首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism underlying phagosomal acidification was studied in thioglycolate-elicited murine macrophages. The pH of the phagosomal compartment (pHp) was measured fluorimetrically in macrophage suspensions following ingestion of fluorescein isothiocyanate-labeled Staphylococcus aureus. At 37 degrees C, pHp decreased rapidly, reaching a steady state value of 5.8-6.1, while the cytoplasmic pH remained near neutrality, pH 7.1. The phagosome to cytosol pH gradient could be collapsed by addition of nigericin, monensin, or weak bases. The substrate dependence and inhibitor sensitivity profile of phagosomal acidification were investigated in intact and permeabilized cells. Phagosomal acidification was inhibited when ATP was depleted using metabolic inhibitors or permeabilizing the plasma membrane by electroporation. In permeabilized cells, acidification could be initiated by readdition of both Mg2+ and ATP. Neither adenosine 5'-(beta,gamma-imido)triphosphate nor adenosine 5'-(gamma-thio)triphosphate supported phagosomal acidification. Inhibitors of F1F0-type H(+)-ATPase such as oligomycin and azide, and the E1E2-type H(+)-ATPase inhibitor vanadate had no effect on phagosomal acidification. In contrast, the rate of phagosomal acidification was reduced by micromolar concentrations of N-ethylmaleimide and N,N'-dicyclohexylcarbodiimide. In permeabilized cells, nitrate inhibited the acidification with an apparent Ki of 25 mM. Phagosomal acidification was also effectively blocked by the macrolide antibiotic bafilomycin A1, with an apparent Ki of approximately 3 mM in both intact and electroporated cells. In this concentration range, bafilomycin A1 selectively inhibits vacuolar H(+)-ATPases. The substrate requirement and inhibitor susceptibility profile of phagosomal acidification strongly suggest that proton translocation across the phagosomal membrane is mediated by a vacuolar-type H(+)-ATPase.  相似文献   

2.
Regulation of the vacuolar H(+)-ATPase in organellar and transepithelial acidification has been attributed to the effects of the proton electrochemical gradient across the membrane or to changes in the number of proton pumps. We now report the identification and purification of a protein from bovine kidney cytosol that inhibits both ATPase activity and proton translocating activity of vacuolar H(+)-ATPases. Its relative molecular weight (M(r)) is 6300, similar to that for protein inhibitors of the mitochondrial F0F1-ATPase. The newly identified cytosolic inhibitor protein may participate in the physiologic regulation of the vacuolar H(+)-ATPase by suppressing activity directly.  相似文献   

3.
Na+,K(+)-ATPase has been observed to partially inhibit acidification of early endosomes by increasing membrane potential, whereas chloride channels have been observed to enhance acidification in endosomes and lysosomes. However, little theoretical analysis of the ways in which different pumps and channels may interact has been carried out. We therefore developed quantitative models of endosomal pH regulation based on thermodynamic considerations. We conclude that 1) both size and shape of endosomes will influence steady-state endosomal pH whenever membrane potential due to the pH gradient limits proton pumping, 2) steady-state pH values similar to those observed in early endosomes of living cells can occur in endosomes containing just H(+)-ATPases and Na+,K(+)-ATPases when low endosomal buffering capacities are present, and 3) inclusion of active chloride channels results in predicted pH values well below those observed in vivo. The results support the separation of endocytic compartments into two classes, those (such as early endosomes) whose acidification is limited by attainment of a certain membrane potential, and those (such as lysosomes) whose acidification is limited by the attainment of a certain pH. The theoretical framework and conclusions described are potentially applicable to other membrane-enclosed compartments that are acidified, such as elements of the Golgi apparatus.  相似文献   

4.
Recent biochemical studies involving 2',7'-bis-(2-carboxyethyl)-5, 6-carboxylfluorescein (BCECF)-labeled saponin-permeabilized and parasitized erythrocytes indicated that malaria parasite cells maintain the resting cytoplasmic pH at about 7.3, and treatment with vacuolar proton-pump inhibitors reduces the resting pH to 6.7, suggesting proton extrusion from the parasite cells via vacuolar H(+)-ATPase (Saliba, K. J., and Kirk, K. (1999) J. Biol. Chem. 274, 33213-33219). In the present study, we investigated the localization of vacuolar H(+)-ATPase in Plasmodium falciparum cells infecting erythrocytes. Antibodies against vacuolar H(+)-ATPase subunit A and B specifically immunostained the infecting parasite cells and recognized a single 67- and 55-kDa polypeptide, respectively. Immunoelectron microscopy indicated that the immunological counterpart of V-ATPase subunits A and B is localized at the plasma membrane, small clear vesicles, and food vacuoles, a lower extent being detected at the parasitophorus vacuolar membrane of the parasite cells. We measured the cytoplasmic pH of both infected erythrocytes and invading malaria parasite cells by microfluorimetry using BCECF fluorescence. It was found that a restricted area of the erythrocyte cytoplasm near a parasite cell is slightly acidic, being about pH 6.9. The pH increased to pH 7.3 upon the addition of either concanamycin B or bafilomycin A(1), specific inhibitors of vacuolar H(+)-ATPase. Simultaneously, the cytoplasmic pH of the infecting parasite cell decreased from pH 7.3 to 7.1. Neither vanadate at 0.5 mm, an inhibitor of P-type H(+)-ATPase, nor ethylisopropylamiloride at 0.2 mm, an inhibitor of Na(+)/H(+)-exchanger, affected the cytoplasmic pH of erythrocytes or infecting parasite cells. These results constitute direct evidence that plasma membrane vacuolar H(+)-ATPase is responsible for active extrusion of protons from the parasite cells.  相似文献   

5.
The mechanism of proton pumping by P-type H(+)-ATPases is still unclear. In the plant P-type plasma membrane H(+)-ATPase AHA2, two charged residues, Arg(655) and Asp(684), are conserved in transmembrane segments M5 and M6, respectively, a region that has been shown be contribute to ion coordination in related P-type ATPases. Substitution of Arg(655) with either alanine or aspartate resulted in mutant enzymes exhibiting a significant shift in the P-type ATPase E(1)P-E(2)P conformational equilibrium. The mutant proteins accumulated in the E(1)P conformation, but were capable of conducting proton transport. This points to an important role of Arg(655) in the E(1)P-E(2)P conformational transition. The presence of a carboxylate moiety at position Asp(684) proved essential for coupling between initial proton binding and proton pumping. The finding that the carboxylate side chain of Asp(684) contributes to the proton-binding site and appears to function as an absolutely essential proton acceptor along the proton transport pathway is discussed in the context of a possible proton pumping mechanism of P-type H(+)-ATPases.  相似文献   

6.
Quinacrine was used to visualize the intracellular pH changes in the yeast strain Saccharomyces cerevisiae RXII occurring after exposure to four recently-synthesized lysosomotropic drugs: DM-11, PY-11, PYG-12s and DMAL-12s. The cells took up quinacrine, mostly accumulating it in their vacuoles. DM-11 and PY-11 gave rise to diffuse quinacrine fluorescence throughout the cells, with the vacuoles staining to a somewhat greater extent than the cytosol. This quinacrine-detected overall acidification of the cell interior is very probably caused by blocking of plasma membrane H(+)-ATPase. PYG-12s gave rise to a strong vacuolar accumulation of the dye. Like the vacuolar ATPase inhibitor bafilomycin A(1), DMAL-12s strongly lowered the intensity of quinacrine fluorescence. Owing to its low pK(a), it can penetrate rapidly into the cells and may inhibit vacuolar H(+)-ATPase and prevent quinacrine-detectable vacuolar acidification without causing strong cell acidification. Since these drugs were found to penetrate into the cells, their lack of effect may reflect a higher resistance of both plasma membrane H(+)-ATPase and vacuolar ATPase to the drugs. Our data indicate that the lysosomotropic drugs under study have a dual action. On entering the cell, they cause intracellular acidification, very probably by inhibiting plasma membrane H(+)-ATPase and curtailing active proton pumping from the cells. Furthermore, they interfere with the function of V-type ATPase, causing vacuolar alkalinization and eventually cell death.  相似文献   

7.
The stimulation of the activity of the H(+)-ATPase present in the vacuolar membrane (V-ATPase) of Saccharomyces cerevisiae is here described in response to a moderate stress induced by 2,4-dichlorophenoxyacetic acid (2,4-D). This in vivo activation (up to 5-fold) took place essentially during the adaptation period, preceding cell division under herbicide stress, in coordination with a marked activation of plasma membrane H(+)-ATPase (PM-ATPase) (up to 30-fold) and the decrease of intracellular and vacuolar pH values, suggesting that activation may be triggered by acidification. Single deletion of VMA1 and genes encoding other V-ATPase subunits led to a more extended period of adaptation and to slower growth under 2,4-D stress. Results suggest that a functional V-ATPase is required to counteract, more rapidly and efficiently, the dissipation of the physiological H(+)-gradient across vacuolar membrane registered during 2,4-D adaptation.  相似文献   

8.
Previous studies in Trypanosoma brucei have shown that intracellular pH homeostasis is affected by inhibitors of H+-ATPases, suggesting a major role for these pumps in this process (Vander-Heyden, N., Wong, J., and Docampo, R., (2000) Biochem. J. 346, 53-62). Here, we report the cloning and sequencing of three genes (TbHA1, TbHA2, and TbHA3) present in the genome of T. brucei that encode proteins with homology to fungal and plant P-type proton-pumping ATPases. Northern and Western blot analyses revealed that these genes are up-regulated in procyclic trypomastigotes. TbHA1, TbHA2, and TbHA3 complemented a Saccharomyces cerevisiae strain deficient in P-type H+-ATPase activity, providing genetic evidence for their function. Indirect immunofluorescence analysis showed that TbHA proteins are localized mainly in the plasma membrane of procyclic forms and in the plasma membrane and flagellum of bloodstream forms. T. brucei H+-ATPase genes were functionally characterized using double-stranded RNA interference methodology. The induction of double-stranded RNA (RNA interference) caused growth inhibition, which was more accentuated in procyclic forms and when expression of all TbHA proteins was decreased. Knockdown of TbHA1 and TbHA3, but not of TbHA2, resulted in cells with a lower steady-state pH(i) and a slower rate of pH(i) recovery from acidification. No evidence was found of an intracellular P-type H+-ATPase activity. These results establish that T. brucei H+-ATPases are plasma membrane enzymes essential for parasite viability.  相似文献   

9.
The vacuolar H(+)-ATPase (V-ATPase) is a universal component of eukaryotic organisms, which is present in both intracellular compartments and the plasma membrane. In the latter, its proton-pumping action creates the low intravacuolar pH, benefiting many processes such as, membrane trafficking, protein degradation, renal acidification, bone resorption, and tumor metastasis. In this article, we briefly summarize recent studies on the essential and diverse roles of mammalian V-ATPase and their medical applications, with a special emphasis on identification and use of V-ATPase inhibitors.  相似文献   

10.
The lung endothelium layer is exposed to continuous CO(2) transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na(+)/H(+) exchanger and HCO(3)(-)-dependent H(+)-transporting mechanisms regulate intracellular pH (pH(cyt)) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H(+)-ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na(+)/H(+) exchanger and HCO(3)(-)-based H(+)-transporting mechanisms, to maintain pH(cyt) homeostasis. Immunocytochemical studies revealed V-H(+)-ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na(+) and HCO(3)(-) that were similar to those observed in the presence of either Na(+), or Na(+) and HCO(3)(-). The Na(+)- and HCO(3)(-)-independent pH(cyt) recovery was inhibited by bafilomycin A(1), a V-H(+)-ATPase inhibitor. These studies show a Na(+)- and HCO(3)(-)-independent pH(cyt) regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases.  相似文献   

11.
Glucose re-addition to carbohydrate starved yeast cells leads to a transient elevation of eytosolic calcium (TECC). Concomitantly, a cytosolic proton extrusion occurs through the activation of the vacuolar H(+)-ATPase and the plasma membrane H(+)-ATPases. This study addressed the dissipation of the TECC through intracellular compartmentalization and the possible affects of the H(+)-ATPases on this process. Both the vacuole and the Golgi-ER apparatus were found to play important roles in distributing calcium to internal stores. Additionally, the inhibition of cytosolic proton extrusion augmented cytosolic calcium responses. A model where pH dependent cytosolic calcium buffering plays an important role in the dissipation of the TECC in Saccharomyces cerevisiae is proposed.  相似文献   

12.
To examine the relationship between endosome acidification and receptor trafficking, transferrin receptor trafficking was characterized in Chinese hamster ovary cells in which endosome acidification was blocked by treatment with the specific inhibitor of the vacuolar H(+)-ATPase, bafilomycin A1. Elevating endosome pH slowed the receptor externalization rate to approximately one-half of control but did not affect receptor internalization kinetics. The slowed receptor externalization required the receptor's cytoplasmic domain and was largely eliminated by substitutions replacing either of two aromatic amino acids within the receptor's cytoplasmic YTRF internalization motif. These results confirm, using a specific inhibitor of the vacuolar proton pump, that proper endosome acidification is necessary to maintain rapid recycling of intracellular receptors back to the plasma membrane. Moreover, receptor return to the plasma membrane is slowed in the absence of proper endosome acidification by a signal-dependent mechanism involving the receptor's cytoplasmic tyrosine-containing internalization motif. These results, in conjunction with results from other studies, suggest that the mechanism for clustering receptors in plasma membrane clathrin-coated pits may be an example of a more general mechanism that determines the dynamic distribution of membrane proteins among various compartments with luminal acidification playing a crucial role in this process.  相似文献   

13.
Numerous studies implicate necrotic cell death in devastating human pathologies such as stroke and neurodegenerative diseases. Investigations in both nematodes and mammals converge to implicate specific calpain and aspartyl proteases in the execution of necrotic cell death. It is believed that these proteases become activated under conditions that inflict necrotic cell death. However, the factors that modulate necrosis and govern the erroneous activation of these otherwise benign enzymes are largely unknown. Here we show that the function of the vacuolar H(+)-ATPase, a pump that acidifies lysosomes and other intracellular organelles, is essential for necrotic cell death in C. elegans. Cytoplasmic pH drops in dying cells. Intracellular acidification requires the vacuolar H(+)-ATPase, whereas alkalization of endosomal and lysosomal compartments by weak bases protects against necrosis. In addition, we show that vacuolar H(+)-ATPase activity is required downstream of cytoplasmic calcium overload during necrosis. Thus, intracellular pH is an important modulator of necrosis in C. elegans. We propose that vacuolar H(+)-ATPase activity is required to establish necrosis-promoting, acidic intracellular conditions that augment the function of executioner aspartyl proteases in dying cells. Similar mechanisms may contribute to necrotic cell death that follows extreme acidosis-for example, during stroke-in humans.  相似文献   

14.
A cDNA containing an open reading frame encoding a putative plasma membrane H(+)-ATPase in the human pathogenic basidiomycetous yeast Cryptococcus neoformans was cloned and sequenced by means of PCR and cDNA library hybridization. The cloned cDNA is 3475 bp in length, containing a 2994 bp open reading frame encoding a polypeptide of 997 amino acids. As in the case of another basidiomycetous fungus (Uromyces fabae), the deduced amino acid sequence of CnPMA1 was found to be more homologous to those of P-type H(+)-ATPases from higher plants than to those from ascomycetous fungi. In order to prove the sequenced cDNA corresponds to a H(+)-ATPase, it was expressed in Saccharomyces cerevisiae and found to functionally replace its own H(+)-ATPase. Kinetic studies of CnPMA1 compared to ScPMA1 show differences in V(max) values and H(+)-pumping in reconstituted vesicles. The pH optimum and K(m) values are similar in both enzymes.  相似文献   

15.
Previous studies in Trypanosoma cruzi have shown that intracellular pH homeostasis requires ATP and is affected by H(+)-ATPase inhibitors, indicating a major role for ATP-driven proton pumps in intracellular pH control. In the present study, we report the cloning and sequencing of a pair of genes linked in tandem (TcHA1 and TcHA2) in T. cruzi which encode proteins with homology to fungal and plant P-type proton-pumping ATPases. The genes are expressed at the mRNA level in different developmental stages of T. cruzi: TcHA1 is expressed maximally in epimastigotes, whereas TcHA2 is expressed predominantly in trypomastigotes. The proteins predicted from the nucleotide sequence of the genes have 875 and 917 amino acids and molecular masses of 96.3 and 101.2 kDa, respectively. Full-length TcHA1 and an N-terminal truncated version of TcHA2 complemented a Saccharomyces cerevisiae strain deficient in P-type H(+)-ATPase activity, the proteins localized to the yeast plasma membrane, and ATP-driven proton pumping could be detected in proteoliposomes reconstituted from plasma membrane purified from transfected yeast. The reconstituted proton transport activity was reduced by inhibitors of P-type H(+)-ATPases. C-terminal truncation did not affect complementation of mutant yeast, suggesting the lack of C-terminal autoinhibitory domains in these proteins. ATPase activity in plasma membrane from TcHA1- and (N-terminal truncated) TcHA2-transfected yeast was inhibited to different extents by vanadate, whereas the latter yeast strain was more resistant to extremes of pH, suggesting that the native proteins may serve different functions at different stages in the T. cruzi life cycle.  相似文献   

16.
More than 11 different P-type H(+)-ATPases have been identified in Arabidopsis by DNA cloning. The subcellular localization for individual members of this proton pump family has not been previously determined. We show by membrane fractionation and immunocytology that a subfamily of immunologically related P-type H(+)-ATPases, including isoforms AHA2 and AHA3, are primarily localized to the plasma membrane. To verify that AHA2 and AHA3 are both targeted to the plasma membrane, we added epitope tags to their C-terminal ends and expressed them in transgenic plants. Both tagged isoforms localized to the plasma membrane, as indicated by aqueous two-phase partitioning and sucrose density gradients. In contrast, a truncated AHA2 (residues 1-193) did not, indicating that the first two transmembrane domains alone are not sufficient for plasma membrane localization. Two epitope tags were evaluated: c-myc, a short, 11-amino acid sequence, and beta-glucuronidase (GUS), a 68-kD protein. The c-myc tag is recommended for its sensitivity and specific immunodetection. GUS worked well as an epitope tag when transgenes were expressed at relatively high levels (e.g. with AHA2-GUS944); however, evidence suggests that GUS activity may be inhibited when a GUS domain is tethered to an H(+)-ATPase complex. Nevertheless, the apparent ability to localize a GUS protein to the plasma membrane indicates that a P-type H(+)-ATPase can be used as a delivery vehicle to target large, soluble proteins to the plasma membrane.  相似文献   

17.
A factor that activates affinity-purified vacuolar H(+)-ATPase from bovine kidney microsomes was identified and partially purified from bovine kidney cytosol. The activator is a heat-stable, trypsin-sensitive acidic protein with a Mr by gel filtration of approximately 35,000. The activator increased the activity of renal microsomal and brush border H(+)-ATPase by over 60% but stimulated lysosomal H(+)-ATPase activity by only 28%; it had little or no activity against the remaining N-ethylmaleimide-insensitive ATPase in kidney microsomes and other transport ATPases. Stimulation of ATPase activity appeared to result from binding of the activator to the H(+)-ATPase. Activation was saturable, with a Hill coefficient of 1 at low protein concentrations. Both activator binding and stimulation of H(+)-ATPase activity were enhanced at pH values less than or equal to 6.5. The activator has selective effects on different H(+)-ATPases and is poised to activate the enzyme at low physiologic values of cytosolic pH; this newly identified cytosolic proteins may participate in the physiologic regulation of the vacuolar H(+)-ATPase.  相似文献   

18.
The pma1-2 mutation affecting the plasma membrane H(+)-ATPase of Schizosaccharomyces pombe has been selected for resistance to the antibiotic Dio-9. In membrane fractions purified from glucose-starved cells, the mutant ATPase activity is reduced by 96%, is insensitive to inhibition by vanadate and has a pH profile displaced in the acidic pH range when compared to the wild type. The maximum velocity of the H(+)-ATPase activity of plasma membranes from glucose-activated pma1-2 cells is activated 20-fold. This is in striking contrast with the wild-type ATPase activity, the maximal velocity of which is not affected by glucose. However, similar to the wild-type enzyme, glucose activation of the pma1-2 mutant H(+)-ATPase reduces the Km for MgATP 9-2 mM and shifts the optimal pH from 4.8 to 6.0-6.5. The pma1-2 mutation modifies Lys250 to a threonine, which is highly conserved in fungal and plant H(+)-ATPases. These results, compared to those reported for mutations of neighbour residues in yeast or mammalian P-type ATPases, suggest that Lys250 could play a significant role, not only in phosphate binding and/or in the E1P-E2P conformational isomerisation, but also in glucose activation of the H(+)-ATPase.  相似文献   

19.
Cloning and sequencing of the gene encoding a P-type Na(+)-ATPase of a facultatively anaerobic alkaliphile, Exiguobacterium aurantiacum, were conducted. The structural gene was composed of 2628 nucleotides. The deduced amino acid sequence (876 amino acid residues; Mr, 96,664) suggested that the enzyme possesses 10 membrane-spanning regions. When the amino acid sequences of the four putative membrane regions, M4, M5, M6 and M8, of BL77/1 ATPase were aligned with those of fungal Na(+)-ATPase, Na(+)/K(+)-ATPase, H(+)-ATPases and sarcoplasmic reticulum Ca(2+)-ATPase, it exhibited the highest homology with Ca(2+)-ATPase except M5 region. By the transformation of Escherichia coli with the expression vector (pQE30) containing the ATPase gene, the enzyme was functionally expressed in E. coli membranes.  相似文献   

20.
Bafilomycin A1, a specific inhibitor of the vacuolar-type H+-ATPase, responsible for acidification of intra-cellular compartments, prevents the vacuolization of Hela cells induced by H. pylori, with an inhibitory concentration giving 50% of maximal (ID50) of 4 nM. Bafilomycin A1 is also very efficient in restoring vacuolated cells to a normal appearance. The vacuolating activity of Helicobacter pylori is not inhibited by a series of specific inhibitors of vacuolar H+-ATPases. These findings indicate that a transmembrane pH gradient is needed for the formation and growth of vacuoles caused by the bacterium and that this pH gradient is due to the activity of a vacuolar ATPase proton pump of HeLa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号