首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The apical plasma membrane of epithelial cells plays a central role in producing and shaping the apical extracellular matrix (aECM) that eventually adopts a stereotypic architecture required for the physical and physiological needs of the epithelium. To assess the implication of the apical plasma membrane on aECM differentiation, we have studied the function of the apical plasma membrane t-SNARE Syntaxin 1A in the embryo of the fruit fly Drosophila melanogaster during differentiation of the stratified exoskeleton, the cuticle, which is composed of proteins and the polysaccharide chitin. The cuticle layers of syntaxin1A deficient larvae are rudimentary. Consistently, Syntaxin 1A is required for the secretion of O-glycosylated proteins and components involved in pigmentation and protein cross-linking. By contrast, localization of chitin synthesis and organising proteins to the apical plasma membrane or to the extracellular space does not depend on Syntaxin 1A activity. However, chitin microfibrils have a random orientation instead of being arranged in parallel. This correlates with the lack of corrugations at the apical plasma membrane of epidermal cells, the apical undulae that have been proposed to be crucial for chitin microfibril orientation. Hence, Syntaxin 1A contributes to cuticle differentiation by controlling correct apical plasma membrane topology as well as mediating secretion of a subset of extracellular proteins required for layer organisation. Our data also indicate that yet another unidentified t-SNARE is needed in parallel to Syntaxin 1A to deliver extracellular material for complete cuticle assembly. Evidently, coordination of apical membrane modelling and two secretion routes are essential for stereotypic aECM organisation.  相似文献   

2.
The arthropod cuticle is a multilayered extracellular matrix produced by the epidermis during embryogenesis and moulting. Molecularly and histologically, cuticle differentiation has been extensively investigated in the embryo of the insect Drosophila melanogaster. To learn about the evolution of cuticle differentiation, we have studied the histology of cuticle differentiation during embryogenesis of the amphipod crustacean Parhyale hawaiensis, which had a common ancestor with Drosophila about 510 million years ago. The establishment of the layers of the Parhyale juvenile cuticle is largely governed by mechanisms observed in Drosophila, e.g. as in Drosophila, the synthesis and arrangement of chitin in the inner procuticle are separate processes. A major difference between the cuticle of Parhyale and Drosophila concerns the restructuring of the Parhyale dorsal epicuticle after deposition. In contrast to the uniform cuticle of the Drosophila larva, the Parhyale cuticle is subdivided into two regions, the ventral and the dorsal cuticles. Remarkably, the boundary between the ventral and dorsal cuticles is sharp suggesting active extracellular regionalisation. The present analysis of Parhyale cuticle differentiation should allow the characterisation of the cuticle-producing and -organising factors of Parhyale (by comparison with the branchiopod crustacean Daphnia pulex) in order to contribute to the elucidation of fundamental questions relevant to extracellular matrix organisation and differentiation. This work was supported by the German Research Foundation (DFG, grant number MO 1714/1-1).  相似文献   

3.
In arthropods, the animal body is isolated from the external environment by a protective exoskeleton called the cuticle. The cuticle of young larvae has certainly been the most scrutinized structure in Drosophila and genetic studies of the pattern of cuticular extensions has provided the main source of our comprehension of the control of embryonic development. However, the complex structure of the cuticle remains poorly understood and analysis of the underlying epidermis has started only recently. Here I review different aspects of epidermis differentiation with the aim of presenting an integrated view of the organisation of the Drosophila integument. Although profound differences in epidermis organisation are observed across species, accumulated results suggest that epidermis formation and differentiation might share an unsuspected number of homologies between Drosophila and vertebrates.  相似文献   

4.
5.
Exoskeletons stabilize cell, tissue, and body morphology in many living organisms including fungi, plants, and arthropods. In insects, the exoskeleton, the cuticle, is produced by epidermal cells as a protein extracellular matrix containing lipids and the polysaccharide chitin, and its formation requires coordinated synthesis, distribution, and modification of these components. Eventually, the stepwise secretion and sorting of the cuticle material results in a layered structure comprising the envelope, the proteinaceous epicuticle, and the chitinous procuticle. To study the role of chitin during cuticle development, we analyzed the consequences of chitin absence in the embryo of Drosophila melanogaster caused by mutations in the Chitin Synthase-1 (CS-1) gene, called krotzkopf verkehrt (kkv). Our histological data confirm that chitin is essential for procuticle integrity and further demonstrate that an intact procuticle is important to assemble and to stabilize the chitin-less epicuticle. Moreover, the phenotype of CS-1/kkv mutant embryos indicates that chitin is required to attach the cuticle to the epidermal cells, thereby maintaining epidermal morphology. Finally, sclerotization and pigmentation, which are the last steps in cuticle differentiation, are impaired in tissues lacking CS-1/kkv function, suggesting that proper cuticle structure is crucial for the activity of the underlying enzymes.  相似文献   

6.
7.
Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes.  相似文献   

8.
Many epithelia produce apical extracellular matrices (aECM) that are crucial for organ morphogenesis or physiology. Apical ECM formation relies on coordinated synthesis and modification of constituting components, to enable their subcellular targeting and extracellular assembly into functional matrices. The exoskeleton of Drosophila, the cuticle, is a stratified aECM containing ordered chitin polysaccharide lamellae and proteinaceous layers, and is suited for studies of molecular functions needed for aECM assembly. Here, we show that Drosophila mummy (mmy) mutants display defects in epithelial organisation in conjunction with aberrant deposition of the cuticle and an apical matrix needed for tracheal tubulogenesis. We find that mmy encodes the UDP-N-acetylglucosamine pyrophosphorylase, which catalyses the production of UDP-N-acetylglucosamine, an obligate substrate for chitin synthases as well as for protein glycosylation and GPI-anchor formation. Consequently, in mmy mutants GlcNAc-groups including chitin are severely reduced and modification and subcellular localisation of proteins designated for extracellular space is defective. Moreover, mmy expression is selectively upregulated in epithelia at the time they actively deposit aECM, and is altered by the moulting hormone 20-Hydroxyecdysone, suggesting that mmy is part of a developmental genetic programme to promote aECM formation.  相似文献   

9.
MOTIVATION: Multiple chitinases as well as lectins closely related to them have been characterized previously from many insect species and the corresponding genes/cDNAs have been cloned. However, the identification of the entire assortment of genes for chitinase family proteins and their differences in biochemical properties have not been carried out in any individual insect species. The completion of the entire DNA sequence of Drosophila melanogaster (fruit fly) genome and identification of open reading frames presents an opportunity to study the structures and functions of chitinase-like proteins, and also to identify new members of this family in DROSOPHILA: We are, therefore, interested in studying the functional genomics of chitinase-like gene families in insects. METHODS: We searched the Drosophila protein sequences database using fully characterized insect chitinase sequences and BLASTP software, identified all the putative chitinase-like proteins encoded in Drosophila genome, and predicted their structures using domain analysis tools. A phylogenetic analysis of the chitinase-like proteins from Drosophila and several other insect species was carried out. The structures of these chitinases were modeled using homology modeling software. RESULTS: Our analysis revealed the presence of 18 chitinase-like proteins in the Drosophila protein database. Among these are seven novel chitinase-like proteins that contain four signature amino acid sequences of chitinases belonging to family 18 glycosylhydrolases, including both acidic and hydrophobic amino acid residues critical for enzyme activity. All the proteins contain at least one catalytic domain with one having four catalytic domains. Phylogenetic analysis of chitinase-like proteins from Drosophila and other insects revealed an evolutionary relationship among all these proteins, which indicated gene duplication and domain shuffling to generate the observed diversity in the encoded proteins. Homology modeling showed that all the Drosophila chitinase-like proteins contain one or more catalytic domains with a (alpha/beta)8 barrel-like structure. Our results suggest that insects utilize multiple family 18 chitinolytic enzymes and also non-enzymatic chitinase-like proteins for degrading/remodeling/binding to chitin in different insect anatomical extracellular structures, such as the cuticle, peritrophic membrane, trachea and mouth parts during insect development, and possibly for other roles including chitin synthesis. AVAILABILITY: Perl program and supplementary material are available at http://www.ksu.edu/bioinformatics/supplementary.htm  相似文献   

10.
Much of the variation among insects is derived from the different ways that chitin has been moulded to form rigid structures, both internal and external. In this study, we identify a highly conserved expression pattern in an insect‐only gene family, the Osiris genes, that is essential for development, but also plays a significant role in phenotypic plasticity and in immunity/toxicity responses. The majority of Osiris genes exist in a highly syntenic cluster, and the cluster itself appears to have arisen very early in the evolution of insects. We used developmental gene expression in the fruit fly, Drosophila melanogaster, the bumble bee, Bombus terrestris, the harvester ant, Pogonomyrmex barbatus, and the wood ant, Formica exsecta, to compare patterns of Osiris gene expression both during development and between alternate caste phenotypes in the polymorphic social insects. Developmental gene expression of Osiris genes is highly conserved across species and correlated with gene location and evolutionary history. The social insect castes are highly divergent in pupal Osiris gene expression. Sets of co‐expressed genes that include Osiris genes are enriched in gene ontology terms related to chitin/cuticle and peptidase activity. Osiris genes are essential for cuticle formation in both embryos and pupae, and genes co‐expressed with Osiris genes affect wing development. Additionally, Osiris genes and those co‐expressed seem to play a conserved role in insect toxicology defences and digestion. Given their role in development, plasticity, and protection, we propose that the Osiris genes play a central role in insect adaptive evolution.  相似文献   

11.
Recent studies on chitin metabolism in insect cuticle are reviewed. Differences in enzymes involved in both synthesis and degradation of chitin are discussed. Emphasis is put on the complexity of chitin degradation involving various enzymes. Evidence for the possible existence of an alternative pathway leading to the formation of chitin is introduced. The involvement of hormones in chitin metabolism is also briefly discussed.  相似文献   

12.
昆虫几丁质合成及其调控研究前沿   总被引:1,自引:0,他引:1  
几丁质合成与降解是昆虫最重要的生理过程之一。本文根据国外和作者自己的研究,综述了昆虫几丁质合成及其调控研究进展。昆虫几丁质的生物合成通路始于海藻糖,终止于几丁质,其中共有8个酶参与。目前研究最多的为海藻糖酶和几丁质合成酶。昆虫存在2个海藻糖酶基因和2个几丁质合成酶基因。可溶性海藻糖酶基因对昆虫表皮的几丁质合成影响更大,而膜结合海藻糖酶基因则主要影响中肠的几丁质合成。几丁质合成酶A主要负责表皮和气管几丁质的合成,而几丁质合成酶B则负责中肠围食膜的几丁质合成。目前,昆虫几丁质合成的调控途径主要有两种:利用RNAi技术和几丁质合成抑制剂。  相似文献   

13.
The morphogenesis of Drosophila sensory bristles is dependent on the function of their actin and microtubule cytoskeleton. Actin filaments are important for bristle shape and elongation, while microtubules are thought to mediate protein and membrane trafficking to promote growth. We have identified an essential role for the bristle cuticle in the maintenance of bristle structure and shape at late stages of bristle development. We show that the small GTPase Rab11 mediates the organized deposition of chitin, a major cuticle component in bristles, and disrupting Rab11 function leads to phenotypes that result from bristle collapse rather than a failure to elongate. We further establish that Rab11 is required for the plasma membrane localization of the ZP domain-containing Dusky-like (Dyl) protein and that Dyl is also required for cuticle formation in bristles. Our data argue that Dyl functions as a Rab11 effector for mediating the attachment of the bristle cell membrane to chitin to establish a stable cuticle. Our studies also implicate the exocyst as a Rab11 effector in this process and that Rab11 trafficking along the bristle shaft is mediated by microtubules.  相似文献   

14.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   

15.
The constitutive criterion for the evolutionary successful clade of ecdysozoans is a protective exoskeleton. In insects the exoskeleton, the so-called cuticle consists of three functional layers, the waterproof envelope, the proteinaceous epicuticle and the chitinous procuticle that are produced as an extracellular matrix by the underlying epidermal cells. Here, we present our electron-microscopic study of cuticle differentiation during embryogenesis in the fruit fly Drosophila melanogaster. We conclude that cuticle differentiation in the Drosophila embryo occurs in three phases. In the first phase, the layers are established. Interestingly, we find that establishment of the layers occurs partially simultaneously rather than in a strict sequential manner as previously proposed. In the second phase the cuticle thickens. Finally, in the third phase, when secretion of cuticle material has ceased, the chitin laminae acquire their typical orientation, and the epicuticle of the denticles and the head skeleton darken. Our work will help to understand the phenotypes of embryos mutant for genes encoding essential cuticle factors, in turn revealing mechanisms of cuticle differentiation.  相似文献   

16.
Mass-isolated imaginal discs of Drosophila melanogaster form a chitin-containing pupal procuticle In vitro. Optimal procuticle deposition occurs when the discs are incubated for 4–6 hr with 0.5–1.0 μg/ml of 20-hydroxyecdysone and then with less than 0.05 μg/ml of 20-hydroxyecdysone. The formation of the chitin-containing procuticle is demonstrated using three independent assays: with fluorescene-conjugated cuticle proteins that bind to chitin; by electron microscopy; by incorporation of [3H]glucosamine into a chitin fraction. Synthesis and deposition of pupal cuticle proteins are also demonstrated. Incorporation of [3H]glucosamine into chitin is sensitive to inhibitors of protein, RNA and chitin synthesis, but has little sensitivity to inhibitors of DNA synthesis, and dolichol-dependent glycosylation.  相似文献   

17.
Insect chitin synthase cDNA sequence, gene organization and expression.   总被引:1,自引:0,他引:1  
Chitin is a major component of the cuticle of arthropods. However, the synthesis of chitin is poorly understood. Feeding larvae of the insect Lucilia cuprina on the fungal chitin synthase competitive inhibitor, nikkomycin Z resulted in strong concentration-dependent mortality of the larvae (LD50 = 280 nM). This result demonstrates that chitin is an essential component of this insect. The complete cDNA and deduced amino-acid sequences of the first arthropod chitin synthase-like protein, LcCS-1, from the larvae of the insect L. cuprina have been determined. The cDNA sequence is 5757 bp in length and codes for a large complex protein containing 1592 amino acids (Mr = 180 717). Analysis of the whole protein sequence reveals low, but significant, similarity to yeast chitin synthases with stronger areas of conservation centred on local regions implicated in the active sites of the yeast enzymes. Strikingly, LcCS-1 contains 15-18 potential transmembrane segments, indicating that the protein is an integral membrane protein. Two alternative topographical models of LcCS-1 are described, which involve its association with either the plasma membrane or the membrane of intracellular vesicles. LcCS-1 mRNA is produced in all life stages of the insect with expression in the larval stage limited to the integument and trachea. In a third instar larva the mRNA was localized to a single layer of epidermal cells immediately underlying the procuticle region of the integument. cDNA or genomic sequences that are highly related to fragments of LcCS-1 were demonstrated in three insect orders, one arachnid and Caenorhabditis elegans, thereby attesting to the importance of this enzyme in these chitin-producing organisms. Bioinformatics has been used to deduce the gene sequence and organization of the highly homologous Drosophila melanogaster orthologue of LcCS-1, DmCS-1.  相似文献   

18.
Hyaluronan (HA) is a large linear polymer of repeating disaccharides of glucuronic acid and GlcNAc. Although HA is widely distributed in vertebrate animals, it has not been found in invertebrates, including insect species. Insects utilize chitin, a repeating beta-1,4-linked homopolymer of GlcNAc, as a major component of their exoskeleton. Recent studies illustrate the similarities in the biosynthetic mechanisms of HA and chitin and suggest that HA synthase (HAS) and chitin synthase have evolved from a common ancestral molecule. Although the biochemical properties and in vivo functions of HAS proteins have been extensively studied, the molecular basis for HA biosynthesis is not completely understood. For example, it is currently not clear if proper chain elongation and secretion of HA require other components in addition to HAS. Here, we demonstrate that a non-HA-synthesizing animal, the fruit fly Drosophila melanogaster, can produce HA in vivo when a single HAS protein is introduced. Expression of the mouse HAS2 gene in Drosophila tissues by the Gal4/UAS (upstream activating sequence) system resulted in massive HA accumulation in the extracellular space and caused various morphological defects. These morphological abnormalities were ascribed to disordered cell-cell communications due to accumulation of HA rather than disruption of heparan sulfate synthesis. We also show that adult wings with HA can hold a high level of water. These findings demonstrate that organisms synthesizing chitin (but not HA) are capable of producing HA that is structurally and functionally relevant to that in mammals. The ability of insect cells to produce HA supports the idea that in vivo HA biosynthesis does not require molecules other than the HAS protein. An alternative model is that Drosophila cells use endogenous components of the chitin biosynthetic machinery to produce and secrete HA.  相似文献   

19.
Evidence that biosynthetic pathways critical to the formation of insect cuticle are retained in continuous insect cell lines opens new possibilities for research on the cuticle system. Recent findings indicate that chitin, molting hormone, and catecholamines are all produced by a vesicle cell line derived from embryos of the cockroach Blattella germanica. The chitin that is formed by this cell line is particulate and does not show the characteristic featherlike crystalline structure found in mature cuticle. The molting hormone is produced as ecdysone and is released into the culture medium. The addition of 20-hydroxyecdysone to the cultures increases the production of chitin fourfold. These responses are similar to those found in insect organ cultures.  相似文献   

20.
Insect cuticle is composed mainly of chitin, a polymer of N-acetylglucosamine, and chitin-binding cuticle proteins. Four major cuticle proteins, BMCP30, 22, 18, and 17, have been previously identified and purified from the larval cuticle of silkworm, B. mori. We analyzed the chitin-binding activity of BMCP30 by use of chitin-affinity chromatography. The pH optimum for the binding of BMCP30 to chitin is 6.4, which corresponds to hemolymph pH. Competition experiments using chitooligosaccharides suggested that BMCP30 recognizes 4-6 mer of N-acetylglucosamine in chitin fiber as a unit for binding. The comparison of the binding properties of BMCP30 with those of BMCP18 showed that their binding activities to chitin are similar in a standard buffer but that BMCP30 binds to chitin more stably than BMCP18 in the presence of urea. BMCPs possess the RR-1 form of the R&R consensus, about 70 amino acids region conserved widely among cuticle proteins mainly from the soft cuticle of many insect and arthropod species. Analysis of the binding activity using deletion mutants of BMCPs revealed that this type of conserved region also functions as the chitin-binding domain, similarly to the RR-2 region previously shown to confer chitin binding. Thus, the extended R&R consensus is the general chitin-binding domain of cuticle proteins in Arthropoda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号