首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In early life, a high susceptibility to infectious diseases as well as a poor capacity to respond to vaccines are generally observed as compared with observations in adults. The mechanisms underlying immune immaturity have not been fully elucidated and could be due to the immaturity of the T/B cell responses and/or to a defect in the nature and quality of Ag presentation by the APC. This prompted us to phenotypically and functionally characterize early life murine dendritic cells (DC) purified from spleens of 7-day-old mice. We showed that neonatal CD11c(+) DC express levels of costimulatory molecules and MHC molecules similar to those of adult DC and are able to fully maturate after LPS activation. Furthermore, we demonstrated that neonatal DC can efficiently take up, process, and present Ag to T cells in vitro and induce specific CTL responses in vivo. Although a reduced number of these cells was observed in the spleen of neonatal mice as compared with adults, this study clearly shows that neonatal DC have full functional capacity and may well prime Ag-specific naive T cells in vivo.  相似文献   

2.
We have examined the intranasal administration of a vaccine against Mycobacterium tuberculosis (M.tb) consisting of the mucosal adjuvant LTK63 and the Ag Ag85B-ESAT-6. Vaccination with LTK63/Ag85B-ESAT-6 gave a strong and sustained Th1 response mediated by IFN-gamma-secreting CD4 cells, which led to long-lasting protection against tuberculosis, equivalent to that observed with bacillus Calmette-Guérin (BCG) or Ag85B-ESAT-6 in dimethyldioctadecylammonium bromide/monophosphoryl lipid A. Because a crucial element of novel vaccine strategies is the ability to boost BCG-derived immunity, we also tested whether LTK63/Ag85B-ESAT-6 could act as a BCG booster vaccine in BCG-vaccinated mice. We found that vaccinating with LTK63/Ag85B-ESAT-6 strongly boosted prior BCG-stimulated immunity. Compared with BCG-vaccinated nonboosted mice, we observed that infection with M.tb led to a significant increase in anti-M.tb-specific CD4 T cells in the lungs of LTK63/Ag85B-ESAT-6-boosted animals. This correlated with a significant increase in the protection against M.tb in LTK63/Ag85B-ESAT-6-boosted mice, compared with BCG-vaccinated animals. Thus, LTK63/Ag85B-ESAT-6 represents an efficient preventive vaccine against tuberculosis with a strong ability to boost prior BCG immunity.  相似文献   

3.
Bioneedles are small hollow sugar based needles administered with a simple compressed air device. In the present study we investigate how incorporation of a subunit vaccine based on TB vaccine hybrid Ag85B-ESAT-6 adjuvated with CAF01 into Bioneedles affects its immunogenicity as well as its ability to protect against TB in a mouse model. The CMI response measured by IFN-γ and antigen specific CD4+ T-cells was, two weeks after the last vaccination, significantly lower in the group immunized with Bioneedle-incorporated vaccine compared to the conventional vaccine, using syringe and needle. However, at four, nine and 52 weeks after vaccination we observed similar high IFN-γ levels in the Bioneedle group and the group vaccinated using syringe and needle and comparable levels of antigen specific T-cells. Furthermore, the protective efficacy for the two vaccination methods was comparable and similar to BCG vaccination both six and 52 weeks after vaccination. These results therefore advocate the further development of the Bioneedle devises and applicators for the delivery of human vaccines.  相似文献   

4.
J Davila  LA McNamara  Z Yang 《PloS one》2012,7(7):e40882
The Bacille-Calmette Guérin (BCG) vaccine does not provide consistent protection against adult pulmonary tuberculosis (TB) worldwide. As novel TB vaccine candidates advance in studies and clinical trials, it will be critically important to evaluate their global coverage by assessing the impact of host and pathogen variability on vaccine efficacy. In this study, we focus on the impact that host genetic variability may have on the protective effect of TB vaccine candidates Ag85B-ESAT-6, Ag85B-TB10.4, and Mtb72f. We use open-source epitope binding prediction programs to evaluate the binding of vaccine epitopes to Class I HLA (A, B, and C) and Class II HLA (DRB1) alleles. Our findings suggest that Mtb72f may be less consistently protective than either Ag85B-ESAT-6 or Ag85B-TB10.4 in populations with a high TB burden, while Ag85B-TB10.4 may provide the most consistent protection. The findings of this study highlight the utility of bioinformatics as a tool for evaluating vaccine candidates before the costly stages of clinical trials and informing the development of new vaccines with the broadest possible population coverage.  相似文献   

5.
Dendritic cells (DCs) loaded in vitro with Ag are used as cellular vaccines to induce Ag-specific immunity. These cells are thought to be responsible for direct stimulation of Ag-specific T cells, which may subsequently mediate immunity. In this study, in transgenic mouse models with targeted MHC class II expression specifically on DCs, we show that the DC vaccine is responsible only for partial CD4(+) T cell activation, but to obtain optimal expansion of T cells in vivo, participation of endogenous (resident) DCs, but not endogenous B cells, is crucial. Transfer of Ag to endogenous DCs seems not to be mediated by simple peptide diffusion, but rather by DC-DC interaction in lymph nodes as demonstrated by histological analysis. In contrast, injection of apoptotic or necrotic DC vaccines does not induce T cell responses, but rather represents an immunological null event, which argues that viability of DC vaccines can be crucial for initial triggering of T cells. We propose that viable DCs from the DC vaccine must migrate to the draining lymph nodes and initiate a T cell response, which thereafter requires endogenous DCs that present transferred Ag in order induce optimal T cell expansion. These results are of specific importance with regard to the applicability of DC vaccinations in tumor patients, where the function of endogenous DCs is suppressed by either tumors or chemotherapy.  相似文献   

6.
MHC class I-restricted T cell epitopes lack immunogenicity unless aided by IFA or CFA. In an attempt to circumvent the known inflammatory side effects of IFA and CFA, we analyzed the ability of immunostimulatory CpG-DNA to act as an adjuvant for MHC class I-restricted peptide epitopes. Using the immunodominant CD8 T cell epitopes, SIINFEKL from OVA or KAVYNFATM (gp33) from lymphocytic choriomeningitis virus glycoprotein, we observed that CpG-DNA conveyed immunogenicity to these epitopes leading to primary induction of peptide-specific CTL. Furthermore, vaccination with the lymphocytic choriomeningitis virus gp33 peptide triggered not only CTL but also protective antiviral defense. We also showed that MHC class I-restricted peptides are constitutively presented by immature dendritic cells (DC) within the draining lymph nodes but failed to induce CTL responses. The use of CpG-DNA as an adjuvant, however, initiated peptide presenting immature DC progression to professional licensed APC. Activated DC induced cytolytic CD8 T cells in wild-type mice and also mice deficient of Th cells or CD40 ligand. CpG-DNA thus incites CTL responses toward MHC class I-restricted T cell epitopes in a Th cell-independent manner. Overall, these results provide new insights into CpG-DNA-mediated adjuvanticity and may influence future vaccination strategies for infectious and perhaps tumor diseases.  相似文献   

7.
Mycobacteria and their cell wall components have been used with varying degrees of success to treat tumors, and Mycobacterium bovis BCG remains in use as a standard treatment for superficial bladder cancer. Mycobacterial immunotherapy is very effective in eliciting local immune responses against solid tumors when administered topically; however, its effectiveness in eliciting adaptive immune responses has been variable. Using a subcutaneous mouse thymoma model, we investigated whether immunotherapy with Mycobacterium smegmatis, a fast-growing mycobacterium of low pathogenicity, induces a systemic adaptive immune response. We found that M. smegmatis delivered adjacent to the tumor site elicited a systemic anti-tumor immune response that was primarily mediated by CD8+ T cells. Of note, we identified a CD11c+CD40intCD11bhiGr-1+ inflammatory DC population in the tumor-draining lymph nodes that was found only in mice treated with M. smegmatis. Our data suggest that, rather than rescuing the function of the DC already present in the tumor and/or tumor-draining lymph node, M. smegmatis treatment may promote anti-tumor immune responses by inducing the involvement of a new population of inflammatory cells with intact function.  相似文献   

8.
The intracytosolic niche for replication of Listeria monocytogenes (Lm) facilitates delivery of bacteria-derived Ags into the MHC class I pathway for subsequent stimulation of CD8 effector T cells. Using Lm strains that are equivalent for in vivo virulence yet express marked differences in the level of secretion of a protective target Ag, we have evaluated how these specific differences in secretion levels influences the magnitude and effector function of Ag-specific CD8 T cell responses following Lm injection. Immunization with low doses of a hyperantigen-secreting Lm strain stimulated enhanced target-Ag specific CD8 T cell responses compared with the magnitude stimulated following immunization with the same dose of wild-type Lm. The enhanced determinant-specific response was also evident by in vivo CTL activity, increased numbers of memory cells 4 wk following immunization, and enhanced antilisterial protection following a challenge infection. Initiation of antibiotic treatment 24 h following infection with wild-type Lm markedly reduced the magnitude of the effector CD8 T cell response. In contrast, antibiotic treatment initiated 24 h following immunization with the hyperantigen secreting strain of Lm did not impact the frequency of the target-Ag specific CD8 T cells. Thus, immunization with a low dose of a hyperantigen secreting Lm strain, followed by antibiotic treatment to limit the extent of the infection, may represent a safe strategy for the stimulation of enhanced effector CD8 T cell responses to specific Ag by a rLm vaccine.  相似文献   

9.
Dendritic cells (DCs) are bone marrow-derived APCs that display unique properties aimed at stimulating naive T cells. Several members of the TNF/TNFR families have been implicated in T cell functions. In this study, we examined the role that Ox40 costimulation might play on the ability of DCs to regulate CD4(+) and CD8(+) T cell responses in vivo. Administration of anti-mouse Ox40 mAb enhanced the Th response induced by immunization with Ag-pulsed DCs, and introduced a bias toward a Th1 immune response. However, anti-Ox40 treatment enhanced the production of Th2 cytokines in IFN-gamma(-/-) mice after immunization with Ag-pulsed DCs, suggesting that the production of IFN-gamma during the immune response could interfere with the development of Th2 lymphocytes induced by DCs. Coadministration of anti-Ox40 with DCs during Ag rechallenge enhanced both Th1 and Th2 responses induced during a primary immunization with DCs, and did not reverse an existing Th2 response. This suggests that Ox40 costimulation amplifies an ongoing immune response, regardless of Th differentiation potential. In an OVA-TCR class II-restricted adoptive transfer system, anti-Ox40 treatment greatly enhanced the level of cytokine secretion per Ag-specific CD4(+) T cell induced by immunization with DCs. In an OVA-TCR class I-restricted adoptive transfer system, administration of anti-Ox40 strongly enhanced expansion, IFN-gamma secretion, and cytotoxic activity of Ag-specific CD8(+) T cells induced by immunization with DCs. Thus, by enhancing immune responses induced by DCs in vivo, the Ox40 pathway might be a target for immune intervention in therapeutic settings that use DCs as Ag-delivery vehicles.  相似文献   

10.
Modalities for inducing long-lasting immune responses are essential components of vaccine design. Most currently available immunological adjuvants empirically used for this purpose cause some inflammation, limiting clinical acceptability. We show that pentoxifylline (PF), a phosphodiesterase (PDE) inhibitor in common clinical use, enhances long-term persistence of T cell responses, including protective responses to a bacterial immunogen, Salmonella typhimurium, via a cAMP-dependent protein kinase A-mediated effect on T cells if given to mice for a brief period during immunization. PF inhibits activation-mediated loss of superantigen-reactive CD4 as well as CD8 T cells in vivo without significantly affecting their activation, and inhibits activation-induced death and caspase induction in stimulated CD4 as well as CD8 T cells in vitro without preventing the induction of activation markers. Consistent with this ability to prevent activation-induced death in not only CD4 but also CD8 T cells, PF also enhances the persistence of CD8 T cell responses in vivo. Thus, specific inhibition of activation-induced T cell apoptosis transiently during immune priming is likely to enhance the persistence of CD4 and CD8 T cell responses to vaccination, and pharmacological modulators of the cAMP pathway already in clinical use can be used for this purpose as immunological adjuvants.  相似文献   

11.
We have developed an individualized melanoma vaccine based on autologous dendritic cells (DCs) transfected with autologous tumor-mRNA. The vaccine targets the unique spectrum of tumor antigens in each patient and may recruit multiple T cell clones. In a recent phase I/II trial, we demonstrated T cell responses against vaccine antigens in 9/19 patients evaluable by T cell assays. Here, we report a follow-up study that was conducted to characterize interesting T cell responses and to investigate the effects of long-term booster vaccination. Two patients were selected for continued vaccine therapy. The clinical follow-up suggested a favorable clinical development in both patients. The immunological data (T cell proliferation/IFNgamma ELISPOT/Bioplex cytokine assays) indicated sustained T cell responses and suggested an enhancing effect of booster vaccinations. Both CD4(+) and CD8(+) T cell responses were demonstrated. From post-vaccination samples, we generated 39 T cell clones that responded specifically to stimulation by mRNA-transfected DCs and 12 clones that responded to mock-transfected DCs. These data clearly indicate a two-component vaccine response, against transfected and non-transfected antigens. T cell receptor (TCR) clonotype mapping, performed on 11 tDC-specific clones, demonstrated that 10/11 clones had different TCRs. The results thus indicate a broad spectrum T cell response against antigens encoded by the transfected tumor-mRNA. We generally observed mixed Th1/Th2 cytokine profiles, even in T cell clones that were confirmed to be derived from a single cell. This finding suggests that cytokine patterns after cancer vaccination may be more complex than indicated by the classic Th1/Th2 dichotomy.  相似文献   

12.
Dendritic cells (DC) manipulated ex vivo can induce tumor immunity in experimental murine tumor models. To improve DC-based tumor vaccination, we studied whether DC maturation affects the T cell-activating potential in vitro and the induction of tumor immunity in vivo. Maturation of murine bone marrow-derived DC was induced by GM-CSF plus IL-4 alone or by further addition of TNF-alpha or a cytidine-phosphate-guanosine (CpG)-containing oligonucleotide (ODN-1826), which mimics the immunostimulatory effect of bacterial DNA. Flow cytometric analysis of costimulatory molecules and MHC class II showed that DC maturation was stimulated most by ODN-1826, whereas TNF-alpha had an intermediate effect. The extent of maturation correlated with the secretion of IL-12 and the induction of alloreactive T cell proliferation. In BALB/c mice, s.c. injection of colon carcinoma cells resulted in rapidly growing tumors. In this model, CpG-ODN-stimulated DC cocultured with irradiated tumor cells also induced prophylactic protection most effectively and were therapeutically effective when administered 3 days after tumor challenge. Thus, CpG-ODN-enhanced DC maturation may represent an efficient means to improve clinical tumor vaccination.  相似文献   

13.
The aim of the study is to characterize the phenotypes of CD4+ CD25+ T regulatory cells within the liver granulomas and association with both Foxp-3 gene expression and splenic cytokines. Naïve C57BL/6 mice were intravenously injected with multiple doses of the soluble egg antigen (SEA) 7 days before cercarial infection. The immunized and infected control groups were sacrificed 8 and 16 weeks post-infection (PI). Histopathology, parasitological parameters, splenic phenotypes for T regulatory cells, the FOXP-3 expression in hepatic granuloma using real-time PCR, and the associated splenic cytokines were studied. Histopathological examination of the liver revealed remarkable increase in degenerated ova within hepatic granuloma which decreased in diameter at weeks 8 and 16 PI (P<0.01). The percentage of T regulatory cells (CD4+ CD25+) increased significantly (P<0.01) in the immunized group compared to the infected control at weeks 8 and 16 PI. The FOXP-3 expression in hepatic granulomas increased from 10 at week 8 to 30 fold at week 16 PI in the infected control group. However, its expression in the immunized group showed an increase from 30 at week 8 to 70 fold at week 16 PI. The splenic cytokine levels of pro-inflammatory cytokines, IFN-γ, IL-4, and TNF-α, showed significant decreases (P<0.05) compared to the infected control group. In conclusion, the magnitude and phenotype of the egg-induced effects on T helper responses were found to be controlled by a parallel response within the T regulatory population which provides protection in worm parasite-induced immunopathology.  相似文献   

14.
15.
Bromelain modulates T cell and B cell immune responses in vitro and in vivo   总被引:3,自引:0,他引:3  
The ability to modulate immune responses is a major aim of many vaccine and immunotherapeutic development programs. Bromelain, a mixture of cysteine proteases, modulates immunological responses and has been proposed to be of clinical use. However, the identity of the immune cells affected by bromelain and the specific cellular functions that are altered remain poorly understood. To address these shortcomings in our knowledge, we have used both in vitro and in vivo immunological assays to study the effects of bromelain. We found that bromelain enhanced T cell receptor (TCR) and anti-CD28-mediated T cell proliferation in splenocyte cultures by increasing the costimulatory activity of accessory cell populations. However, despite increased T cell proliferation, bromelain concomitantly decreased IL-2 production in splenocyte cultures. Additionally, bromelain did not affect TCR and CD28-induced proliferation of highly purified CD4+ T cells, but did inhibit IL-2 production by these cells. In vivo, bromelain enhanced T-cell-dependent, Ag-specific, B cell antibody responses. Again, bromelain induced a concomitant decrease in splenic IL-2 mRNA accumulation in immunized mice. Together, these data show that bromelain can simultaneously enhance and inhibit T cell responses in vitro and in vivo via a stimulatory action on accessory cells and a direct inhibitory action on T cells. This work provides important insights into the immunomodulatory activity of bromelain and has important implications for the use of exogenous cysteine proteases as vaccine adjuvants or immunomodulatory agents.  相似文献   

16.
The duration of Ag expression in vivo has been reported to have a minimal impact on both the magnitude and kinetics of contraction of a pathogen-induced CD8(+) T cell response. In this study, we controlled the duration of Ag expression by excising the ear pinnae following intradermal ear pinnae DNA immunization. This resulted in decreased magnitude, accelerated contraction and differentiation, and surprisingly greater secondary CD8(+) T cell responses. Furthermore, we found delayed and prolonged Ag presentation in the immunized mice; however, this presentation was considerably decreased when the depot Ag was eliminated. These findings suggest that the magnitude and the contraction phase of the CD8(+) T cell response following intradermal DNA immunization is regulated by the duration rather than the initial exposure to Ag.  相似文献   

17.
The survival of dendritic cells (DC) in vivo determines the duration of Ag presentation and is critical in determining the strength and magnitude of the resulting T cell response. We used a mouse model to show that Ag-loaded C57BL/6 DC (MHC class II(+/+) (MHC II(+/+))) that reach the lymph node survived longer than Ag-loaded MHC II(-/-) DC, with the numbers of C57BL/6 DC being approximately 2.5-fold the number of the MHC II(-/-) DC by day 4 and approximately 5-fold by day 7. The differential survival of DC in vivo was not affected by low doses of LPS, but in vitro pretreatment with CD40L or with high doses of LPS increased the numbers of MHC II(-/-) DC to levels approaching those of C57BL/6 DC. Regardless of their numbers and relative survival in lymph nodes, MHC II(-/-) DC were profoundly defective in their ability to induce CTL responses against the gp33 peptide epitope, and were unable to induce expansion and optimal cytotoxic activity of CD8(+) T cells specific for the male Ag UTY. We conclude that CD4(+) T cell help for CD8(+) responses involves mechanisms other than the increased survival of Ag-presenting DC in the lymph node.  相似文献   

18.
Modification in the function of dendritic cells (DC), such as that achieved by microbial stimuli or T cell help, plays a critical role in determining the quality and size of adaptive responses to Ag. NKT cells bearing an invariant TCR (iNKT cells) restricted by nonpolymorphic CD1d molecules may constitute a readily available source of help for DC. We therefore examined T cell responses to i.v. injection of soluble Ag in the presence or the absence of iNKT cell stimulation with the CD1d-binding glycolipid alpha-galactosylceramide (alpha-GalCer). Considerably enhanced CD4(+) and CD8(+) T cell responses were observed when alpha-GalCer was administered at the same time as or close to OVA injection. This enhancement was dependent on the involvement of iNKT cells and CD1d molecules and required CD40 signaling. Studies in IFN-gammaR(-/-) mice indicated that IFN-gamma was not required for the adjuvant effect of alpha-GalCer. Consistent with this result, enhanced T cell responses were observed using OCH, an analog of alpha-GalCer with a truncated sphingosine chain and a reduced capacity to induce IFN-gamma. Splenic DC from alpha-GalCer-treated animals expressed high levels of costimulatory molecules, suggesting maturation in response to iNKT cell activation. Furthermore, studies with cultured DC indicated that potentiation of T cell responses required presentation of specific peptide and alpha-GalCer by the same DC, implying conditioning of DC by iNKT cells. The iNKT-enhanced T cell responses resisted challenge with OVA-expressing tumors, whereas responses induced in the absence of iNKT stimulation did not. Thus, iNKT cells exert a significant influence on the efficacy of immune responses to soluble Ag by modulating DC function.  相似文献   

19.
Dendritic cell (DC) therapies are currently being evaluated for the treatment of cancer. The majority of ongoing clinical trials use DCs loaded with defined antigenic peptides or proteins, or tumor-derived products, such as lysates or apoptotic cells, as sources of Ag. Although several theoretical considerations suggest that DCs expressing transgenic protein Ags may be more effective immunogens than protein-loaded cells, methods for efficiently transfecting DCs are only now being developed. In this study we directly compare the immunogenicity of peptide/protein-pulsed DCs with lentiviral vector-transduced DCs, and their comparative efficacy in tumor immunotherapy. Maturing, bone marrow-derived DCs can be efficiently transduced with lentiviral vectors, and transduction does not affect DC maturation, plasticity, or Ag presentation function. Transduced DCs efficiently process and present both MHC class I- and II-restricted epitopes from the expressed transgenic Ag OVA. Compared with peptide- or protein-pulsed DCs, lentiviral vector-transduced DCs elicit stronger and longer-lasting T cell responses in vivo, as measured by both in vivo killing assays and intracellular production of IFN-gamma by Ag-specific T cells. In the B16-OVA tumor therapy model, the growth of established tumors was significantly inhibited by a single immunization using lentiviral vector-transduced DCs, resulting in significantly longer survival of immunized animals. These results suggest that compared with Ag-pulsed DCs, vaccination with lentiviral vector-transduced DCs may achieve more potent antitumor immunity. These data support the further development of lentiviral vectors to transduce DCs with genes encoding Ags or immunomodulatory adjuvants to generate and control systemic immune responses.  相似文献   

20.
The TCR can detect subtle differences in the strength of interaction with peptide/MHC ligand and transmit this information to influence downstream events in T cell responses. Manipulation of the factor commonly referred to as TCR signal strength can be achieved by changing the amount or quality of peptide/MHC ligand. Recent work has enhanced our understanding of the many variables that contribute to the apparent cumulative strength of TCR stimulation during immunogenic and tolerogenic T cell responses. In this review, we consider data from in vitro studies in the context of in vivo immune responses and discuss in vivo consequences of manipulation of strength of TCR stimulation, including influences on T cell-APC interactions, the magnitude and quality of the T cell response, and the types of fate decisions made by peripheral T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号