首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The landscape of human phosphorylation networks has not been systematically explored, representing vast, unchartered territories within cellular signaling networks. Although a large number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)‐based approaches, assigning the upstream kinases to these residues requires biochemical analysis of kinase‐substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on functional protein microarrays and bioinformatics to experimentally identify substrates for 289 unique kinases, resulting in 3656 high‐quality KSRs. We then generated consensus phosphorylation motifs for each of the kinases and integrated this information, along with information about in vivo phosphorylation sites determined by MS, to construct a high‐resolution map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in 652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA downstream of Btk (Bruton's tyrosine kinase) during B‐cell receptor signaling. Overall, these studies provide global insights into kinase‐mediated signaling pathways and promise to advance our understanding of cellular signaling processes in humans.  相似文献   

2.
The conversion of the egg to a zygote requires the initiation of several signaling pathways that act in an orchestrated fashion to rapidly remodel the egg. Architectural elements within the egg can serve to localize components of these signaling pathways and colocalization of such components provides the opportunity for interaction between different signaling pathways. This study examines the localization as well as the state of activation of two different kinases, MAP kinase and calcium/calmodulin-dependent protein kinase II (CaM KII). The meiotic spindle serves as a site for enrichment of these kinases. However, activated MAP kinase and activated CaM KII exhibit a developmental stage-specific pattern of localization that represents a subset of the area occupied by the distribution of the total mass of MAP kinase and CaM KII. Suppression of CaM KII activity results in reduction in the amount of MAP kinase as well as a decreased level of activity of MAP kinase. Since CaM KII becomes active as a result of fertilization, the former kinase could serve to potentiate MAP kinase activity and the colocalization of these two kinases may facilitate such an interaction.  相似文献   

3.
Despite significant evidence to the contrary, the view that phosphatases are “nonspecific” still pervades the field. Systems biology approaches to defining how signal transduction pathways are integrated at the level of whole organisms also often downplay the contribution of phosphatases, defining them as “erasers” that serve merely to restore the system to its basal state. Here, we present a study that counteracts the idea of “nonspecific phosphatases.” We have characterized two structurally similar and functionally related kinases, BRK and SRC, which are regulated by combinations of activating autophosphorylation and inhibitory C-terminal sites of tyrosine phosphorylation. We demonstrated specificity at the level of the kinases in that SRMS phosphorylated the C terminus of BRK, but not SRC; in contrast, CSK is the kinase responsible for C-terminal phosphorylation of SRC, but not BRK. For the phosphatases, we observed that RNAi-mediated suppression of PTP1B resulted in opposing effects on the activity of BRK and SRC and have defined the mechanisms underlying this specificity. PTP1B inhibited BRK by directly dephosphorylating the Tyr-342 autophosphorylation site. In contrast, PTP1B potentiated SRC activity, but not by dephosphorylating SRC itself directly; instead, PTP1B regulated the interaction between CBP/PAG and CSK. SRC associated with, and phosphorylated, the transmembrane protein CBP/PAG at Tyr-317, resulting in CSK recruitment. We identified PAG as a substrate of PTP1B, and dephosphorylation abolished recruitment of the inhibitory kinase CSK. Overall, these findings illustrate how the combinatorial effects of PTKs and PTPs may be integrated to regulate signaling, with both classes of enzymes displaying exquisite specificity.  相似文献   

4.
Protein kinases play a virtually universal role in cellular regulation and are emerging as an important class of new drug targets, yet the cellular functions of most human kinases largely remain obscure. Aspects of substrate recognition common to all kinases in the ATP nucleotide binding site have been exploited in the generation of analog-specific mutants for exploring kinase function and discovering novel protein substrates. Likewise, understanding interactions with the protein substrate, which differ substantially between kinases, can also help to identify substrates and to produce tools for studying kinase pathways, including fluorescent biosensors. Principles of kinase substrate recognition are particularly valuable in guiding bioinformatics and phosphoproteomics approaches that impact our understanding of signaling pathways and networks on a global scale.  相似文献   

5.
Deoxynucleoside kinases catalyze the 5'-phosphorylation of 2'-deoxyribonucleosides with nucleoside triphosphates as phosphate donors. One of the cellular kinases, deoxycytidine kinase (dCK), has been shown to phosphorylate several L-nucleosides that are efficient antiviral agents. In this study we investigated the potentials of stereoisomers of the natural deoxyribonucleoside to serve as substrates for the recombinant cellular deoxynucleoside kinases. The cytosolic thymidine kinase exhibited a strict selectivity and phosphorylated only beta-D-Thd, while the mitochondrial thymidine kinase (TK2) and deoxyguanosine kinase (dGK) as well as dCK all had broad substrate specificities. TK2 phosphorylated Thd and dCyd stereoisomers in the order: beta-D- > or = beta-L- > alpha-D- > or = alpha-L-isomer. dCK activated both enantiomers of beta-dCyd, beta-dGuo, and beta-dAdo with similar efficiencies, and alpha-D-dCyd also served as a substrate. dGK phosphorylated the beta-dGuo enantiomers with no preference for the ribose configuration; alpha-L-dGuo was also phosphorylated, and beta-L-dAdo and beta-L-dCyd were substrates but showed reduced efficiencies. The anomers of the 2',3'-dideoxy-D-nucleosides (ddNs) were tested, and TK2 and dCK retained their low selectivities. Unexpectedly, alpha-dideoxycytidine (ddC) was a 3-fold better substrate for dCK than beta-ddC. Similarly, alpha-dideoxythymidine (ddT) was a better substrate for TK2 than beta-ddT. dGK did not accept any D-ddNs. Thus, TK2, dCK, and dGK, similar to herpes simplex virus type 1 thymidine kinase (HSV-1 TK), showed relaxed stereoselectivities, and these results substantiate the functional similarities within this enzyme family. Docking simulations with the Thd isomers and the active site of HSV-1 TK showed that the viral enzyme may in some respects serve as a model for studying the substrate specificities of the cellular enzymes.  相似文献   

6.
Protein phosphorylation by kinases plays a central role in the regulation and coordination of multiple biological processes. In general, knowledge on kinase specificity is restricted to substrates identified in the context of specific cellular responses, but kinases are likely to have multiple additional substrates and be integrated in signaling networks that might be spatially and temporally different, and in which protein complexes and subcellular localization can play an important role. In this report the substrate specificity of atypical human vaccinia-related kinases (VRK1 and VRK2) using a human peptide-array containing 1080 sequences phosphorylated in known signaling pathways has been studied. The two kinases identify a subset of potential peptide targets, all of them result in a consensus sequence composed of at least four basic residues in peptide targets. Linear peptide arrays are therefore a useful approach in the characterization of kinases and substrate identification, which can contribute to delineate the signaling network in which VRK proteins participate. One of these target proteins is coilin; a basic protein located in nuclear Cajal bodies. Coilin is phosphorylated in Ser184 by both VRK1 and VRK2. Coilin colocalizes and interacts with VRK1 in Cajal bodies, but not with the mutant VRK1 (R358X). VRK1 (R358X) is less active than VRK1. Altered regulation of coilin might be implicated in several neurological diseases such as ataxias and spinal muscular atrophies.  相似文献   

7.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.  相似文献   

8.
Protein phosphorylation is a central regulatory mechanism of cell signaling pathways. This highly controlled biochemical process is involved in most cellular functions, and defects in protein kinases and phosphatases have been implicated in many diseases, highlighting the importance of understanding phosphorylation-mediated signaling networks. However, phosphorylation is a transient modification, and phosphorylated proteins are often less abundant. Therefore, the large-scale identification and quantification of phosphoproteins and their phosphorylation sites under different conditions are one of the most interesting and challenging tasks in the field of proteomics. Both 2D gel electrophoresis and liquid chromatography-tandem mass spectrometry serve as key phosphoproteomic technologies in combination with prefractionation, such as enrichment of phosphorylated proteins/peptides. Recently, new possibilities for quantitative phosphoproteomic analysis have been offered by technical advances in sample preparation, enrichment, separation, instrumentation, quantification and informatics. In this article, we present an overview of several strategies for quantitative phosphoproteomics and discuss how phosphoproteomic analysis can help to elucidate signaling pathways that regulate various cellular processes.  相似文献   

9.
Regulation of p90RSK phosphorylation by SARS-CoV infection in Vero E6 cells   总被引:2,自引:0,他引:2  
The 90 kDa ribosomal S6 kinases (p90RSKs) are a family of broadly expressed serine/threonine kinases with two kinase domains activated by extracellular signal-regulated protein kinase in response to many growth factors. Our recent study demonstrated that severe acute respiratory syndrome (SARS)-coronavirus (CoV) infection of monkey kidney Vero E6 cells induces phosphorylation and dephosphorylation of signaling pathways, resulting in apoptosis. In the present study, we investigated the phosphorylation status of p90RSK, which is a well-known substrate of these signaling pathways, in SARS-CoV-infected cells. Vero E6 mainly expressed p90RSK1 and showed weak expression of p90RSK2. In the absence of viral infection, Ser221 in the N-terminal kinase domain was phosphorylated constitutively, whereas both Thr573 in the C-terminal kinase domain and Ser380 between the two kinase domains were not phosphorylated in confluent cells. Ser380, which has been reported to be involved in autophosphorylation by activation of the C-terminal kinase domain, was phosphorylated in confluent SARS-CoV-infected cells, and this phosphorylation was inhibited by , which is an inhibitor of p38 mitogen-activated protein kinases (MAPK). Phosphorylation of Thr573 was not upregulated in SARS-CoV-infected cells. Thus, in virus-infected cells, phosphorylation of Thr573 was not necessary to induce phosphorylation of Ser380. On the other hand, Both Thr573 and Ser380 were phosphorylated by treatment with epidermal growth factor (EGF) in the absence of p38 MAPK activation. Ser220 was constitutively phosphorylated despite infection. These results indicated that phosphorylation status of p90RSK by SARS-CoV infection is different from that by stimulation of EGF. This is the first detailed report regarding regulation of p90RSK phosphorylation by virus infection.  相似文献   

10.
The family of eukaryotic initiation factor 2alpha (eIF2alpha) protein kinases plays an important role in regulating cellular protein synthesis under stress conditions. The mammalian kinases PKR and HRI and the yeast kinase GCN2 specifically phosphorylate Ser-51 on the alpha subunit of the translation initiation factor eIF2. By using an in vivo assay in yeast, the substrate specificity of these three eIF2alpha kinases was examined by substituting Ser-51 in eIF2alpha with Thr or Tyr. In yeast, phosphorylation of eIF2 inhibits general translation but derepresses translation of the GCN4 mRNA. All three kinases phosphorylated Thr in place of Ser-51 and were able to regulate general and GCN4-specific translation. In addition, both PKR and HRI were found to phosphorylate eIF2alpha-S51Y and stimulate GCN4 expression. Isoelectric focusing analysis of eIF2alpha followed by detection using anti-eIF2alpha and anti-phosphotyrosine-specific antibodies demonstrated that PKR and HRI phosphorylated eIF2alpha-S51Y on Tyr in vivo. These results provide new insights into the substrate recognition properties of the eIF2alpha kinases, and they are intriguing considering the potential for alternate substrates for PKR in cellular signaling and growth control pathways.  相似文献   

11.
Protein tyrosine phosphorylation has not been considered to be important for cellular activation by phospholipase C-linked vasoactive peptides. We found that endothelin, angiotensin II, and vasopressin (AVP), peptides that signal via phospholipase C activation, rapidly enhanced tyrosine phosphorylation of proteins of approximate molecular mass 225, 190, 135, 120, and 70 kDa in rat renal mesangial cells. The phosphorylated proteins were cytosolic or membrane-associated, and none were integral to the membrane, suggesting that the peptide receptors are not phosphorylated on tyrosine. Epidermal growth factor (EGF), which does not activate phospholipase C in these cells, induced the tyrosine phosphorylation of its own 175-kDa receptor, in addition to five proteins of identical molecular mass to those phosphorylated in response to endothelin, AVP, and angiotensin II. This suggests that in mesangial cells there is a common signaling pathway for phospholipase C-coupled agonists and agonists classically assumed to signal via receptor tyrosine kinase pathways, such as EGF. The phorbol ester, phorbol 12-myristate 13-acetate, and the synthetic diacylglycerol, oleoyl acetylglycerol, stimulated the tyrosine phosphorylation of proteins identical to those phosphorylated by the phospholipase C-linked peptides, suggesting that protein kinase C (PKC) activation is sufficient to active tyrosine phosphorylation. However, the PKC inhibitor, staurosporine, and down-regulation of PKC activity by prolonged exposure to phorbol esters completely inhibited tyrosine phosphorylation in response to PMA but not to endothelin, AVP, or EGF. In conclusion, endothelin, angiotensin II, and AVP enhances protein tyrosine phosphorylation via at least two pathways, PKC-dependent and PKC-independent. Although activation of PKC may be sufficient to enhance protein tyrosine phosphorylation, PKC is not necessary and may not be the primary route by which these agents act. At least one of these pathways is shared with the growth factor EGF, suggesting not only common intermediates in the signaling pathways for growth factors and vasoactive peptides but also perhaps common cellular tyrosine kinases which phosphorylate these intermediates.  相似文献   

12.
Activation of platelets by thrombin and other physiological agonists leads to a dramatic increase in tyrosine phosphorylation of multiple cellular proteins (Ferrell, J. E., and Martin, G. S. (1988) Mol. Cell. Biol. 8, 3606-3610; Golden, A., and Brugge, J. S. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 901-905; Nakamura, S., and Yamamura, H. (1989) J. Biol. Chem. 264, 7089-7091). To date, none of the tyrosine kinases that are involved in platelet activation, nor the substrates that are phosphorylated in response to agonists, have been identified. A "kinase trapping" strategy, designed to take advantage of the stability of known tyrosine kinase-substrate interactions, was employed to address both issues. p21rasGAP antibodies were used to examine the phosphorylated state of GAP in agonist-treated platelets and to isolate potential GAP-kinase complexes. We show that GAP and two proteins of 59 and 68 kDa are phosphorylated on tyrosine after thrombin stimulation and that three Src-related protein tyrosine kinases, Fyn, Lyn and Yes, are associated with GAP in complexes, detectable only after agonist stimulation. The thrombin-dependent detection of these kinases in GAP immunoprecipitates suggests that thrombin may either induce the formation of these complexes or activate kinases that are associated with GAP prior to, or following, agonist stimulation. This approach of "trapping" kinases bound to their substrates will be useful in identifying non-receptor tyrosine kinases involved in signaling pathways. Furthermore, although GAP phosphorylation has been previously implicated in growth factor signaling pathways, this is the first example of its involvement downstream from a G-protein-coupled receptor.  相似文献   

13.

Background  

The adaptor protein p130 Cas (Cas) has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals.  相似文献   

14.
The emergence of multicellularity is strongly correlated with the expansion of tyrosine kinases, a conserved family of signaling enzymes that regulates pathways essential for cell-to-cell communication. Although tyrosine kinases have been classified from several model organisms, a molecular-level understanding of tyrosine kinase evolution across all holozoans is currently lacking. Using a hierarchical sequence constraint-based classification of diverse holozoan tyrosine kinases, we construct a new phylogenetic tree that identifies two ancient clades of cytoplasmic and receptor tyrosine kinases separated by the presence of an extended insert segment in the kinase domain connecting the D and E-helices. Present in nearly all receptor tyrosine kinases, this fast-evolving insertion imparts diverse functionalities, such as post-translational modification sites and regulatory interactions. Eph and EGFR receptor tyrosine kinases are two exceptions which lack this insert, each forming an independent lineage characterized by unique functional features. We also identify common constraints shared across multiple tyrosine kinase families which warrant the designation of three new subgroups: Src module (SrcM), insulin receptor kinase-like (IRKL), and fibroblast, platelet-derived, vascular, and growth factor receptors (FPVR). Subgroup-specific constraints reflect shared autoinhibitory interactions involved in kinase conformational regulation. Conservation analyses describe how diverse tyrosine kinase signaling functions arose through the addition of family-specific motifs upon subgroup-specific features and coevolving protein domains. We propose the oldest tyrosine kinases, IRKL, SrcM, and Csk, originated from unicellular premetazoans and were coopted for complex multicellular functions. The increased frequency of oncogenic variants in more recent tyrosine kinases suggests that lineage-specific functionalities are selectively altered in human cancers.  相似文献   

15.
16.
Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation. Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases have emerged as important players in bacterial cell signaling and pathogenicity. C. difficile encodes two STKs (PrkC and CD2148) and one phosphatase. We optimized a titanium dioxide phosphopeptide enrichment approach to determine the phosphoproteome of C. difficile. We identified and quantified 2500 proteins representing 63% of the theoretical proteome. To identify STK and serine/threonine phosphatase targets, we then performed comparative large-scale phosphoproteomics of the WT strain and isogenic ΔprkC, CD2148, Δstp, and prkC CD2148 mutants. We detected 635 proteins containing phosphorylated peptides. We showed that PrkC is phosphorylated on multiple sites in vivo and autophosphorylates in vitro. We were unable to detect a phosphorylation for CD2148 in vivo, whereas this kinase was phosphorylated in vitro only in the presence of PrkC. Forty-one phosphoproteins were identified as phosphorylated under the control of CD2148, whereas 114 proteins were phosphorylated under the control of PrkC including 27 phosphoproteins more phosphorylated in the ?stp mutant. We also observed enrichment for phosphothreonine among the phosphopeptides more phosphorylated in the Δstp mutant. Both kinases targeted pathways required for metabolism, translation, and stress response, whereas cell division and peptidoglycan metabolism were more specifically controlled by PrkC-dependent phosphorylation in agreement with the phenotypes of the ΔprkC mutant. Using a combination of approaches, we confirmed that FtsK was phosphorylated in vivo under the control of PrkC and that Spo0A was a substrate of PrkC in vitro. This study provides a detailed mapping of kinase–substrate relationships in C. difficile, paving the way for the identification of new biomarkers and therapeutic targets.  相似文献   

17.
18.
Recruitment and activation of Raf-1 kinase by nitric oxide-activated Ras   总被引:6,自引:0,他引:6  
Deora AA  Hajjar DP  Lander HM 《Biochemistry》2000,39(32):9901-9908
  相似文献   

19.
Reelin activates SRC family tyrosine kinases in neurons   总被引:16,自引:0,他引:16  
BACKGROUND: Reelin is a large signaling molecule that regulates the positioning of neurons in the mammalian brain. Transmission of the Reelin signal to migrating embryonic neurons requires binding to the very-low-density lipoprotein receptor (VLDLR) and the apolipoprotein E receptor-2 (apoER2). This induces tyrosine phosphorylation of the adaptor protein Disabled-1 (Dab1), which interacts with a shared sequence motif in the cytoplasmic tails of both receptors. However, the kinases that mediate Dab1 tyrosine phosphorylation and the intracellular pathways that are triggered by this event remain unknown. RESULTS: We show that Reelin activates members of the Src family of non-receptor tyrosine kinases (SFKs) and that this activation is dependent on the Reelin receptors apoER2 and VLDLR and the adaptor protein Dab1. Dab1 is tyrosine phosphorylated by SFKs, and the kinases themselves can be further activated by phosphorylated Dab1. Increased Dab1 protein expression in fyn-deficient mice implies a response to impaired Reelin signaling that is also observed in mice lacking Reelin or its receptors. However, fyn deficiency alone does not compound the neuronal positioning defect of vldlr- or apoer2-deficient mice, and this finding suggests functional compensation by other SFKs. CONCLUSIONS: Our results show that Dab1 is a physiological substrate as well as an activator of SFKs in neurons. Based on genetic evidence gained from multiple strains of mutant mice with defects in Reelin signaling, we conclude that activation of SFKs is a normal part of the cellular Reelin response.  相似文献   

20.
Post-translational modification of proteins is a universal form of cellular regulation. Phosphorylation on serine, threonine, tyrosine or histidine residues by protein kinases is the most widespread and versatile form of covalent modification. Resultant changes in activity, localization or stability of phosphoproteins drives cellular events. MS and bioinformatic analyses estimate that ~30% of intracellular proteins are phosphorylated at any given time. Multiple approaches have been developed to systematically define targets of protein kinases; however, it is likely that we have yet to catalogue the full complement of the phosphoproteome. The amino acids that surround a phosphoacceptor site are substrate determinants for protein kinases. For example, basophilic enzymes such as PKA (protein kinase A), protein kinase C and calmodulin-dependent kinases recognize basic side chains preceding the target serine or threonine residues. In the present paper we describe a strategy using peptide arrays and motif-specific antibodies to identify and characterize previously unrecognized substrate sequences for protein kinase A. We found that the protein kinases PKD (protein kinase D) and MARK3 [MAP (microtubule-associated protein)-regulating kinase 3] can both be phosphorylated by PKA. Furthermore, we show that the adapter protein RIL [a product of PDLIM4 (PDZ and LIM domain protein 4)] is a PKA substrate that is phosphorylated on Ser(119) inside cells and that this mode of regulation may control its ability to affect cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号