首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The taxonomic composition of denitrifying bacteria in soddy podzolic soil was studied by the succession analysis method. This method revealed a significant variation in the taxonomic composition of denitrifying microorganisms in the course of succession. In contrast to succession analysis, the single microbiological analysis of soil samples reflected only the late stage of succession and thus led to an underestimation of the major members of succession. Myxobacteria were found to be the most active denitrifiers at the early stages of succession, whereas bacilli dominated at its late stages. The bacilli were represented by three facultatively anaerobic species:Bacillus cereus, Bac. circulons, andBac. polymyxa.  相似文献   

2.
Azobenzene exerted no significant effect on the dynamics and the species composition of the saprophytic soil bacterial complex, which remained almost the same as in the control and was characterized by the predominance of Curtobacterium sp., Arthrobacter globiformis, and Bacillus megaterium in all stages of succession. Some heterotrophic bacteria were found to be able to accumulate azobenzene. Bac. cereus and Bac. polymyxa degraded azobenzene during their cultivation in nutrient media.  相似文献   

3.
以文峪河上游河岸带不同演替阶段的8种植被类型五花草甸(WH)、沙棘林(HR)、柳树林(SS)、山杨林(PC)、山杨白桦林(PQ)、山杨白桦落叶松林(PQL)、落叶松云杉林(LP)和云杉林(PM)土壤为研究对象,采用高通量测序技术测定nirS反硝化细菌群落组成及相对丰度,乙炔抑制法测定反硝化酶活性(DEA)。对其土壤理化性质及反硝化细菌群落组成及相对丰度进行方差分析,采用冗余分析(RDA)和Spearman相关性分析不同植被类型及土层反硝化细菌群落结构及功能及土壤理化因子的关联性。结果表明:1)不同植被类型及土层土壤理化因子存在显著差异,柳树林(SS)0—15 cm土层硝态氮(NO~+_3-N)含量显著高于其他植被类型各土层;2)土壤反硝化菌群多样性指数在五花草甸(WH)、山杨白桦林(PQ)和云杉林(PM)中较其他植被类型高;3)沙棘林(HR)及柳树林(SS)反硝化酶活性(DEA)显著高于其他植被类型;4)不同植被类型反硝化优势菌群分布存在显著差异及特异性,如浮霉菌门(Planctomycetes)仅在落叶松云杉混交林(LP)和云杉林(PM)植被类型15—30 cm土层中分布;5)土壤pH、土壤有机碳(SOC)、土壤铵态氮(NH~+_4-N)和硝态氮(NO~+_3-N)等是影响土壤反硝化细菌群落结构及组成的重要因子,其中土壤铵态氮和硝态氮含量变化是导致土壤反硝化菌群多样性和反硝化酶活性差异的关键因子。本研究揭示了文峪河上游河岸带不同植被类型土壤反硝化细菌群落结构及功能的变化和分布特征,为进一步研究该区域河岸带氮素循环及水体污染防治提供重要参考依据。  相似文献   

4.
The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time.  相似文献   

5.
Azobenzene exerted no significant effect on the dynamics and the species composition of the saprophytic soil bacterial complex, which remained almost the same as in the control and was characterized by the predominance of Curtobacteriumsp., Arthrobacter globiformis, and Bacillus megateriumin all stages of succession. Some heterotrophic bacteria were found to be able to accumulate azobenzene. Bacillus cereusand Bac. polymyxadegraded azobenzene during their cultivation in nutrient media.  相似文献   

6.
The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high‐throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. There was, however, no significant difference in Shannon diversity indices between early and late successional stage in any compartment. There was a significant difference in the composition of microbial communities between early and late successional stage in all compartments, although the major microbial OTUs were shared between early and late successional stage. Co‐occurrence network analysis revealed successional stage‐specific microbial groups. There were more co‐occurring modules in early successional stage than in late stage. Altogether, these results emphasize that succession strongly affects distribution of microbial species, but not microbial diversity in arctic sand dune ecosystem and that fungi and bacteria may not follow the same successional trajectories.  相似文献   

7.
阔叶红松林是我国东北重要的原生群落,其土壤团聚体在森林生态系统碳固定中具有重要作用.本研究采用空间代替时间的方法,选取白桦幼龄林、白桦中龄林、白桦成熟林、阔叶红松成熟林和阔叶红松过熟林5个不同演替序列,通过湿筛法研究长白山天然针阔混交林群落恢复演替中土壤团聚体粒径组成及有机碳含量的变化.结果表明: 土壤团聚体粒径组成受演替过程影响较大,不同演替阶段下土壤团聚体各粒级所占比例差异显著.团聚体平均质量直径随演替的进行表现为先升高再降低的单峰形式,且最高点出现在白桦成熟林阶段.土壤中不同粒级的团聚体内有机碳含量随着演替的进行呈先增加后略有下降的趋势,且团聚体内有机碳含量最大值出现在阔叶红松成熟林阶段.在同一演替阶段下,0~5和5~10 cm土层(除演替末期的阔叶红松过熟林外)中的各粒径团聚体内有机碳含量都随着粒径的减小而增加,而10~20 cm土层中的各粒径团聚体内有机碳含量都随着粒径的减小而减小.从演替初期的白桦幼龄林到演替末期的阔叶红松过熟林,每个样地内的同一粒径团聚体内有机碳含量均具有明显的垂直分布特性,均随着土层深度的增加而显著降低.  相似文献   

8.
吴陶红  龙翠玲  熊玲  李娟  刘奇 《广西植物》2023,42(3):463-472
植物如何改变功能性状来适应环境一直是生态学的研究征点。为探究茂兰喀斯特森林不同演替阶段植物叶片的适应策略,该文以茂兰自然保护区5个不同演替阶段(草本、灌木、灌乔、乔木和顶极群落阶段)优势种为研究对象,测定不同演替阶段的优势植物叶片功能性状与土壤理化性质。结果表明:(1)随着植被正向演替的进行,土壤全氮(STN)含量、土壤有机质(SOM)含量、土壤含水量(SWC)逐渐增加,土壤全磷(STP)含量和土壤全钾(STK)含量先增加后减少,土壤pH值整体呈减小的趋势。(2)随着植被演替的进行,叶面积(LA)、叶干物质含量(LDMC)、叶厚度(LT)和叶片碳含量(LCC)逐渐上升,比叶面积(SLA)与叶片钾含量(LKC)则与之相反,叶片氮含量(LNC)呈先升后降的趋势,叶片磷含量(LPC)呈先降后升的趋势。(3)冗余分析表明,演替初期植物主要分布在土壤pH值高而STK、STP、SWC、SOM、STN相对低的环境中,群落内植物叶片采取高SLA、LNC、LPC,低LA、LDMC、LT、LWC的性状组合,演替晚期植物主要分布在土壤水分和养分含量较高的环境,LDMC、LT、LA、LWC与演替初期相比呈上升...  相似文献   

9.
This study investigated the development of fungal community composition in arable soil during the degradation of straw residue. We explored the short-term responses of the fungal community over 28 days of decomposition in soil using culture-independent polymerase chain reaction in combination with a clone library and denaturing gradient gel electrophoresis (DGGE). Fungal cellobiohydrolase I (cbhI) genes in the soil were also characterized, and their diversity suggested the existence of a different cellulose decomposer. The DGGE profiles based on fungal internal transcribed spacer analysis showed different successions of fungal populations during residue decomposition. Members of Lecythophora and Sordariales were dominant in the early succession, while Hypocrea and Engyodontium were better adapted in the late succession. The succession of fungal communities might be related to changes of residue quality during decomposition. Collectively, sequences assigned to Ascomycota members were dominant at different stages of the fungal succession during decomposition, revealing that they were key drivers responsible for residue degradation in the arable soil tested.  相似文献   

10.
Question: Species composition during secondary succession is influenced by a number of factors, such as soil moisture, disturbance timing and surrounding vegetation. How does the importance of these factors change over the course of succession? Methods: We set up a full‐factorial block design using molehills differing in (a) disturbance timing, (b) soil moisture and (c) composition of surrounding vegetation, and recorded the cover of all species present on the molehills over 3 years. M1ultiple regression analyses on the dissimilarity matrices of community composition and of environmental factors were applied for each of five age classes of molehills to estimate the effect of the single factors at different stages of succession. Results: The timing of disturbance did not significantly affect community composition at any stage of succession. In contrast, the effects of soil moisture and surrounding vegetation changed significantly over time, with moisture being more important at earlier stages of succession and surrounding vegetation at later stages. Conclusion: The importance of environmental factors for species composition change significantly over the course of secondary succession. Instead of aggregating the effects of environmental factors over time, future studies should consider underlying dynamics of recolonization more comprehensively.  相似文献   

11.
云南松林次生演替阶段土壤细菌群落的变化   总被引:1,自引:0,他引:1  
土壤细菌多样性是维持森林生态系统功能的关键因子,森林演替是影响其动态变化的重要因素。研究云南松林不同演替阶段土壤细菌群落结构及其多样性的变化规律,有助于深入理解森林生态系统恢复过程的驱动机制。本研究以云南省永仁县皆伐后形成的针叶林、针阔混交林和常绿阔叶林为对象,基于Illumina Hiseq高通量测序技术,分析森林演替过程中土壤细菌群落组成、结构、多样性及其影响因子的变化。结果表明: 土壤细菌的种群分类单元、Ace指数、Chao1指数和Shannon指数均随着演替进行呈减少趋势,演替早期阶段土壤的细菌总数、菌群丰富度及复杂程度最高。不同演替阶段细菌群落结构存在显著差异,其中,针阔混交林的差异最大,变形菌门和酸杆菌门为各演替序列共有的优势类群,放线菌门、绿弯菌门和Patescibacteria是演替早期的优势类群,且随着演替进行呈现减少趋势;变形菌门和WPS-2相对多度随演替进行呈增加趋势。土壤pH和乔木层物种丰富度是驱动次生演替过程中土壤细菌群落组成变化的关键因子。随着演替的进行,土壤细菌多样性减少,群落组成差异加大。  相似文献   

12.
天童常绿阔叶林五个演替阶段凋落物中的土壤动物群落   总被引:21,自引:2,他引:21  
易兰  由文辉  宋永昌 《生态学报》2005,25(3):466-473
为探讨森林凋落物中土壤动物群落的结构特征以及土壤动物群落随植被演替而发生的变化 ,于 2 0 0 3年冬季 ,对浙江天童常绿阔叶林 5个演替阶段凋落物中的土壤动物群落 ,按代表不同分解阶段的新鲜凋落物层、腐叶层和腐殖土层进行了调查研究。共获得土壤动物 13381只 ,分别隶属于 2门 8纲 2 0目。优势类群为蜱螨目 (Arcarina)和弹尾目 (Collem bola) ,二者共占总数的 94 .2 4 % ,A/ C为 7.6 6 ;常见类群为双翅目 (Diptera)。研究结果表明 :(1)凋落物中的土壤动物群落存在明显的有别于真土层的垂直分布 ,类群数和个体数总体表现为向下递增的趋势。共有 19类、5 9.0 3%的土壤动物分布在底部腐殖土层 ,仅 8类、5 .35 %的土壤动物分布在新鲜凋落物层 ,其余共 8类分布在中间腐叶层。而且 ,不同类群在各演替阶段的分布表现出一定的差异 ;(2 )凋落物中土壤动物群落随植物群落的演替而发生明显的变化 :个体总数和类群总数在演替顶极阶段最高 ,其次为中期阶段 ,演替初期最低。但是 ,在目这一分类等级上 ,各演替阶段凋落物中土壤动物群落的主要类群基本一致 ,均为蜱螨目、弹尾目、双翅目和鳞翅目 (L epidoptera) ;(3)相似性分析表明 ,演替中期凋落物中土壤动物群落与顶极阶段最为相似 ;但它们的Shannon- Wiener多样性  相似文献   

13.
喀斯特植被演替过程土壤丛枝菌根真菌(AMF)多样性   总被引:2,自引:0,他引:2  
喀斯特生态系统维持了丰富的微生物多样性,丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)结构和组成会随喀斯特植被演替而改变。以贵州贵阳花溪、毕节织金和关岭花江典型喀斯特区域按时空替代法采集了乔木林、灌木林和草本群落样地土壤,采用Illumina HiSeq分子测序技术,通过OTU聚类分析、物种注释及数据库比对,探索了喀斯特不同演替阶段土壤AMF物种多样性。结果表明:(1)喀斯特生境土壤获得球囊菌门Glomeromycota OTU为275个,分属于4目8科13属19种,属水平上AMF丰度表明根内根孢囊霉属Rhizophagus为优势属,花江拥有最高AMF丰富度,缩隔球囊霉Septoglomus constrictum、根内根孢囊霉Rhizophagus intraradices、Claroideoglomus sp. MIB8381和稀有内养囊霉Entrophospora infrequens均分布于各样地的不同植被演替阶段,为常见种。(2)AM真菌多样性Shannon指数与Simpson指数在不同演替阶段表现为花溪:乔木≈灌木草本(P0.05)、花江:灌木≈草本乔木(P0.05)、织金:乔木灌木草本,但差异不显著,Chao1和Abundance-based coverag estimator(ACE)指数表现为花江灌木≈草地乔木(P0.05)。(3)Spearman相关性分析表明土壤全磷与AMF ACE指数显著负相关,且与Chao1指数极显著负相关;速效磷与Shannon和Simpson指数显著负相关。(4)典范对应分析(Canonical Correlation Analysis,CCA)表明土壤全氮、速效氮、有机质、全磷和速效钾与AMF群落分布有显著相关性。结果表明喀斯特植被演替过程中土壤丛枝菌根真菌多样性随着演替进行或升高或降低,无一致变化规律,并与土壤理化性质关系密切,其中以磷的影响最大。  相似文献   

14.
Nutrient Addition Dramatically Accelerates Microbial Community Succession   总被引:1,自引:0,他引:1  
The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.  相似文献   

15.
The concept of ecological memory provides a new perspective for research on forest succession by including historical factors and the initial state of ecological processes. However, there are still significant gaps between the concept and its application. We selected nine proxy indicators (plant species, soil seed banks, soil microbes, soil animals, birds, soil age, soil pollen, soil mineral distribution, and light environment) and developed a method to quantify ecological memory and succession in a subtropical forest succession in South China. Taking the climax-monsoon evergreen broad-leaved forest as the reference ecosystem, we found that ecological memory increased nonlinearly and accumulated following a specific assembly rule during succession. Memory concerning major soil microbes and soil animals, which improve the soil substrate, mainly accumulated from the initial to the early successional stage. Memory concerning the number of bird species and the availability of light, which ensure a source of regenerative seeds and the survival of understory seedlings, mainly accumulated from the early to middle successional stages. Memory concerning vegetation and soil seed banks mainly accumulated late in succession, guaranteeing that the ecosystem would reach the regional climax stage. Prospective memory was greater than retrospective memory in every successional stage except the late stage, which indicated that all stages but the late stage were undergoing progressive succession. Our study demonstrates that the concept of ecological memory and the proposed evaluation framework are useful for guiding research on succession and restoration, and especially for assessing how “far” a restored ecosystem is from a reference ecosystem or how far a restored ecosystem has deviated from its natural succession trajectory.  相似文献   

16.
喀斯特是我国南方广泛分布的地貌类型,土壤真菌对喀斯特植被演替恢复具有重要调节功能,不同石漠化程度的喀斯特区植被演替受到土壤微生物影响,因此研究不同石漠化区域植被演替阶段的土壤真菌组成及多样性,探索土壤真菌在喀斯特植被演替过程中的作用机制具有重要意义。本文采用时空替代法采集了不同石漠化程度(潜在、中度和强度)的喀斯特区植被演替乔木、灌木和草本演替阶段土壤样品,通过Illumina HiSeq第二代高通量测序分析了土壤真菌组成及多样性。结果表明,试验共获得3 871个OTUs,分属4门17纲116科174属;潜在和中度石漠化区各演替阶段土壤真菌优势门均为担子菌门,强度石漠化区各演替阶段土壤真菌无相同优势门;土壤真菌组成及多样性在潜在石漠化区表现为乔木>草本>灌木,中度石漠化区为灌木>乔木>草本,强度石漠化区为灌木>草本>乔木,且石漠化程度对真菌组成及多样性的影响大于植被演替的影响;土壤理化性质随石漠化程度及演替阶段发生变化,且显著影响真菌多样性指数,以碱解氮为主导因子显著影响土壤真菌群落。  相似文献   

17.
Soil animals are abundant in forest litter layer,but little attention has been Paid to the vertical distribution of community structure of soil animals in the layers at different plant community succession stages.The forest litter layer can be divided into fresh litter layer(L),fermentation layer(F)and humus layer(H),which may represent different litter decomposition stages.The aim of the study is to ascertain the vertical distribution features of soil animal communities among the three litter layers and the change in the succession process of the Evergreen Broad-Leaved Forest(EBLF)in Tiantong,Zhejiang Province,China.Soil animal communities in the five plant communities at different succession stages were investigated during the 2003 winter.Soil animals,which were collected by using Tullgren funnels,amounted to a total of 13381 individuals falling into 2 phyla,8 classes and 20 orders.The dominant groups were Acarina and Collembola,accounting for 94.24% of the total individuals,with the number of Acarina individuals 7.66 times than that of Collembola.The common group was Diptera.The results indicated that there was a distinctive vertical distribution of the soil animal communities in the forest litter laver,but it differed from that in soil below the litter layer.In contrast to those in the soil,the soil animals in the litter layer generally tended to increase in both group abundance and density from the top fresh litter layer to the bottom humus layer.Altogether 19 groups and 59.03% of total individuals were found in the bottom layer,while only 8 groups and 5.35% of the total individuals in the top.Moreover,there were some variations in the distribution of the soil animals at different plant succession stages.85.19% of Homoptera and 100% of Symphyla were found in the litter layer at the climax succession stage.while 75.61% of Thysanoptera at the intermediate succession stage.Therefore,these groups might be seen as indicative groups.The total numbers of soil animal groups and individuals in the litter layers greatly changed in the succession process of the EBLF.They both were greatest at the climax,moderate at the intermediate and smallest at the primary succession stage.However,the main soil animal groups in the litter at the different succession stages were essentially the same.They were Acarina,Collembola,Diptera and Lepidoptera.Although similarity analysis revealed that the soil animal communities in the litter at the intermediate succession stage were most similar to those at the climax succession stage,they differed greatly from each other in the Shannon-Wiener diversity index.The Shannon-Wiener index was highest at the climax succession stage and lowest at the intermediate succession stage.Finally,the paper discusses the following three questions:the role of soil animals as indicators for plant community succession;the role of different soil animal groups in the litter decomposition at different stages;and the major factors affecting the composition and distribution of soil animals in the litter.This paper provides a new perspective for the research on the succession mechanism of plant communities and the decomposition functions of soil animals.  相似文献   

18.
植物-土壤反馈是揭示陆地生物群落动态变化的关键环节,为理解植物间相互作用及植被群落变化过程奠定基础。本研究以贡嘎山冰川退缩区原生演替早(5~10年)、中(30~40年)和晚期(80~100年)3个阶段典型土壤以及各阶段优势植物为对象,采用盆栽控制试验,比较优势植物在不同土壤条件下的生物量,并量化植物间相互作用以及植物-土壤反馈的方向与强度,为探究贡嘎山冰川退缩区植被群落演替规律提供依据。结果表明:(1)植物-土壤反馈作用显著影响植物在本土中的生物量,早期沙棘(Hippophae rhamnoides)在本土中生长最差,沙棘的植物-土壤反馈系数为负值;演替中期冬瓜杨(Populus purdomii)的反馈系数趋于零;晚期峨眉冷杉(Abies fabri)在本土中生长最好,峨眉冷杉的反馈系数为正值。(2)混种时,早期沙棘与演替中、晚期植物间相互作用指数为负值;中期冬瓜杨、川滇柳(Salix rehderiana)与演替早、晚期植物的相互作用指数接近于零,晚期植物峨眉冷杉、麦吊云杉(Picea brachytyla)与演替早、中期植物相互作用指数为正值。从植物-土壤反馈的方向来看,贡嘎山植被演替从早期负反馈,中期中性反馈,过渡到晚期正反馈。此外,演替早期沙棘促进演替中晚期植物生长,演替中期冬瓜杨、川滇柳对演替早晚期植物无显著影响,晚期峨眉冷杉、麦吊云杉更利于与演替早中期植物相互竞争。结果显示,植物-土壤反馈与植物间相互作用共同驱动了贡嘎山冰川退缩区植被快速演替,直至顶极群落。  相似文献   

19.
Investigations into different stages of secondary succession (from a wheat field to a beechwood on Threstone; Northern Germany) demonstrated the formation of a carbon rich top soil in later successional stages. Parallel to changes in plant species and soil formation, there were also changes in species composition and diversity of saprophagous macro-invertebrates (Lumbricidae, Diplopoda, Isopoda) and oribatid mites (Acari: Oribatida). Diversity of diplopod and isopod species increased after cessation of cultivation, but in a late successional stage (ca 50 y-old fallow, ash-dominated wood) species number of diplopods and isopods declined strongly. In comparison with the other soil invertebrate groups, species composition of earthworms among the sites was more similar. Accumulation of soil C was assumed to be related to wood formation and occurrence of woody debris and recalcitrant leaf litter of beech trees. Incorporation of recalcitrant litter materials by earthworm species living in the upper mineral soil presumably contributed significantly to accumulation of soil C. Accumulation of soil C was accompanied by the development of an oribatid mite community rich in species. In early successional stages oribatids predominantly colonized the litter layer, while most oribatid mites of the beechwood inhabited the upper mineral soil. Maximum diversity of oribatid mites in the beechwood is assumed to be related to instability of the mineral soil caused by earthworm activity. Changes in species composition and diversity are discussed considering succession theory. Even soil invertebrates of similar trophic groups appear to respond very differently to successional changes. It is concluded that conservation strategies to maintain high diversity of soil invertebrates are most likely to be successful if a wide range of habitats of different successional stages is included.  相似文献   

20.
以甘南高寒草甸演替过程中5个阶段的典型群落为研究对象,对围封样地内不同演替阶段群落叶片功能性状进行比较,分析了围封地内各演替阶段群落水平上主要物种叶性状与环境因子的关系。结果显示:(1)此围封地形成了一个从草本到灌木的演替过程。随着演替的进行,Margalef指数显著增加,Shannon-Wiener指数呈先增加后降低的趋势。(2)从演替前期到演替后期,土壤有机碳(SOC)、土壤全氮(STN)、土壤含水量(SWC)逐渐升高,光照度(LI)、土壤温度(ST)逐渐降低,土壤全磷(STP)呈先降低后增加趋势;叶片有机碳(LCC)、全氮(LNC)、含水量(LWC)逐渐升高;比叶面积(SLA)、磷利用效率(PUPE)、稳定碳同位素(δ13C)逐渐下降,叶片全磷(LPC)先降低后升高,而氮利用效率(PUNE)先升高后降低。(3)RDA冗余分析表明,在此围封样地内,演替前期植物群落叶性状主要受到LI和ST的限制作用。而在演替的中后期SWC[WTBZ]是主要影响因子。此研究有助于我们认识高寒草甸生态系统的退化过程所导致的生态环境问题,进而寻求更好的草地恢复和重建方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号