首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanisms of T cell activation by the calcium ionophore ionomycin   总被引:4,自引:0,他引:4  
We have investigated signaling mechanisms that may underlie the T cell mitogenic properties of the Ca2+ ionophore ionomycin. Ionomycin induces highly purified resting human T cells to proliferate in the presence of monocytes with accompanying IL-2R expression and IL-2 synthesis. Treatment of T cells with ionomycin triggers the hydrolysis of phosphoinositides, as evidenced by the accumulation of the hydrolytic by-products phosphatidic acid and inositol phosphates. Ionomycin also induces the activation of protein kinase C (PKC), as demonstrated by the auto-phosphorylation of PKC and the phosphorylation of the PKC target proteins CD4 and CD8. Ionomycin synergizes with PMA in enhancing the activation of PKC. It is concluded that, in addition to its putative activation of Ca2+/calmodulin-dependent signaling pathways, ionomycin induces the hydrolysis of phosphoinositides and the activation of PKC in human T cells. The synergy of ionomycin with phorbol esters in triggering T cell activation may relate, at least in part, to enhanced activation of PKC.  相似文献   

2.
The depletion of an inositol 1, 4,5-trisphosphate-sensitive intracellular Ca2+ pool has been proposed to be the signal for Ca2+ entry in agonist-activated cells. Consistent with this idea, thapsigargin, which releases intracellular Ca2+ without inositol phosphate formation, has been reported to activate Ca2+ entry in certain cells. We now report the effects of thapsigargin on Ca2+ entry in parotid acinar cells. In fura-2-loaded parotid acinar cells, thapsigargin caused a sustained elevation of [Ca2+], but did not increase inositol phosphate formation. In the absence of extracellular Ca2+, the increase in [Ca2+], was transient, suggesting that thapsigargin activates both the release of Ca2+ from intracellular stores and the entry of Ca2+ from the extracellular space. In the absence of extracellular Ca2+, pretreatment with methacholine, an agonist believed to mobilize Ca2+ through the production of inositol 1,4,5-trisphosphate, inhibited but did not completely block the response to thapsigargin; likewise, pretreatment with thapsigargin inhibited the response to methacholine. In permeabilized cells, thapsigargin gradually released Ca2+, whereas inositol 1,4,5-trisphosphate caused a rapid and transient discharge of Ca2+. The simultaneous addition of thapsigargin with inositol 1,4,5-trisphosphate evoked a maximum Ca2+ release similar to that for inositol 1,4,5-trisphosphate alone, but the reuptake seen with inositol 1,4,5-trisphosphate alone was abolished. In intact cells, methacholine and thapsigargin together produced a greater initial release of Ca2+ than either alone, but they were not additive in the sustained phase of Ca2+ mobilization. These results demonstrate that the mechanisms for activation of Ca2+ entry by thapsigargin and methacholine are the same and are consistent with the idea that entry is initiated by the depletion of the intracellular inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. The results also indicate that, in contrast to previously proposed models, Ca2+ entry into agonist-activated cells occurs directly across the plasma membrane to the cytoplasm rather than through a cycle of uptake and release by the intracellular Ca2+ pool.  相似文献   

3.
Activation of resting human CD4+ T cells mediated by mAb ligation of the TCR/CD3 complex requires costimulatory signals to result in proliferation; these can be provided by intercellular cell adhesion molecule-1 (ICAM-1, CD54) a natural ligand of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18). We analyzed early signaling events involved in T cell activation to determine the contribution by the LFA-1/ICAM-1 interaction. We studied in detail the hydrolysis of phosphatidylinositol(4,5)bisphosphate and intracellular levels of free Ca2+ during stimulation with beads coated with the CD3 mAb OKT3 alone or in combination with purified ICAM-1 protein. Our investigations show no response to LFA-1/ICAM-1 alone, but that costimulation by LFA-1/CAM-1 interaction induces prolonged inositol phospholipid hydrolysis (up to 4 h), resulting in generation of both inositol(1,4,5)phosphate3 and inositol(1,3,4,5)phosphate4 and their derivatives. Based on studies with cycloheximide, this costimulatory effect of prolonged inositol phospholipid hydrolysis appears dependent in part on de novo protein synthesis. A sustained increase in intracellular levels of free Ca2+ level is also observed after LFA-1/ICAM-1 costimulation, which is at least partly dependent on extracellular sources of Ca2+. Kinetic studies indicate that costimulation requires a minimal period of 4 h of LFA-1/ICAM-1 interaction to provide maximal costimulation for OKT3-mediated T cell proliferation. Thus, the necessary costimulation required for OKT3-mediated proliferation in this model system may be provided by an extended LFA-1/ICAM-1 interaction that in combination with OKT3 mAb leads to signal-transducing events, resulting in prolonged phospholipase C activation and phosphatidylinositol(4,5)bisphosphate hydrolysis, and a sustained increase in intracellular levels of free Ca2+.  相似文献   

4.
Perturbation of the T cell antigen-specific receptor leads to a series of signaling events that includes a rapid increase in phosphoinositide hydrolysis, intracellular Ca2+, and tyrosine phosphorylation. We have examined the function of tyrosine phosphorylation in isolation by introducing the v-src tyrosine kinase into a T cell hybridoma. T cell receptor-mediated increases in phosphoinositide hydrolysis and, in particular the generation of inositol 1,4,5-trisphosphate, were comparable between v-src+ and v-src- cells. Unexpectedly, the v-src+ cells exhibited spontaneously elevated intracellular Ca2+ and exaggerated Ca2+ increases when stimulated via the T cell receptor. The enhanced Ca2+ response was not due to tyrosine phosphorylation of the T cell receptor itself, since the phenotype was evident in T cell receptor zeta chain-/v-src+ cells as well. These results demonstrate that an active protein tyrosine kinase can markedly affect intracellular Ca2+ handling by a process independent of inositol 1,4,5-trisphosphate production and T cell receptor tyrosine phosphorylation and raise the possibility that tyrosine kinases may directly regulate T cell receptor-mediated changes in intracellular Ca2+.  相似文献   

5.
How do inositol phosphates regulate calcium signaling?   总被引:7,自引:0,他引:7  
Activation of a variety of cell surface receptors results in the phospholipase C-catalyzed hydrolysis of the minor plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate, with concomitant formation of inositol 1,4,5-trisphosphate and diacylglycerol. There is strong evidence that inositol 1,4,5-trisphosphate stimulates Ca2+ release from intracellular stores. The Ca2+-releasing actions of inositol 1,4,5-trisphosphate are terminated by its metabolism through two distinct pathways. Inositol 1,4,5-trisphosphate is dephosphorylated by a 5-phosphatase to inositol 1,4-bisphosphate; alternatively, inositol 1,4,5-trisphosphate can also be phosphorylated to inositol 1,3,4,5-tetrakisphosphate by a 3-kinase. Although the mechanism of Ca2+ mobilization is understood, the precise mechanisms involved in Ca2+ entry are not known; the proposal that inositol 1,4,5-trisphosphate secondarily elicits Ca2+ entry by emptying an intracellular Ca2+ pool is considered.  相似文献   

6.
The second messenger function of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) was investigated in carbamylcholine-stimulated RINm5F cells by analysis of the early changes in inositol phosphates, cytosolic free Ca2+ concentration ([Ca2+]i), and insulin secretion. After a lag of 2 s, [Ca2+]i rose to a peak at 13 +/- 2 s, a response which was due mainly to mobilization from intracellular stores since it persisted even in the absence of extracellular Ca2+. The Ca2+ response had already declined toward prestimulatory levels by the time insulin secretion reached its maximal rate (2-3 min). Although the rises in inositol trisphosphate preceded those of both inositol bisphosphate and monophosphate, all three attained maximal concentrations after 1 min and remained elevated for at least 10 min. The accumulation of inositol trisphosphate was truly Ca2+-independent since it persisted under conditions in which the rise in [Ca2+]i was abolished by prior depletion of intracellular Ca2+ pools. Further analysis by high performance liquid chromatography revealed the presence of the two isomers, Ins-1,4,5-P3 and Ins-1,3,4-P3 in stimulated cells. The latter was virtually absent under nonstimulatory conditions but started to accumulate after a 5-s lag and reached maximal levels after 30 s of stimulation. Ins-1,4,5-P3 doubled within 1 s of carbamylcholine addition, reached a peak after 5 s, and, although declining thereafter, remained slightly elevated for at least 3 min. Hence, both the onset and peak of the rise of Ins-1,4,5-P3 preceded that of [Ca2+]i, which in turn preceded the peak in insulin release. These results strongly suggest that Ins-1,4,5-P3 acts as the second messenger by which carbamylcholine mobilizes intracellular Ca2+ during the initiation of insulin release.  相似文献   

7.
Activation of Ca2+-mobilizing receptors rapidly increases the cytoplasmic Ca2+ concentration both by releasing Ca2+ stored in endoplasmic reticulum and by stimulating Ca2+ entry into the cells. The mechanism by which Ca2+ release occurs has recently been elucidated. Receptor activation of phospholipase C results in the hydrolysis of the plasma membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2), to yield two intracellular messengers, diacylglycerol (DAG) and (1,4,5)inositol trisphosphate [(1,4,5)IP3]. DAG remains in the plasma membrane where it stimulates protein phosphorylation via the phospholipid-dependent protein kinase C. (1,4,5)IP3 diffuses to and interacts with specific sites on the endoplasmic reticulum to release stored Ca2+. Receptor stimulation of phospholipase C appears to be mediated by one or more guanine nucleotide-dependent regulatory proteins by a mechanism analogous to hormonal activation of adenylyl cyclase. The actions of (1,4,5)IP3 on Ca2+ mobilization are terminated by two metabolic pathways, sequential dephosphorylation to inositol bisphosphate (IP2), inositol monophosphate (IP) and inositol or by phosphorylation to inositol tetrakisphosphate (IP4) and sequential dephosphorylation to different inositol phosphates. A sustained cellular response also requires Ca2+ entry into the cell from the extracellular space. The mechanism by which hormones increase Ca2+ entry is not known; a recent proposal involving movement of Ca2+ through the endoplasmic reticulum, possibly regulated by IP4, will be considered here.  相似文献   

8.
Human fibroblasts in culture will grow in serum-free medium containing serum replacement factors, but without protein growth factors, as long as the Ca2+ level is 1.0-2.0 mM. When the Ca2+ is reduced to 0.1 mM, the cells stop cycling, but they can be reinduced to cycle by raising the Ca2+ level to 1.0 mM Ca2+ or to higher concentrations that result in activation of mitogen-activated protein kinase (MAPK). We now report that exposure of human fibroblasts to extracellular Ca2+ increased the level of inositol (1,4,5)-trisphosphate in the cytoplasm and caused a transient rise in the concentration of intracellular free Ca2+. Ca2+-induced MAPK activation was partly abolished by treatment of the cells with pertussis toxin. It was also decreased by treatment of cells with thapsigargin, which depletes intracellular Ca2+ stores; with phorbol 12-myristyl 13-acetate (PMA), which down-regulates protein kinase C (PKC); with the calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide HCl (W-7), and calmidazolium (24571); as well as with lanthanum, a Ca2+ channel inhibitor. Ca2+ stimulation did not result in phosphorylation of the c-raf-1 protein. Our results suggest that extracellular Ca2+ stimulates MAPK activation through a pathway(s) involving a pertussis toxin-sensitive G protein, phospholipase C, intracellular free Ca2+, calmodulin, and PKC.  相似文献   

9.
S C Chow  M Jondal 《Cell calcium》1990,11(10):641-646
Using alpha-linolenic acid (ALA), one of several polyunsaturated fatty acids (PUFAs) that have previously been shown to both mobilize intracellular Ca2+ from the inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool independently of IP3 production and inhibit Ca2+ influx, the relationship between Ca2+ mobilization from intracellular stores and Ca2+ influx in T cells (JURKAT) was studied. JURKAT cells were treated with 30 microM ALA to deplete the IP3-sensitive Ca2+ pool. When the intracellular free Ca2+ concentration [( Ca2+]i) returned to basal level, fatty acid free bovine serum albumin (BSA) was added to remove extracellular and membrane bound ALA. This resulted in a sustained increase in [Ca2+]i in the absence of inositol phosphates' formation. This sustained increase in [Ca2+]i was insensitive to protein kinase C activation but was inhibited by Ni2+ ions. The extent of Ca2+ influx was found to be correlated to the amount of Ca2+ initially discharged from the IP3-sensitive Ca2+ pool by sub-optimal concentrations of ALA. Ligation of the CD3 complex of the T cell antigen receptor with an anti-CD3 antibody (OKT3) during the sustained [Ca2+]i increased (induced by a sub-optimal concentration of ALA), produced a greater response. No increase in the sustained response was observed when the CD3 complex was activated in cells pretreated with an optimal concentration of ALA. In summary, Ca2+ entry in T cells is activated by emptying of the IP3-sensitive Ca2+ pool which can be dissociated from inositol phosphate production. The rate of Ca2+ influx appears to be closely correlated to the initial discharge of Ca2+ from the IP3-sensitive Ca2+ pool, suggesting that Ca2+ may first enter the depleted pool and then is released into the cytosol.  相似文献   

10.
Co-stimulation of B lymphocytes with IL-4 plus nonmitogenic concentrations of anti-Ig antibodies, or protein kinase C (PKC) activators, drives resting B cells into DNA synthesis. Although cross-linking of the sIg receptors provokes the generation of the intracellular second messengers, inositol 1,4,5-trisphosphate (IP3) and diacylglycerol, the molecular mechanism utilized by IL-4R in murine B cells has not, as yet, been defined. In human B cells IL-4 has been shown to induce a transient rise in IP3 followed by a sustained elevation of cAMP. However, in murine B cells, IL-4 does not induce the release of IP3, Ca2+ mobilization, PKC translocation, or indeed modify signaling via the phosphoinositide pathway induced by ligation of sIg receptors. We now present evidence that, in murine B cells, IL-4 synergizes with nonmitogenic concentrations of anti-Ig to provoke translocation of PKC from the cytosol to membranes. In addition, the lymphokine up-regulates PKC levels and activity and prevents phorbol ester-induced PKC down-regulation in B cells. We therefore propose that (unknown) signals generated via IL-4R potentiate and/or prolong sIg-induced PKC activation. These observations may therefore provide a biochemical basis for explaining how IL-4 and anti-Ig synergize to induce B cell activation.  相似文献   

11.
Multiple inositol polyphosphate phosphatase (MIPP) is an enzyme that, in vitro, has the interesting property of degrading higher inositol polyphosphates to the Ca2+ second messenger, inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), independently of inositol lipid breakdown. We hypothesized that a truncated cytosolic form of the largely endoplasmic reticulum-confined MIPP (cyt-MIPP) could represent an important new tool in the investigation of Ins(1,4,5)P3-dependent intracellular Ca2+ homeostasis. To optimize our ability to judge the impact of cyt-MIPP on intracellular Ca2+ concentration ([Ca2+]i) we chose a poorly responsive beta-cell line (HIT M2.2.2) with an abnormally low [Ca2+]i. Our results show for the first time in an intact mammalian cell that cyt-MIPP expression leads to a significant enhancement of Ins(1,4,5)P3 concentration. This is achieved without a significant interference from other cyt-MIPP-derived inositol phosphates. Furthermore, the low basal [Ca2+]i of these cells was raised to normal levels (35 to 115 nm) when they expressed cyt-MIPP. Noteworthy is that the normal feeble glucose-induced Ca2+ response of HIT M2.2.2 cells was enhanced dramatically by mechanisms related to this increase in basal [Ca2+]i. These data support the use of cyt-MIPP as an important tool in investigating Ins(1,4,5)P3-dependent Ca2+ homeostasis and suggest a close link between Ins(1,4,5)P3 concentration and basal [Ca2+]i, the latter being an important modulator of Ca2+ signaling in the pancreatic beta-cell.  相似文献   

12.
The generation of the two inositol trisphosphate (IP3) isomers, 1,4,5-IP3 and 1,3,4-IP3, and its relation to changes in the cytosolic free calcium concentration, [Ca2+]i, in response to the chemotactic peptide fMet-Leu-Phe was studied in the human promyelocytic cell line HL-60, induced to differentiate with dimethyl sulfoxide. Stimulation by fMet-Leu-Phe within seconds transiently elevates 1,4,5-IP3 to peak values averaging 8-fold basal levels, and leads to a concomitant rise in [Ca2+]i and to degranulation. These responses are followed by a slower and more sustained rise in 1,3,4-IP3. Alterations in [Ca2+]i modulate differentially the generation of the two IP3 isomers. At [Ca2+]i lower than 30 nM, no IP3 is generated upon fMet-Leu-Phe stimulation. Working at normal resting [Ca2+]i, but preventing the fMet-Leu-Phe induced transient rise in [Ca2+]i (by prior depletion of intracellular Ca2+ stores and working in calcium-free medium) the fMet-Leu-Phe stimulation of 1,3,4-IP3 levels is attenuated, whereas the response of 1,4,5-IP3 is not significantly altered. Maintained elevation of [Ca2+]i to micromolar levels with the Ca2+ ionophore ionomycin generates enhanced 1,3,4-IP3 levels in the absence of fMet-Leu-Phe, whereas the fMet-Leu-Phe stimulation of 1,4,5-IP3 generation is markedly inhibited. Pertussis toxin selectively abolishes the fMet-Leu-Phe-induced IP3 production, whereas ionomycin stimulation of 1,3,4-IP3 generation is unaffected. These findings indicate that in intact cells: receptor-triggered phosphatidylinositol bisphosphate phosphodiesterase activation has a minimal Ca2+ requirement, but does not depend on a previous or concomitant rise in [Ca2+]i; Ca2+ elevations above micromolar levels decrease the fMet-Leu-Phe-induced generation of 1,4,5-IP3; and 1,3,4-IP3 generation is not directly linked to receptor activation and appears to result both from increased [Ca2+]i and 1,4,5-IP3 levels.  相似文献   

13.
In human HeLa carcinoma cells, histamine causes a dose-dependent formation of inositol phosphates, production of diacylglycerol and a transient rise in intracellular [Ca2+]. These responses are completely blocked by the H1-receptor antagonist pyrilamine. In streptolysin-O-permeabilized cells, formation of inositol phosphates by histamine is strongly potentiated by guanosine 5'-[gamma-thio]triphosphate and inhibited by guanosine 5'-[beta-thio]diphosphate, suggesting the involvement of a GTP-binding protein. Histamine stimulates the rapid but transient formation of Ins(1,4,5)P3, Ins(1,3,4)P3 and InsP4. InsP accumulates in a much more persistent manner, lasting for at least 30 min. Studies with streptolysin-O-permeabilized cells indicate that InsP accumulation results from dephosphorylation of Ins(1,4,5)P3, rather than direct hydrolysis of PtdIns. The rise in intracellular [Ca2+] is biphasic, with a very fast release of Ca2+ from intracellular stores, that parallels the Ins(1,4,5)P3 time course, followed by a more prolonged phase of Ca2+ influx. In individual cells, histamine causes a rapid initial hyperpolarization of the plasma membrane, which can be mimicked by microinjected Ins(1,4,5)P3. Histamine-induced hyperpolarization is followed by long-lasting oscillations in membrane potential, apparently owing to periodic activation of Ca2+-dependent K+ channels. These membrane-potential oscillations can be mimicked by microinjection of guanosine 5'-[gamma-thio]triphosphate, but are not observed after microinjection of Ins(1,4,5)P3. We conclude that H1-receptors in HeLa cells activate a PtdInsP2-specific phospholipase C through participation of a specific G-protein, resulting in long-lasting oscillations of cytoplasmic free Ca2+.  相似文献   

14.
After 2 days of incubation of AR42J pancreatoma cells with 400 microM [3H]inositol, the specific radioactivity of [3H]phosphatidylinositol 4,5-bisphosphate and the specific radioactivity of [3H]inositol were similar, indicating that isotopic equilibrium had been achieved. The inositol 1,4,5-trisphosphate (1,4,5-IP3) level in cells was estimated to be approximately 2 microM and was increased by substance P receptor activation to about 25 microM. HPLC analysis of [3H]inositol phosphates indicated that only 1,4,5-IP3, inositol 1,4-bisphosphate, and inositol 4-monophosphate were increased upon receptor activation. There was no increase in inositol 1,3,4,5-tetrakisphosphate (1,3,4,5-IP4), or in any of its metabolites. Incubation of [3H]1,4,5-IP3 with a cell homogenate did not result in the formation of [3H]1,3,4,5-IP4. Therefore, it appears that 1,4,5-IP3 3-kinase is either not present or not functional under these assay conditions. Substance P increased cytosolic calcium levels in fura-2-loaded cells from about 600 nM to 2.5 microM. This increase in Ca2+ was partially attenuated in the absence of extracellular calcium, indicating that in AR42J cells, substance P stimulation appears to activate calcium signaling through both Ca2+ entry and intracellular Ca2+ release. These modes of Ca2+ mobilization occur without an increase in 1,3,4,5-IP4 or any of its metabolites.  相似文献   

15.
16.
In saponin-permeabilized mouse lacrimal acinar cells, glycerophosphoryl-myo-inositol 4,5-bisphosphate (GPIP2) activated the release of sequestered Ca2+ to the same extent as inositol 1,4,5-trisphosphate ((1,4,5)IP3) but with a potency about 1/10 that of (1,4,5)IP3. In lacrimal gland homogenates, [3H]GPIP2 was metabolized to two compounds which upon anion exchange high performance liquid chromatography eluted at positions indicating that they were [3H]GPIP and [3H]GPIP3. The rate of metabolism of [3H]GPIP2 was much slower than that of [3H](1,4,5)IP3, and its rate of phosphorylation was less than 1% of that of [3H] (1,4,5)IP3. In intact lacrimal cells, photolysis of a microinjected "caged" derivative of GPIP2, 1-(alpha-glycerophosphoryl)-myo-inositol 4,5-bisphosphate P4(5)-1-(2-nitrophenyl)ethyl ester, resulted in sustained activation of Ca2+ signaling; i.e. intracellular Ca2+ release followed by increased entry of Ca2+ across the plasma membrane. These findings indicate that caged GPIP2 should provide a useful tool for producing photolytically initiated, sustained activation of intracellular (1,4,5)IP3 receptors. They also provide strong support for the idea that sustained Ca2+ signaling can be achieved in lacrimal acinar cells by activation of intracellular receptors for (1,4,5)IP3 in the absence of stimulated production of inositol 1,3,4,5-tetrakisphosphate.  相似文献   

17.
Signal transduction by the T-cell antigen receptor involves the turnover of polyphosphoinositides and an increase in the concentration of cytoplasmic free Ca2+ ([Ca2+]i). This increase in [Ca2+]i is due initially to the release of Ca2+ from intracellular stores, but is sustained by the influx of extracellular Ca2+. To examine the regulation of sustained antigen-receptor-mediated increases in [Ca2+]i, we studied the relationships between extracellular Ca2+ influx, the mobilization of Ca2+ from intracellular stores, and the contents of inositol polyphosphates after stimulation of the antigen receptor on a human T-cell line, Jurkat. We demonstrate that sustained antigen-receptor-mediated increases in [Ca2+]i are associated with ongoing depletion of intracellular Ca2+ stores. When antigen-receptor-ligand interactions are disrupted, [Ca2+]i and inositol 1,4,5-trisphosphate return to basal values over 3 min. Under these conditions, intracellular Ca2+ stores are repleted if extracellular Ca2+ is present. There is a tight temporal relationship between the fall in [Ca2+]i, the return of inositol 1,4,5-trisphosphate to basal values, and the repletion of intracellular Ca2+ stores. Reversal of the increase in [Ca2+]i preceeds any fall in inositol tetrakisphosphate by 2 min. These studies suggest that sustained antigen-receptor-induced increases in [Ca2+]i, although dependent on extracellular Ca2+ influx, are also regulated by ongoing inositol 1,4,5-trisphosphate-mediated intracellular Ca2+ mobilization. In addition, an elevated concentration of inositol tetrakisphosphate in itself is insufficient to sustain an increase in [Ca2+]i within Jurkat cells.  相似文献   

18.
Expression of a transforming Ha-ras gene in NIH 3T3 cells transfected with an inducible Ha-ras construct leads to a rapid desensitization of the intracellular Ca2(+)-mobilizing system to bombesin and serum growth factors. Half-maximal depression of the Ca2+ response is observed 2 h after induction of p21ras. A maximum is obtained after 6 h. Bombesin-induced elevation of inositol 1,4,5-trisphosphate formation is also depressed in cells expressing Ha-ras. This, however, is a relatively late phenomenon and not yet detectable when maximal depression of the Ca2+ signal is observed. We conclude that the rapid densensitization of the Ca2(+)-releasing system to bombesin by Ha-ras is not caused by down-modulation or uncoupling of phospholipase C-coupled bombesin receptors. The inositol 1,4,5-trisphosphate-mediated release of intracellular Ca2+ is reduced in permeabilized cells expressing the Ha-ras oncogene. A depletion of intracellular Ca2+ stores by Ha-ras is unlikely since (i) the Ha-ras-induced growth factor-independent stimulation of inositol phosphate formation occurs several hours after reduction of the Ca2+ response and (ii) the Ca2+ load of intracellular nonmitochondrial Ca2+ stores was found to be unaffected by Ha-ras. We conclude that the desensitization of the Ca2(+)-mobilizing system is caused either by partial inhibition of inositol 1,4,5-trisphosphate-regulated Ca2+ channels or by interference of Ha-ras with Ca2+ translocation between intracellular Ca2+ compartments.  相似文献   

19.
Extracellular superoxide dismutase in the vascular system of mammals.   总被引:11,自引:3,他引:8       下载免费PDF全文
NIH 3T3 cells, which express a small number of EGF (epidermal growth factor) receptors, are poorly responsive to EGF. However, when the same cells overexpress the cloned human EGF receptor (EGFR T17 cells), they display EGF-dependent transformation. In EGFR T17 cells (but not in the parental NIH 3T3 cells), EGF is shown here to trigger polyphosphoinositide hydrolysis as well as the generation of the ensuing intracellular signals, the increase in the cytosolic Ca2+ concentration ([Ca2+]i) and pH. EGF induced a large accumulation of inositol 1,4,5-trisphosphate, with a peak at 15-30 s and a slow decline thereafter. Other inositol phosphates (1,3,4-trisphosphate and 1,3,4,5-tetrakisphosphate) increased less rapidly and to a lesser degree. [Ca2+]i increased after a short lag, reached a peak at 25 s and remained elevated for several minutes. By use of incubation media with and without Ca2+, the initial phase of the EGF-induced [Ca2+]i increase was shown to be due largely to Ca2+ release from intracellular stores. In contrast with previous observations in human A431 cells, the concentration-dependence of the EGF-triggered [Ca2+]i increase in EGFR T17 cells paralleled that of [3H]thymidine incorporation. It is concluded that polyphosphoinositide hydrolysis, [Ca2+]i increase and cytoplasmic alkalinization are part of the spectrum of intracellular signals generated by the activation of one single EGF receptor type. These processes might be triggered by the receptor via activation of the intrinsic tyrosine kinase activity. Large stimulation of DNA synthesis and proliferation by EGF in EGFR T17 cells could be due to a synergistic interplay between the two signal pathways initiated by tyrosine phosphorylation and polyphosphoinositide hydrolysis.  相似文献   

20.
Lysed mouse thymocytes release [3H]inositol 1,4,5 trisphosphate from [3H]inositol-labelled phosphatidyl inositol 4,5-bisphosphate in response to GTP gamma S, and rapidly phosphorylate [3H]inositol 1,4,5-trisphosphate to [3H]inositol 1,3,4,5-tetrakisphosphate. The rate of phosphorylation is increased approximately 7-fold when the free [Ca2+] in the lysate is increased from 0.1 to 1 microM, the range in which the cytosolic free [Ca2+] increases in intact thymocytes in response to the mitogen concanavalin A. Stimulation of the intact cells with concanavalin A also results in a rapid and sustained increase in the amount of inositol 1,3,4,5-tetrakisphosphate, and a much smaller transient increase in 1,4,5-trisphosphate. Lowering [Ca2+] in the medium from 0.4 mM to 0.1 microM before addition of concanavalin A reduces accumulation of inositol 1,3,4,5-tetrakisphosphate by at least 3-fold whereas the increase in inositol 1,4,5-trisphosphate is sustained rather than transient. The data imply that in normal medium the activity of the inositol 1,4,5-trisphosphate kinase increases substantially in response to the rise in cytosolic free [Ca2+] generated by concanavalin A, accounting for both the transient accumulation of inositol 1,4,5-trisphosphate and the sustained high levels of inositol 1,3,4,5-tetrakisphosphate. Inositol 1,3,4,5-tetrakisphosphate is a strong candidate for the second messenger for Ca2+ entry across the plasma membrane. This would imply that the inositol polyphosphates regulate both Ca2+ entry and intracellular Ca2+ release, with feedback control of the inositol polyphosphate levels by Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号