首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colony counts which approximated those in a habitat-simulating, rumen fluid-agar medium (RFM) were obtained in medium 10, a medium identical to the RFM except for the replacement of rumen fluid with 1.5 x 10(-6)m hemin, 0.2% Trypticase, 0.05% yeast extract, and a 6.6 x 10(-2)m volatile fatty acid mixture qualitatively and quantitatively similar to that in rumen fluid. Single deletion of Trypticase, yeast extract, or the volatile fatty acid mixture from medium 10 significantly reduced colony counts. Colony counts were also reduced when medium 10 was modified to contain higher concentrations of Trypticase or volatile fatty acids. Significant differences were found between colony counts obtained from diluted rumen contents of animals fed a cracked corn-urea diet, and the colony counts obtained from animals fed either a cracked corn-soyean oil meal or an alfalfa hay-grain diet. Qualitative differences were found between the predominant bacterial strains isolated from rumen contents of animals fed cracked corn diets and strains isolated from animals fed alfalfa hay-grain. Regardless of differences in the predominant flora associated with diet, medium 10 and the RFM supported growth of similar bacterial populations. The results show that medium 10 is suitable for enumeration and isolation of many predominant rumen bacteria.  相似文献   

2.
Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains.  相似文献   

3.
Eubacterium limosum was isolated as the most numerous methanol-utilizing bacterium in the rumen fluid of sheep fed a diet in which molasses was a major component (mean most probable number of 6.3 X 10(8) viable cells per ml). It was also isolated from sewage sludge at 9.5 X 10(4) cells per ml. It was not detected in the rumen fluid of a steer on a normal hay-grain diet, although Methanosarcina, as expected, was found at 9.5 X 10(5) cells per ml. The doubling time of E. limosum in basal medium (5% rumen fluid) with methanol as the energy source (37 degree C) was 7 h. Acetate, cysteine, carbon dioxide, and the vitamins biotin, calcium-D-pantothenate, and lipoic acid were required for growth on a chemically defined methanol medium. Acetate, butyrate, and caproate were produced from methanol. Ammonia or each of several amino acids served as the main nitrogen source. Other energy sources included adonitol, arabitol, erythritol, fructose, glucose, isoleucine, lactate, mannitol, ribose, valine, and H2-CO2. The doubling time for growth on H2-CO2 (5% rumen fluid, 37 degree C) was 14 h as compared with 5.2 h for isoleucine and 3.5 h for glucose. The vitamin requirements for growth on H2-CO2 were the same as those for methanol; however, acetate was not required for growth on H2-CO2, although it was necessary for growth on valine, isoleucine, and lactate and was stimulatory to growth on glucose. Acetate and butyrate were formed during growth on H2-CO2, whereas branched-chain fatty acids and ammonia were fermentation products from the amino acids. Heat tolerance was detected, but spores were not observed. The type strain of E. limosum (ATCC 8486) and strain L34, which was isolated from the rumen of a young calf, grew on methanol, H2-CO2, valine, and isoleucine and showed the same requirements for acetate as the freshly isolated strains.  相似文献   

4.
Characterization of rat cecum cellulolytic bacteria.   总被引:10,自引:8,他引:2       下载免费PDF全文
Cellulose-degrading bacteria previously isolated from the ceca of rats have been characterized and identified. The most commonly isolated type was rods identified as Bacteroides succinogenes. These bacteria fermented only cellulose (e.g., pebble-milled Whatman no. 1 filter paper), cellobiose, and in 43 of 47 strains, glucose, with succinic and acetic acids as the major products. The only organic growth factors found to be required by selected strains were p-aminobenzoic acid, cyanocobalamine, thiamine, and a straight-chain and a branched-chain volatile fatty acid. These vitamin requirements differ from those of rumen strains of B. succinogenes, indicating the rat strains may form a distinct subgroup within the species. The mole percent guanine plus cytosine was 45%, a value lower than those (48 to 51%) found for three rumen strains of B. succinogenes included in this study. Cellulolytic cocci were isolated less frequently than the rods and were identified as Rumminococcus flavefaciens. Most strains fermented only cellulose and cellobiose, and their major fermentation products were also succinic and acetic acids. Their required growth factors were not identified but were supplied by rumen fluid.  相似文献   

5.
A study has been made of the promoting effect of starch on cellulose digestion by mixed rumen bacteria in a cellulose-urea medium. Starch supplementation of the medium promoted the growth of bacteria that required neither amino acids (AA) nor branched-chain fatty acids (BrFA). The growth of these bacteria was followed by the growth of AA-dependent bacteria, AA- or BrFA-dependent bacteria, BrFA-producing bacteria, and finally, BrFA-dependent cellulolytic bacteria. Population changes of these bacterial groups corresponded with a cross-feeding of AA and BrFA and the overall disappearance of cellulose. The data suggest that the nutritional interdependence among rumen bacteria affects the rate of cellulose digestion.  相似文献   

6.
Effects of Long-Chain Fatty Acids on Growth of Rumen Bacteria   总被引:5,自引:2,他引:3       下载免费PDF全文
The effects of low concentrations of long-chain fatty acids (palmitic, stearic, oleic, and vaccenic) on the growth of seven species (13 strains) of rumen bacteria were investigated. Except for Bacteroides ruminicola and several strains of Butyrivibrio fibrisolvens, bacterial growth was not greatly affected by either palmitic or stearic acids. In contrast, growth of Selenomonas ruminantium, B. ruminicola, and one strain of B. fibrisolvens was stimulated by oleic acid, whereas the cellulolytic species were markedly inhibited by this acid. Vaccenic acid (trans Δ11 18:1) had far less inhibitory effect on the cellulolytic species than oleic acid (cis Δ9 18:1). Inclusion of powdered cellulose in the medium appeared to reverse both inhibitory and stimulatory effects of added fatty acids. However, there was little carry-over effect observed when cells were transferred from a medium with fatty acids to one without. Considerable variation in response to added fatty acids was noted among five strains of B. fibrisolvens. In general, exogenous long-chain fatty acids appear to have little, if any, energy-sparing effect on the growth of rumen bacteria.  相似文献   

7.
The diversity and population densities of facultative anaerobic bacteria with the capacity to hydrate oleic acid and linoleic acid in the rumen of sheep and dairy cows were determined. The screening of representative colonies, from rumen fluid plated aerobically on a range of agar media, revealed that sheep rumen fluid contained hydration-positive strains of Streptococcus, Staphylococcus, Enterococcus, Lactobacillus and Pediococcus, whereas cow rumen fluid contained hydration-positive strains of Streptococcus, Lactobacillus and Staphylococcus. Mean counts of facultative anaerobic bacteria in sheep and cattle rumen were log10 7.29 and log10 6.40, respectively, and were independent of diet. Approximately 56% of facultative anaerobic bacteria were able to hydrate oleic and/or linoleic acid in anaerobic broth culture. For both sheep and cows, the most numerous hydration-positive isolates were strains of Strep. bovis. The results, which are the first to show that pediococci have the capacity to hydrate unsaturated fatty acids, suggest that lactic acid bacteria are the major unsaturated fatty acid hydrating bacteria in the rumen.  相似文献   

8.
Nutritional interdependence among three representatives of rumen bacteria, Bacteroides amylophilus, Megasphaera elsdenii, and Ruminococcus albus, was studied with a basal medium consisting of minerals, vitamins, cysteine hydrochloride, and NH4+. B. amylophilus grew well in the basal medium supplemented with starch and produced branched-chain amino acids after growth ceased. When cocultured with B. amylophilus in the basal medium supplemented with starch and glucose, amino acid-dependent M. elsdenii produced an appreciable amount of branched-chain fatty acids, which are essential growth factors for cellulolytic R. albus. A small addition of starch (0.1 to 0.3%) to the basal medium containing glucose and cellobiose brought about successive growth of the three species in the order of B. amylophilus, M. elsdenii, and R. albus, and successive growth was substantiated by the formation of branched-chain amino acids and fatty acids in the culture. Supplementation with 0.5% starch, however, failed to support the growth of R. albus. On the basis of these results, the effects of supplementary starch or branched-chain fatty acids on cellulose digestion in the rumen was discussed.  相似文献   

9.
Two strains of Ruminococcus flavefaciens were studied. Each grew in a chemically defined minimal medium containing: minerals; ammonium sulfate as a nitrogen source; amino acids as a nitrogen source, a growth promotant(s) or as both; cellobiose as an energy and carbon source; isobutyric acid, isovaleric acid, carbonic acid, and bicarbonate as additional carbon sources; and biotin, thiamine, and tetrahydrofolic acid as vitamins. Tetrahydrofolic acid (5 ng/ml) served as a replacement for rumen fluid that was required in previous media tested for the growth of these bacteria. The present bacteria differ from many of the ruminococci previously studied in that they do not require either p-amino-benzoic acid or folic acid but do require tetrahydrofolic acid for maximum growth. Dihydrofolic acid and 5-methyltetrahydrofolic acid can substitute for tetrahydrofolic acid in minimal chemically defined medium. Thus, there must be extensive metabolic interaction between the microbes inhabitating the rumen, because the R. flavefaciens isolated had complex requirements for growth and yet was among the predominant bacteria in the rumen of cattle fed a simple vitamin B-deficient, nonprotein nitrogen, high-fiber, purified diet.  相似文献   

10.
Five strains of acetogenic bacteria were isolated by selective enrichment from the rumen of a mature Hereford crossbred steer fed a typical high forage diet. Suspensions of rumen bacteria, prepared from contents collected 7 h postfeeding, blended and strained through cheesecloth, were incubated in a minimal medium containing 10% clarified rumen fluid under either H2:CO2 (80:20) or N2:CO2 (80:20) headspace atmosphere. The selection criterion was an increment of acetate in the enrichments incubated under H2:CO2. Periodically, the enrichment broths were plated onto agar media and presumed acetogenic bacteria subsequently were screened for acetate production. Selected acetogenic bacteria utilized a pressurized atmosphere of H2:CO2 to form acetate in quantities 2 to 8-fold higher than when grown under N2:CO2. All presumptive acetogenic isolates were derived from either the 10-7 or 10-8 dilutions of rumen contents. All 5 strains were Gram-positive rods, and all utilized formate, glucose and CO. One strain required, and all were stimulated by, rumen fluid. No spores were observed with phase-contast microscopy and two strains were motile. No methane was detected in the headspace of pure cultures grown under either gas phase. The isolation of these bacteria indicates that acetogenic bacteria are inhabitants of the rumen of the bovine fed a typical diet and suggests that they may be participants in the utilization of hydrogen in the rumen ecosystem. Strain 139B (= ATCC 43876) is named Acetitomaculum ruminis gen. nov., sp. nov. and is the type strain of this new species. Portions of this work were presented previously (Greening RC, Leedle JAZ (1987) Abstr Annu Meet Am Soc Microbiol I 131, pp 194)  相似文献   

11.
Pectin-fermenting Bacteria Isolated from the Bovine Rumen   总被引:27,自引:0,他引:27       下载免费PDF全文
Thirty-two strains of pectin-fermenting rumen bacteria were isolated from bovine rumen contents in a rumen fluid medium which contained pectin as the only added energy source. Based on differences in morphology and the Gram stain, 10 of these strains were selected for characterization. Two strains were identified as Lachnospira multiparus, four strains were identified as Butyrivbrio fibrisolvens, and three strains were identified as Bacteroides ruminicola. Characteristics of the remaining strain did not correspond with any previously described species. It was a gram-positive anaerobic coccus, 1.0 to 1.2 mum in diameter, and occurred primarily as single cells or diplococci. The strain fermented pectin rapidly but showed little or no growth on any other energy sources tested. The only detectable end products were acetic acid and gas, a portion of which was identified as hydrogen. Although the physiological characteristics of this organism differ markedly from other described species, it has been placed in the genus Peptostreptococcus on the basis of morphology, Gram stain, relations to oxygen, and the occurrence of cell division in only one plane. End products of fermentation are somewhat similar to those of the cellulolytic ruminococci. Eight previously characterized strains of cellulolytic bacteria isolated in nonselective media were unable to ferment pectin, whereas ten strains of hemicellulolytic rumen bacteria, eight of which were isolated with a xylan medium, showed considerable variation in this characteristic.  相似文献   

12.
Isolated rumen bacteria were examined for growth and, where appropriate, for their ability to degrade cellulose in the presence of the hydroxycinnamic acids trans-p-coumaric acid and trans-ferulic acid and the hydroxybenzoic acids vanillic acid and 4-hydroxybenzoic acid. Ferulic and p-coumaric acids proved to be the most toxic of the acids examined and suppressed the growth of the cellulolytic strains Ruminococcus albus, Ruminococcus flavefaciens, and Bacteroides succinogenes when included in a simple sugars medium at concentrations of >5 mM. The extent of cellulose digestion by R. flavefaciens and B. succinogenes but not R. albus was also substantially reduced. Examination of rumen fluid from sheep maintained on dried grass containing 0.51% phenolic acids showed the presence of phloretic acid (0.1 mM) and 3-methoxyphloretic acid (trace) produced by hydrogenation of the 2-propenoic side chain of p-coumaric and ferulic acids, respectively. The parent acids were found in trace amounts only, although they represented the major phenolic acids ingested. Phloretic and 3-methoxyphloretic acids proved to be considerably less toxic than their parent acids. All of the cellulolytic strains (and Streptococcus bovis) showed at least a limited ability to hydrogenate hydroxycinnamic acids, with Ruminococcus spp. proving the most effective. No further modification of hydroxycinnamic acids was produced by the single strains of bacteria examined. However, a considerable shortfall in the recovery of added phenolic acids was noted in media inoculated with rumen fluid. It is suggested that hydrogenation may serve to protect cellulolytic strains from hydroxycinnamic acids.  相似文献   

13.
We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.  相似文献   

14.
A saccharolytic spirochete that associated and interacted with cellulolytic bacteria was isolated from bovine rumen fluid. Isolation was accomplished by means of a procedure involving serial dilution of a sample of rumen fluid into a cellulose-containing agar medium. Clear zones appeared within the medium as a result of cellulose hydrolysis by rumen bacteria. The saccharolytic spirochete and a cellulolytic bacterium later identified as a strain of Bacteroides succinogenes were isolated from the clear zones. The spirochete did not utilize cellulose, but grew in coculture with the cellulolytic bacterium in cellulose-containing media. When cocultured in these media the spirochete used, as fermentable substrates, soluble sugars released from cellulose by the cellulolytic bacterium. In cellulosecontaining agar medium the spirochete enhanced cellulose breakdown by the B. succinogenes strain. Electron microscopy showed that the helical spirochete cells possessed an outer sheath, a protoplasmic cylinder, and two periplasmic fibrils. Under a CO2 atmosphere, in a reduced medium containing inorganic salts, rumen fluid, glucose, and NaHCO3, the spirochete grew to a final density of 1.9×109 cells/ml. Succinate, acetate, and formate were products of the fermentation of glucose by growing cells. CO2 (HCO3 -), branched short-chain fatty acids, folic acid, biotin, niacinamide, thiamine, pyridoxal, and a carbohydrate were required for growth of the spirochete. The results of this study indicated that the rumen spirochete represents a new species of Treponema. It is proposed that the new species be named Treponema bryantii.Abbreviations cpm counts per minute - GC guanine plus cytosine - Tm melting temperature - PC protoplasmic cylinder - PF pertplasmic fibrils (axial fibrils) - OS outer sheath - ID insertion disk  相似文献   

15.
Volatile Fatty Acid Requirements of Cellulolytic Rumen Bacteria   总被引:12,自引:1,他引:11  
A gas chromatographic method was developed which could separate the isomers isovaleric and 2-methylbutyric acid. Subsequent analyses revealed that most commercially available samples of these acids were cross-contaminated; however, one sample of each acid was found to be pure by this criterion. The growth response of seven strains of cellulolytic rumen bacteria (three strains of Bacteroides succinogenes, three strains of Ruminococcus flavefaciens, and one strain of R. albus) to additions of isobutyric, isovaleric, 2-methylbutyric, valeric, and combinations of valeric and a branched-chain acid was determined. Strains of B. succinogenes required a combination of valeric plus either isobutyric or 2-methylbutyric acid. Isovaleric acid was completely inactive. Either isobutyric or 2-methylbutyric acid was required for the growth of R. albus 7. Strain C-94 of R. flavefaciens grew slowly in the presence of any one of the three branched-chain acids, but a combination of isobutyric and 2-methylbutyric acids appeared to satisfy this organism's growth requirements. None of the individual acids or mixtures of straight- and branched-chain acids allowed growth of R. flavefaciens strain C1a which would approach the response obtained from the total mixture of acids. Further work indicated that all three branched-chain acids were required for optimal growth by this strain, although isovaleric acid only influenced the rate of maximal growth. Either 2-methylbutyric or isovaleric acid allowed growth of nearly the same magnitude as that of the positive control for R. flavefaciens B34b. The presence of acetic acid had little influence on the rate or extent of growth of any of the strains except R. albus 7, for which the extent of growth was markedly increased. Determination of the quantitative fatty acid requirements for the three B. succinogenes strains indicated that 0.1 μmole of valeric per ml and 0.05 μmole of 2-methylbutyric per ml permitted maximal growth. However, with isobutyric acid as the branched-chain component, strains A3c and B21a required 0.1 μmole/ml in contrast to S-85 which exhibited optimal growth at the 0.05 μmole/ml level. By use of mixtures of isobutyric and 2-methylbutyric acids, good growth of C-94 was obtained at concentrations of 0.1 and 0.01 μmole/ml, respectively. About 0.3 μmole/ml of each acid was required for satisfactory growth of C1a.  相似文献   

16.
K. P. SCOTT AND H.J. FLINT. 1995. Strains of Escherichia coli originally isolated from the rumen of sheep were shown to be capable of exchanging a 60kb plasmid, conferring resistance to tetracycline and ampicillin, at low frequencies (below 10-6 per recipient) under anaerobic conditions in the presence of (a) autoclaved and clarified rumen fluid, (b) raw clarified rumen fluid, or (c) whole rumen fluid. Under anaerobic conditions the two rumen strains showed no inhibition of growth rate when 50 mmol 1-1 volatile fatty acids were added to LB medium at pH 7, although significant inhibition resulted with 100 mmol 1-1 VFA. The two rumen strains, and four strains from the pig gut, showed less inhibition of anaerobic growth by volatile fatty acids than did three laboratory strains examined for comparison. These findings indicate that plasmid transfer between certain E. coli strains can occur under conditions that closely simulate an anaerobic gut environment.  相似文献   

17.
With no acceptable method for collecting fresh rumen fluid from zoo ruminants, it was proposed that fecal bacterial concentrations may be correlated with rumen bacteria. If so, fecal bacterial concentrations could be used to study both the effects of diet on rumen bacteria as well as rumen abnormalities. Total and cellulolytic bacterial concentrations were determined in whole rumen contents and feces of sheep using a most‐probable‐number (MPN) assay. In a Latin square design, four crossbred ewes were fed diets of 100% long or chopped orchardgrass hay (OH) and 60% ground or whole shelled corn plus 40% chopped OH. In a second trial, the sheep were fed a pelleted complete feed at varying levels of intake i.e., control at 2.0% of body weight and at 1.8, 1.6, and 1.2% of body weight. Higher total rumen bacterial concentrations (P<0.01) were found on the high concentrate diets as compared with the high forage diets. Grinding the corn also increased total bacterial concentrations (P<0.05). Fecal concentrations of total bacteria were higher (P<0.01) with the high concentrate diets. Chopping the forage decreased the concentration of fecal cellulolytic bacteria (P<0.05) but had no effect on their concentration in the rumen. An inverse linear relationship (P<0.01) was observed between total bacterial concentrations in the feces and diet intake. Although relationships were observed between the rumen and feces for total and cellulolytic bacterial concentrations, they were dependent on diet, particle size, and level of intake. Thus, fecal bacterial concentrations cannot be used to reliably predict rumen bacterial concentrations. Zoo Biol 27:100–108, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
Lipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18∶1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18∶2n−6 and 18∶3n−3. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18∶0 might be produced during biohydrogenation of the 18∶3n−3.  相似文献   

19.
Some factors influencing bacterial attachment to the rumen epithelium were studied in vitro using mixed rumen bacteria (upper- or lower-layer bacteria formed at bacterial sediment by centrifugation), isolated from steers fed a roughage diet, and rumen epithelial cells collected from beef cattle given low-concentrate (50%; LC) and high-concentrate (90%; HC) diets. Optimal incubation conditions for bacterial attachment to rumen epithelial cells were 39 degrees C for 30 min. The bacteria isolated from the upper layer had a higher attaching activity to the LC epithelial cells than those of the lower layer. A higher degree of bacterial attachment was observed using the rumen epithelium from steers fed the LC diet rather than the HC diet (p<0.01). Ethylenediamine dihydroiodide (EDDI) added at 10 through 40 &mgr;g/ml increased bacterial attachment to the HC epithelial cells. Ammonia at 50 through 100 &mgr;g/ml positively affected bacterial attachment to both LC and HC epithelial cells. Bacterial attachment to the HC epithelial cells was enhanced (p<0.01) by the addition of a reducing agent (L-cysteine.HCl) but no increase was noted with LC cells. L- or D-lactate, volatile and unsaturated fatty acids markedly decreased bacterial attachment to rumen epithelial cells.  相似文献   

20.
After incubation of Maillard reaction polymers (MRPs) with rumen fluid from wethers neither volatile fatty acids nor lactate were produced. Soluble polymeric products of the Maillard reaction were nonmetabolizable by a mixed culture of rumen microorganisms. MRPs added at 0.5 and 2 g/L inhibited the growth of seven ruminal Gram-negative bacteria by 20 and 30%, respectively. In four strains of Gram-positive bacteria, MRPs lowered the cell concentration by 11% (0.5 g/L) and 25% (2 g/L). The rumen fungusOrpinomyces jojonii also did not metabolize soluble MRPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号