNAc6)GalNAc-Mucin and a 3-N-acetylglucosaminyl transferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3(GlcNAC6)GalNAc-mucin to yield GlcNAc3Gal3 (GlcNAc6)GalNAc-Mucin were purified from the microsomal fraction of swine trachea epithelium. The 1,6-N-acetylglucosaminyltransferase was purified about 21,800-fold by procedures which included affinity chromatography on DEAE columns containing bound asialo Cowper's gland mucin glycoprotein with Gal1,3GalNAc side chains. The apparent molecular weight estimated by gel filtration was found to be about 60 Kd. The purified enzyme showed a high specificity for Gal1,3GalNAc chains and the most active substrates were mucin glycoproteins containing these chains. The apparent Km of the 6-glucosaminyltrans-ferase for Cowper's gland mucin glycoprotein containing Gal1,3GalNAc chains was 0.53 µM; for UDP-N-acetylglucosamine, 12 µM; and for Gal 1,3GalNAc NO2ø, 4 mM. The activity of the 6-glucosaminyltransferase was dependent on the extent of glycosylation of the Gal3GalNAc chains in Cowper's gland mucin glycoprotein.The best substrate for the partially purified 3-Glucosaminyltransferase was Cowper's gland mucin glycoprotein containing Gal1,3(GlcNAc6)GalNAc side chains. This enzyme showed little or no activity with intact sialylated Cowper's gland mucin glycoprotein or derivatives of this glycoprotein containing GalNAc or Gal1,3GalNAc side chains.The radioactive oligosaccharides formed by these enzymes in large scale reaction mixtures were released from the mucin glycoproteins by treatment with alkaline borohydride, isolated by gel filtration on Bio-Gel P-6 and characterized by methylation analysis and sequential digestion with exoglycosidases. The oligosaccharide products formed by the 6- and 3-glucosaminyltransferases were shown to be Gal3(GlcNAC6) GalNAc and GlcNAc3 Gal3(GlcNAC6)GalNAc respectively.Taken collectively, these results demonstrate that swine trachea epithelium contains two specific N-acetylglucosaminyltransferases which catalyze the initial branching and elongation reactions involved in the synthesis of O-linked oligosaccharide chains in respiratory mucin glycoproteins. The first enzyme a 6-glucosaminyltransferase converts Gal3GalNAc chains in mucin glycoproteins to Gal3(GlcNAc6)GalNAc chains. This product is the substrate for a second 3-glucosaminyltransferase which converts the Gal3(GlcNAc6)GalNAc chains to GlcNAc3Gal(GlcNAc6)GalNAc chains in the glycoprotein. The 3-glucosaminyltransferase did not utilize Gal3GalNAc chains as a substrate and this results in an ordered sequence of addition of N-acetylglucosamine residues to growing oligosaccharide chains in tracheal mucin glycoproteins.Abbreviations NeuNAc N-acetylneuraminic acid - GalNAcol N-acetylgalactosaminitol - CGMG Cowper's gland mucin glycoprotein - GalNAc-CGMG Cowper's gland mucin glycoprotein containing GalNAc side chains O-glycosidically linked to serine or threonine - Gal3GalNAc-CGMC Cowper's gland mucin glycoprotein containing Gal3GalNAc side chains - MES 2-(N-morpholino) Ethane Sulfonic acid - PBS Phosphate Buffered Saline  相似文献   

10.
The conformational properties of GM2, GalNac-4(Neu5Ac-3) Gal-4Glc-1Cer have been compared to those of 6-GM2, in which the linkage between the GalNAc and Gal was altered from GalNac-4Gal- to GalNac-6Gal-, and to those of GD1a, Neu5Ac-3Gal-3GalNAc-4(Neu5Ac-3)Gal-4Glc-1Cer, and GalNAc-GD1a.Our results revealed that unlike the compact and rigid oligosaccharide head group found in GM2, where the Neu5Ac and the GalNAc residues interact, the sugar chain of 6-GM2 is in an open spatial arrangement, with the Neu5Ac no longer interacting with GalNAc, freely accessible to external interactions.The structure of GD1a can be regarded as that of GM2 with an extension of the terminal Neu5Ac-3Gal-disaccharide. The inner portion of GD1a is that of GM2 comprising the very rigid GalNAc-[Neu5Ac-]Gal trisaccharide. The terminal Neu5Ac-Gal linkage is flexible and fluctuates between two limiting conformations. In GalNAc-GD1a the outer sialic acid gains conformational rigidity due to the presence of the outer GalNAc in position 4 of galactose. This ganglioside has two core GalNAc-[Neu5Ac-]Gal trisaccharide linked in tandem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号