首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-6 signaling via its soluble receptor (sIL-6R) differentially regulates inflammatory chemokine expression and leukocyte apoptosis to coordinate transition from neutrophil to mononuclear cell infiltration. sIL-6R activities may, however, be influenced in vivo by the occurrence of two sIL-6R isoforms that are released as a consequence of differential mRNA splicing (DS) or proteolytic cleavage (PC) of the cognate IL-6R (termed DS- and PC-sIL-6R). Using human peritoneal mesothelial cells and a murine model of peritoneal inflammation, studies described in this work have compared the ability of both isoforms to regulate neutrophil recruitment. In this respect, DS- and PC-sIL-6R were comparable in their activities; however, these studies emphasized that IL-6 trans signaling differentially controls neutrophil-activating CXC chemokine expression. In vitro, stimulation of mesothelial cells with IL-6 in combination with either DS-sIL-6R or PC-sIL-6R showed no induction of CXC chemokine ligand (CXCL)1 (GRO alpha) and CXCL8 (IL-8), whereas both isoforms enhanced CXCL5 (ENA-78) and CXCL6 (granulocyte chemotactic protein-2) expression. Moreover, when complexed with IL-6, both isoforms specifically inhibited the IL-1 beta-induced secretion of CXCL8. These findings were paralleled in vivo, in which induction of peritoneal inflammation in IL-6-deficient (IL-6(-/-)) mice resulted in enhanced keratinocyte-derived chemokine and macrophage-inflammatory protein-2 (the murine equivalent of CXCL1 and CXCL8) levels, but reduced LPS-induced CXC chemokine (the murine equivalent of CXCL5) expression. Reconstitution of IL-6 signaling in IL-6(-/-) mice with IL-6 and its soluble receptor isoforms corrected this chemokine imbalance and suppressed overall neutrophil infiltration. These data confirm that sIL-6R-mediated signaling primarily limits neutrophil influx; however, induction of CXCL5 and CXCL6 may regulate other neutrophil responses.  相似文献   

2.
Although the IL-6-related cytokine oncostatin M (OSM) affects processes associated with disease progression, the specific function of OSM in the face of an inflammatory challenge remains unclear. In this report, a peritoneal model of acute inflammation was used to define the influence of OSM on chemokine-mediated leukocyte recruitment. When compared with wild-type and IL-6-deficient mice, peritoneal inflammation in oncostatin M receptor-beta-deficient (OSMR-KO) mice resulted in enhanced monocytic cell trafficking. In contrast to IL-6-deficient mice, OSMR-KO mice displayed no difference in neutrophil and lymphocyte migration. Subsequent in vitro studies using human peritoneal mesothelial cells and an in vivo appraisal of inflammatory chemokine expression after peritoneal inflammation identified OSM as a prominent regulator of CCL5 expression. Specifically, OSM inhibited IL-1beta-mediated NF-kappaB activity and CCL5 expression in human mesothelial cells. This was substantiated in vivo where peritoneal inflammation in OSMR-KO mice resulted in a temporal increase in both CCL5 secretion and NF-kappaB activation. These findings suggest that IL-6 and OSM individually affect the profile of leukocyte trafficking, and they point to a hitherto unidentified interplay between OSM signaling and the inflammatory activation of NF-kappaB.  相似文献   

3.
Li Q  Ke F  Zhang W  Shen X  Xu Q  Wang H  Yu XZ  Leng Q  Wang H 《PloS one》2011,6(2):e16483

Background

Although increased levels of plasminogen activators have been found in psoriatic lesions, the role of plasmin converted from plasminogen by plasminogen activators in pathogenesis of psoriasis has not been investigated.

Methodology/Principal Findings

Here we examined the contribution of plasmin to amplification of inflammation in patients with psoriasis. We found that plasminogen was diminished, but that the amount and activity of its converted product plasmin were markedly increased in psoriasis. Moreover, annexin II, a receptor for plasmin was dramatically increased in both dermis and epidermis in psoriasis. Plasmin at sites of inflammation was pro-inflammatory, eliciting production of inflammatory factors, including CC chemokine ligand 20 (CCL20) and interleukin-23 (IL-23), that was mediated by the nuclear factor-kappaB (NF-κB) signaling pathway and that had an essential role in the recruitment and activation of pathogenic C-C chemokine receptor type 6 (CCR6)+ T cells. Moreover, intradermal injection of plasmin or plasmin together with recombinant monocyte/macrophage chemotactic protein-1 (MCP-1) resulted in induction of psoriasiform skin inflammation around the injection sites with several aspects of human psoriasis in mice.

Conclusions/Significance

Plasmin converted from plasminogen by plasminogen activators plays an essential role in amplification of psoriasiform skin inflammation in mice, and targeting plasmin receptor - annexin II - may harbor therapeutic potential for the treatment of human psoriasis.  相似文献   

4.
5.
Several pathogenic bacterial species intervene with the mammalian proteolytic plasminogen-plasmin system. Recent developments have been made in understanding the structure and the virulence-associated functions of bacterial plasminogen receptors and activators, in particular by using plasminogen-deficient or transgenic gain-of-function mice. Bacteria can affect the regulation of the plasminogen system by degrading circulating plasmin inhibitors and by influencing the expression levels of mammalian plasminogen activators and activation inhibitors. Interaction with the plasminogen system promotes damage of extracellular matrices as well as bacterial spread and organ invasion during infection, suggesting common mechanisms in migration of eukaryotic and prokaryotic cells.  相似文献   

6.
Endothelin mediates neutrophil recruitment during innate inflammation. Herein we address whether endothelin-1 (ET-1) is involved in neutrophil recruitment in adaptive inflammation in mice, and its mechanisms. Pharmacological treatments were used to determine the role of endothelin in neutrophil recruitment to the peritoneal cavity of mice challenged with antigen (ovalbumin) or ET-1. Levels of ET-1, tumour necrosis factor α (TNFα), and CXC chemokine ligand 1 (CXCL1) were determined by enzyme-linked immunosorbent assay. Neutrophil migration and flow cytometry analyses were performed 4 h after the intraperitoneal stimulus. ET-1 induced dose-dependent neutrophil recruitment to the peritoneal cavity. Treatment with the non-selective ET(A)/ET(B) receptor antagonist bosentan, and selective ET(A) or ET(B) receptor antagonists BQ-123 or BQ-788, respectively, inhibited ET-1- and ovalbumin-induced neutrophil migration to the peritoneal cavity. In agreement with the above, the antigen challenge significantly increased levels of ET-1 in peritoneal exudates. The ET-1- and ovalbumin-induced neutrophil recruitment were reduced in TNFR1 deficient mice, and by treatments targeting CXCL1 or CXC chemokine receptor 2 (CXCR2); further, treatment with bosentan, BQ-123, or BQ-788 inhibited ET-1- and antigen-induced production of TNFα and CXCL1. Furthermore, ET-1 and ovalbumin challenge induced an increase in the number of cells expressing the Gr1(+) markers in the granulocyte gate, CD11c(+) markers in the monocyte gate, and CD4(+) and CD45(+) (B220) markers in the lymphocyte gate in an ET(A)- and ET(B)-dependent manner, as determined by flow cytometry analysis, suggesting that ET-1 might be involved in the recruitment of neutrophils and other cells in adaptive inflammation. Therefore, the present study demonstrates that ET-1 is an important mediator for neutrophil recruitment in adaptive inflammation via TNFα and CXCL1/CXCR2-dependent mechanism.  相似文献   

7.
Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin and can trigger the degradation of extracellular matrix proteins. In the nervous system, under noninflammatory conditions, tPA contributes to excitotoxic neuronal death, probably through degradation of laminin. To evaluate the contribution of extracellular proteolysis in inflammatory neuronal degeneration, we performed sciatic nerve injury in mice. Proteolytic activity was increased in the nerve after injury, and this activity was primarily because of Schwann cell-produced tPA. To identify whether tPA release after nerve damage played a beneficial or deleterious role, we crushed the sciatic nerve of mice deficient for tPA. Axonal demyelination was exacerbated in the absence of tPA or plasminogen, indicating that tPA has a protective role in nerve injury, and that this protective effect is due to its proteolytic action on plasminogen. Axonal damage was correlated with increased fibrin(ogen) deposition, suggesting that this protein might play a role in neuronal injury. Consistent with this idea, the increased axonal degeneration phenotype in tPA- or plasminogen-deficient mice was ameliorated by genetic or pharmacological depletion of fibrinogen, identifying fibrin as the plasmin substrate in the nervous system under inflammatory axonal damage. This study shows that fibrin deposition exacerbates axonal injury, and that induction of an extracellular proteolytic cascade is a beneficial response of the tissue to remove fibrin. tPA/plasmin-mediated fibrinolysis may be a widespread protective mechanism in neuroinflammatory pathologies.  相似文献   

8.
Guo Y  Li J  Hagström E  Ny T 《PloS one》2011,6(9):e24774
Plasmin has been proposed to be an important mediator during inflammation/infection. In this study, by using mice lacking genes for plasminogen, tissue-type plasminogen activator (tPA), and urokinase-type PA (uPA), we have investigated the functional roles of active plasmin in infection and sepsis. Two models were used: an infection model by intravenous injection of 1×107 CFU of S. aureus, and a sepsis model by intravenous injection of 1.6×108 CFU of S. aureus. We found that in the infection model, wild-type (WT) mice showed significantly higher survival rates than plasminogen-deficient (plg-/-) mice. However, in the sepsis model, plg-/- or tPA-/-/uPA-/- mice showed the highest survival rate whereas WT and tPA+/-/uPA+/- mice showed the lowest survival rate, and plg+/-, tPA-/-, and uPA-/- mice had an intermediate survival rate. These results indicate that the levels of active plasmin are critical in determining the survival rate in the sepsis, partly through high levels of inflammatory cytokines and enhanced STAT3 activation. We conclude that plasmin is beneficial in infection but promotes the production of inflammatory cytokines in sepsis that may cause tissue destruction, diminished neutrophil function, and an impaired capacity to kill bacteria which eventually causes death of these mice.  相似文献   

9.
Sepsis is associated with enhanced production of tissue-type plasminogen activator (tPA). We investigated the function of endogenous tPA in the immune responses to Escherichia coli-induced abdominal sepsis using tPA gene-deficient (tPA(-/-)) and normal wild-type (WT) mice. tPA(-/-) mice demonstrated an impaired defense against E. coli peritonitis as indicated by higher bacterial loads at the primary site of the infection, enhanced dissemination, and reduced survival. The protective function of tPA was independent of plasmin since plasminogen gene-deficient (Plg(-/-)) mice were indistinguishable from WT mice. Relative to WT mice, tPA(-/-) mice demonstrated similar neutrophil counts in the peritoneal cavity despite much higher bacterial loads and higher local concentrations of neutrophil attracting chemokines, suggesting a reduced migratory response. In line, tPA(-/-) mice demonstrated a reduced thioglycolate-induced neutrophil influx into the peritoneal cavity and i.p. injection of WT mice with a replication-defective adenoviral vector expressing tPA caused an enhanced cell migration to the peritoneal cavity during E. coli peritonitis. These findings identify a novel protective function of tPA in abdominal sepsis caused by E. coli that seems independent of its role in the generation of plasmin.  相似文献   

10.
Plasminogen-deficient mice hold great promise as tools for analyzing the contribution of plasminogen activators produced by infectious agents to pathogenesis. However, the pathology caused by congenital plasminogen deficiency complicates the interpretation of infection experiments conducted with these animals. This pathology, the most prominent features of which are poor weight gain, wasting after about 60 days of age, and shortened lifespan, results from the inability of the mice to clear small fibrin thrombi. This article describes strategies for distinguishing the contribution of this pathology from the direct effects of depriving infectious agents of plasminogen. These strategies depend on the use of mouse genotypes in which the correlation of plasminogen deficiency with fibrin-dependent pathology is broken. Mice with plasminogen activator deficiencies are unable to generate plasmin and develop pathologies identical to those seen in plasminogen-deficient mice. However, unlike plasminogen-deficient mice, they do make plasminogen available to the infectious agent. Fibrinogen-deficient mice also deficient for plasminogen do not develop the pathology typical of plasminogen deficiency. These mice allow examination of plasminogen deficiency in the absence of fibrin-dependent pathology. Use of fibrinogen-deficient mice is complicated by the possibility that fibrin may be the key substrate of plasmin generated by the infectious agent.  相似文献   

11.
12.
IL-17 is a newly discovered cytokine implicated in the regulation of hemopoiesis and inflammation. Because IL-17 production is restricted to activated T lymphocytes, the effects exerted by IL-17 may help one to understand the contribution of T cells to the inflammatory response. We investigated the role of IL-17 in leukocyte recruitment into the peritoneal cavity. Leukocyte infiltration in vivo was assessed in BALB/Cj mice. Effects of IL-17 on chemokine generation in vitro were examined in human peritoneal mesothelial cells (HPMC). Administration of IL-17 i.p. resulted in a selective recruitment of neutrophils into the peritoneum and increased levels of KC chemokine (murine homologue of human growth-related oncogene alpha (GROalpha). Pretreatment with anti-KC Ab significantly reduced the IL-17-driven neutrophil accumulation. Primary cultures of HPMC expressed IL-17 receptor mRNA. Exposure of HPMC to IL-17 led to a dose- and time-dependent induction of GROalpha mRNA and protein. Combination of IL-17 together with TNF-alpha resulted in an increased stability of GROalpha mRNA and synergistic release of GROalpha protein. Anti-IL-17 Ab blocked the effects of IL-17 in vitro and in vivo. IL-17 is capable of selectively recruiting neutrophils into the peritoneal cavity via the release of neutrophil-specific chemokines from the peritoneal mesothelium.  相似文献   

13.
Neutrophils are critical for the rapid eradication of bacterial pathogens, but they also contribute to the development of multiple organ failure in sepsis. We hypothesized that increasing early recruitment of neutrophils to the focus of infection will increase bacterial clearance and improve survival. Sepsis was induced in mice, using cecal ligation and puncture (CLP); blood samples were collected at 6 and 24 h; and survival was followed for 28 d. In separate experiments, peritoneal bacteria and inflammatory cells were measured. Septic mice predicted to die based on IL-6 levels (Die-P) had higher concentrations of CXCL1 and CXCL2 in the peritoneum and plasma compared with those predicted to live (Live-P). At 6 h, Live-P and Die-P had equivalent numbers of peritoneal neutrophils and bacteria. In Die-P mice the number of peritoneal bacteria increased between 6 and 24 h post-CLP, whereas in Live-P it decreased. The i.p. injection of CXCL1 and CXCL2 in naive mice resulted in local neutrophil recruitment. When given immediately after CLP, CXC chemokines increased peritoneal neutrophil recruitment at 6 h after CLP. This early increase in neutrophils induced by exogenous chemokines resulted in significantly fewer peritoneal bacteria by 24 h [CFU (log) = 6.04 versus 4.99 for vehicle versus chemokine treatment; p < 0.05]. Chemokine treatment significantly improved survival at both 5 d (40 versus 72%) and 28 d (27 versus 52%; p < 0.02 vehicle versus chemokines). These data demonstrate that early, local treatment with CXC chemokines enhances neutrophil recruitment and clearance of bacteria as well as improves survival in the CLP model of sepsis.  相似文献   

14.
Clinical trials revealed beneficial effects of the broad-spectrum serine protease inhibitor aprotinin on the prevention of ischemia-reperfusion (I/R) injury. The underlying mechanisms remained largely unclear. Using in vivo microscopy on the cremaster muscle of male C57BL/6 mice, aprotinin as well as inhibitors of the serine protease plasmin including tranexamic acid and ε-aminocaproic acid were found to significantly diminish I/R-elicited intravascular firm adherence and (subsequent) transmigration of neutrophils. Remodeling of collagen IV within the postischemic perivenular basement membrane was almost completely abrogated in animals treated with plasmin inhibitors or aprotinin. In separate experiments, incubation with plasmin did not directly activate neutrophils. Extravascular, but not intravascular administration of plasmin caused a dose-dependent increase in numbers of firmly adherent and transmigrated neutrophils. Blockade of mast cell activation as well as inhibition of leukotriene synthesis or antagonism of the platelet-activating-factor receptor significantly reduced plasmin-dependent neutrophil responses. In conclusion, our data suggest that extravasated plasmin(ogen) mediates neutrophil recruitment in vivo via activation of perivascular mast cells and secondary generation of lipid mediators. Aprotinin as well as the plasmin inhibitors tranexamic acid and ε-aminocaproic acid interfere with this inflammatory cascade and effectively prevent postischemic neutrophil responses as well as remodeling events within the vessel wall.  相似文献   

15.
Osteopontin (OPN) is an integrin-binding inflammatory cytokine that undergoes polymerization catalyzed by transglutaminase 2. We have previously reported that polymeric OPN (polyOPN), but not unpolymerized OPN (OPN*), attracts neutrophils in vitro by presenting an acquired binding site for integrin α9β1. Among many in vitro substrates for transglutaminase 2, only a few have evidence for in vivo polymerization and concomitant function. Although polyOPN has been identified in bone and aorta, the in vivo functional significance of polyOPN is unknown. To determine whether OPN polymerization contributes to neutrophil recruitment in vivo, we injected OPN* into the peritoneal space of mice. Polymeric OPN was detected by immunoblotting in the peritoneal wash of mice injected with OPN*, and both intraperitoneal and plasma OPN* levels were higher in mice injected with a polymerization-incompetent mutant, confirming that OPN* polymerizes in vivo. OPN* injection induced neutrophil accumulation, which was significantly less following injection of a mutant OPN that was incapable of polymerization. The importance of in vivo polymerization was further confirmed with cystamine, a transglutaminase inhibitor, which blocked the polymerization and attenuated OPN*-mediated neutrophil recruitment. The thrombin-cleaved N-terminal fragment of OPN, another ligand for α9β1, was not responsible for neutrophil accumulation because a thrombin cleavage-incompetent mutant recruited similar numbers of neutrophils as wild type OPN*. Neutrophil accumulation in response to both wild type and thrombin cleavage-incompetent OPN* was reduced in mice lacking the integrin α9 subunit in leukocytes, indicating that α9β1 is required for polymerization-induced recruitment. We have illustrated a physiological role of molecular polymerization by demonstrating acquired chemotactic properties for OPN.  相似文献   

16.
The endothelium is the primary barrier to leukocyte recruitment at sites of inflammation. Neutrophil recruitment is directed by transendothelial gradients of IL-8 that, in vivo, are bound to the endothelial cell surface. We have investigated the identity and function of the binding site(s) in an in vitro model of neutrophil transendothelial migration. In endothelial culture supernatants, IL-8 was detected in a trimolecular complex with heparan sulfate and syndecan-1. Constitutive shedding of IL-8 in this form was increased in the presence of a neutralizing Ab to plasminogen activator inhibitor-1 (PAI-1), indicating a role for endothelial plasminogen activator in the shedding of IL-8. Increased shedding of IL-8/heparan sulfate/syndecan-1 complexes was accompanied by inhibition of neutrophil transendothelial migration, and aprotinin, a potent plasmin inhibitor, reversed this inhibition. Platelets, added as an exogenous source of PAI-1, had no effect on shedding of the complexes or neutrophil migration. Our results indicate that IL-8 is immobilized on the endothelial cell surface through binding to syndecan-1 ectodomains, and that plasmin, generated by endothelial plasminogen activator, induces the shedding of this form of IL-8. PAI-1 appears to stabilize the chemoattractant form of IL-8 at the cell surface and may represent a therapeutic target for novel anti-inflammatory strategies.  相似文献   

17.
PURPOSE OF REVIEW: Since the homology between apolipoprotein(a) (apo(a)) and plasminogen was discovered in 1987, the role of lipoprotein(a) (Lp(a)) as an inhibitor of the normal fibrinolytic role of plasmin(ogen) has been a major research focus. In this review we summarize recent basic research aimed at identifying mechanisms by which Lp(a) can either inhibit fibrinolysis or promote coagulation, as well as recent clinical studies of Lp(a) as a risk factor for thrombosis either in the presence or absence of atherosclerosis. RECENT FINDINGS: It has recently been reported that the inhibition of plasminogen activation by apo(a) results from the interaction of apo(a) with the ternary complex of tissue-type plasminogen activator, plasminogen and fibrin, rather than competition of apo(a) and plasminogen for binding sites on fibrin. Lp(a) species containing smaller apo(a) isoforms bind more avidly to fibrin and are better inhibitors of plasminogen activation. Recent clinical studies have provided strong evidence that Lp(a), either alone or in synergy with other thrombotic risk factors, significantly increases the risk of venous thromboembolism and ischemic stroke. SUMMARY: Lp(a) both attenuates fibrinolysis, through inhibition of plasminogen activation, and promotes coagulation, through alleviation of extrinsic pathway inhibition. Further basic and clinical studies are required to more clearly define the role of Lp(a) in thrombotic disorders, and to determine the extent to which thrombotic risk is dependent on apo(a) isoform size.  相似文献   

18.
The chemokine regulated on activation normal T cells expressed and secreted (RANTES) has been implicated in eosinophil chemotaxis in asthma and allergic diseases, which are thought to be T helper (Th) type 2-dominated diseases. However, adoptive transfer of Th1 cells in mice upregulates RANTES gene expression in the lung, and increased RANTES expression has been documented in several Th1 cell-dominated conditions that are associated with neutrophilia. The in vivo role of RANTES in the pathogenesis of disease processes is not well understood. To determine the effect of RANTES expression alone in vivo, we generated transgenic mice that overexpress RANTES specifically in the lung in an inducible fashion. The airways of the transgenic mice overexpressing RANTES displayed a significant increase in neutrophil infiltration compared with that in control mice. The increased airway neutrophilia was also evident when the transgenic mice were tested in a murine model of allergic airway inflammation. RANTES expression also induced expression of the chemokine genes macrophage inflammatory protein-2, 10-kDa interferon-gamma-inducible protein, and monocyte chemoattractant protein-1 in the lungs of the transgenic mice. Our studies highlight a hitherto unappreciated role for RANTES in neutrophil trafficking during inflammation. Thus increased RANTES expression, as observed during respiratory viral infections, may play an important role in the associated neutrophilia and exacerbations of asthma.  相似文献   

19.
A hallmark of autoimmunity and other chronic diseases is the overexpression of chemokines resulting in a detrimental local accumulation of proinflammatory immune cells. Chemokines play a pivotal role in cellular recruitment through interactions with both cell surface receptors and glycosaminoglycans (GAGs). Anti-inflammatory strategies aimed at neutralizing the chemokine system have to-date targeted inhibition of the receptor-ligand interaction with receptor antagonists. In this study, we describe a novel strategy to modulate the inflammatory process in vivo through mutation of the essential heparin-binding site of a proinflammatory chemokine, which abrogates the ability of the protein to form higher-order oligomers, but retains receptor activation. Using well-established protocols to induce inflammatory cell recruitment into the peritoneal cavity, bronchoalveolar air spaces, and CNS in mice, this non-GAG binding variant of RANTES/CCL5 designated [44AANA47]-RANTES demonstrated potent inhibitory capacity. Through a combination of techniques in vitro and in vivo, [44AANA47]-RANTES appears to act as a dominant-negative inhibitor for endogenous RANTES, thereby impairing cellular recruitment, not through a mechanism of desensitization. [44AANA47]-RANTES is unable to form higher-order oligomers (necessary for the biological activity of RANTES in vivo) and importantly forms nonfunctional heterodimers with the parent chemokine, RANTES. Therefore, although retaining receptor-binding capacity, altering the GAG-associated interactive site of a proinflammatory chemokine renders it a dominant-negative inhibitor, suggesting a powerful novel approach to generate disease-modifying anti-inflammatory reagents.  相似文献   

20.
Recruitment of the serine protease plasmin is central to the pathogenesis of many bacterial species, including Group A streptococcus (GAS), a leading cause of morbidity and mortality globally. A key process in invasive GAS disease is the ability to accumulate plasmin at the cell surface, however the role of host activators of plasminogen in this process is poorly understood. Here, we demonstrate for the first time that the urokinase-type plasminogen activator (uPA) contributes to plasmin recruitment and subsequent invasive disease initiation in vivo. In the absence of a source of host plasminogen activators, streptokinase (Ska) was required to facilitate cell surface plasmin acquisition by GAS. However, in the absence of Ska, host activators were sufficient to promote cell surface plasmin acquisition by GAS strain 5448 during incubation with plasminogen or human plasma. Furthermore, GAS were able mediate a significant increase in the activation of zymogen pro-uPA in human plasma. In order to assess the contribution of uPA to invasive GAS disease, a previously undescribed transgenic mouse model of infection was employed. Both C57/black 6J, and AlbPLG1 mice expressing the human plasminogen transgene, were significantly more susceptible to invasive GAS disease than uPA−/− mice. The observed decrease in virulence in uPA−/−mice was found to correlate directly with a decrease in bacterial dissemination and reduced cell surface plasmin accumulation by GAS. These findings have significant implications for our understanding of GAS pathogenesis, and research aimed at therapeutic targeting of plasminogen activation in invasive bacterial infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号