首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to assess potential adverse functional and/or morphological effects of styrene on the neurological system in the F2 offspring following F0 and F1 generation whole-body inhalation exposures. Four groups of male and female Crl:CD (SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure continued for the F0 and F1 females throughout mating and through gestation day 20. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5 and continued through weaning of the F1 or F2 pups on postnatal day (PND) 21. Developmental landmarks were assessed in F1 and F2 offspring. The neurological development of randomly selected pups from the F2 generation was assessed by functional observational battery, locomotor activity, acoustic startle response, learning and memory evaluations, brain weights and dimension measurements, and brain morphometric and histologic evaluation. Styrene exposure did not affect survival or the clinical condition of the animals. As expected from previous studies, slight body weight and histopathologic effects on the nasal olfactory epithelium were found in F0 and F1 rats exposed to 500 ppm and, to a lesser extent, 150 ppm. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. There were exposure-related reductions in mean body weights of the F1 and F2 offspring from the mid and high-exposure groups and an overall pattern of slightly delayed development evident in the F2 offspring only from the 500-ppm group. This developmental delay included reduced body weight (which continued through day 70) and slightly delayed acquisition of some physical landmarks of development. Styrene exposure of the F0 and F1 animals had no effect on survival, the clinical condition or necropsy findings of the F2 animals. Functional observational battery evaluations conducted for all F1 dams during the gestation and lactation periods and for the F2 offspring were unaffected by styrene exposure. Swimming ability as determined by straight channel escape times measured on PND 24 were increased, and reduced grip strength values were evident for both sexes on PND 45 and 60 in the 500-ppm group compared to controls. There were no other parental exposure-related findings in the F2 pre-weaning and post-weaning functional observational battery assessments, the PND 20 and PND 60 auditory startle habituation parameters, in endpoints of learning and memory performance (escape times and errors) in the Biel water maze task at either testing age, or in activity levels measured on PND 61 in the 500-ppm group. Taken together, the exposure-related developmental and neuromotor changes identified in F2 pups from dams exposed to 500 ppm occurred in endpoints known to be both age- and weight-sensitive parameters, and were observed in the absence of any other remarkable indicators of neurobehavioral toxicity. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for growth of F2 offspring; an exposure level of 500 ppm was considered to be the NOAEL for F2 developmental neurotoxicity.  相似文献   

2.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of whole-body inhalation exposure of F0 and F1 parental animals from a 2-generation reproduction study of ethylbenzene on nervous system functional and/or morphologic end points in the F2 offspring from four groups of male and female Crl:CD (SD)IGS BR rats. METHODS: Thirty rats/sex/group for F0 and 25/sex/group for F1 were exposed to 0, 25, 100, and 500 ppm ethylbenzene for six hours daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through Gestation Day (GD) 20. On lactation days (LD) 1-4, the F0 and F1 females received no inhalation exposure, but instead were administered ethylbenzene in corn oil via oral gavage at dosages estimated to result in similar internal maternal exposure based upon PBPK modeling estimates (0, 26, 90, and 342 mg/kg/day, respectively, divided into three equal doses, approximately two hours apart). Inhalation exposure of the F0 and F1 females was reinitiated on LD 5 and continued through weaning on postnatal day (PND) 21. Survival, body weights, and physical landmarks were assessed in selected F2 offspring. Neurobehavioral development of one F2-generation treatment derived offspring/sex/litter was assessed in a functional observational battery (FOB; PND 4, 11, 22, 45, and 60), motor activity sessions (PND 13, 17, 21, and 61), acoustic startle testing (PND 20 and 60), a Biel water maze learning and memory task (initiated on PND 26 or 62), and in evaluations of whole-brain measurements and brain morphometric and histologic assessments (PND 21 and 72). RESULTS: There were no adverse effects on reproductive performance in either the F0 or F1 parental generations exposed to up to 500 ppm ethylbenzene [Faber et al. Birth Defects Res Part B 77:10-21, 2006]. In the current developmental neurotoxicity component, parental ethylbenzene exposure did not adversely affect offspring survival, clinical condition, body weight parameters, or acquisition of developmental landmarks of the F2-generation treatment derived offspring. There were no alterations in FOB parameters, motor activity counts, acoustic startle endpoints, or Biel water maze performance in offspring attributed to parental ethylbenzene exposure. A few isolated instances of statistically significant differences obtained in the treatment-derived groups occurred sporadically, and were attributed to unusual patterns of development and/or behavior in the concurrent control group. There were no exposure-related differences in any neuropathology parameters in the F2-generation treatment derived offspring. CONCLUSIONS: The no observed adverse effect level (NOAEL) for maternal reproductive toxicity, developmental toxicity, and developmental neurotoxicity in this study was considered to be 500 ppm/342 mg/kg/day ethylbenzene, the highest exposure level tested in the study.  相似文献   

3.
This study was conducted to evaluate the potential adverse effects of styrene on reproductive capability from whole-body inhalation exposure of F0 and F1 parental animals. Assessments included gonadal function, estrous cyclicity, mating behavior, conception rate, gestation, parturition, lactation, and weaning in the F0 and F1 generations, and F1 generation offspring growth and development. Four groups of male and female Crl:CD(SD)IGS BR rats (25/sex/group) were exposed to 0, 50, 150, and 500 ppm styrene for 6 hr daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through gestation day 20. Inhalation exposure of the F0 and F1 females was suspended from gestation day 21 through lactation day 4. On lactation days 1 through 4, the F0 and F1 females received styrene in virgin olive oil via oral gavage at dose levels of 66, 117, and 300 mg/kg/day (divided into three equal doses, approximately 2 hr apart). These oral dosages were calculated to provide similar maternal blood peak concentrations as provided by the inhalation exposures. Inhalation exposure of the F0 and F1 females was re-initiated on lactation day 5. Styrene exposure did not affect survival or clinical observations. Rats in the 150- and 500-ppm groups in both parental generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either the F0 or F1 generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, reproductive organ weights, lengths of estrous cycle and gestation, live litter size and postnatal survival were similar in all exposure groups. Additionally, ovarian follicle counts and corpora lutea counts for the F1 females in the high-exposure group were similar to the control values. No adverse exposure-related macroscopic pathology was noted at any exposure level in the F0 and F1 generations. A previously characterized pattern of degeneration of the olfactory epithelium that lines the dorsal septum and dorsal and medial aspects of the nasal turbinates occurred in the F0 and F1 generation animals from the 500-ppm group. In the 500-ppm group, F2 birthweights were reduced compared to the control and F2 offspring from both the 150- and 500-ppm exposure groups gained weight more slowly than the controls. Based on the results of this study, an exposure level of 50 ppm was considered to be the NOAEL for F0 and F1 parental systemic toxicity; the NOAEL for F0 and F1 reproductive toxicity was 500 ppm or greater.  相似文献   

4.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of di-2-ethylhexyl terephthalate (DEHT) on reproductive capability from exposure of F(0) and F(1) parental animals. METHODS: Four groups of male and female Crl:CD (SD)IGS BR rats (30/gender/group) were exposed to 0, 0.3%, 0.6%, and 1.0% DEHT in the feed for at least 70 consecutive days before mating for the F(0) and F(1) generations. Exposure for the F(0) and F(1) males continued throughout the mating period until euthanasia. Exposure for the F(0) and F(1) females continued throughout mating, gestation, and lactation. The F(1) and F(2) pups were weaned on postnatal day (PND) 21. Assessments included gonadal function, estrous cyclicity, mating behavior, conception rate, gestation, parturition, lactation, and weaning in the F(0) and F(1) generations, and F(1) generation offspring growth and development. RESULTS: DEHT exposure did not affect clinical observations. However, lethality was observed in F(0) and F(1) dams consuming the 1.0% diet during the post-weaning period. No treatment-related mortality occurred in any of the male groups exposed to DEHT or in the female groups exposed to 0.3% or 0.6% DEHT. Male rats consuming the 1.0% diet in both parental generations gained weight more slowly than the controls. There were no indications of adverse effects on reproductive performance in either the F(0) or F(1) generation. Male and female mating and fertility indices, pre-coital intervals, spermatogenic endpoints, reproductive organ weights, lengths of estrous cycle and gestation, live litter size, developmental landmarks, and postnatal survival were similar in all exposure groups. Additionally, ovarian follicle counts for the F(1) females in the high-exposure group were similar to the control values. No adverse exposure-related macroscopic pathology was noted at any exposure level in the F(0) and F(1) generations. CONCLUSIONS: Increases in liver weights were found in the male and female animals exposed to 0.6% or 1.0% DEHT in the diet. Because there were no accompanying histopathologic changes, this effect was not considered adverse. Significant decreases in feed consumption in the female animals from the groups consuming 1.0% DEHT in the diet during lactation accompanied reduced postnatal pup body weights and rate of weight gain. Reductions in pup body weights later in lactation may also have been due to direct consumption of the treated feed by the pups or taste aversion to the same. Reduced relative spleen weight was found in male weanling pups from the 1.0% group in both generations and reduced relative spleen and thymus weights were found in female pups from the 1.0% group in the F(2) generation at necropsy on PND 21. Therefore, for parental and pup systemic toxicity, 0.3% DEHT in the diet (182 mg/kg/day) was considered no-observed-effect level (NOEL). The 1.0% DEHT (614 mg/kg/day) in the diet exposure concentration was considered a NOEL for F(0) and F(1) reproductive toxicity endpoints.  相似文献   

5.
Environmental contaminants with estrogenic properties have been cause for heightened concern about their possible role in inducing adverse health effects. Brief exposure of rodents to high doses of natural estrogens early in life results in permanent alterations of the male reproductive tissues, but the question of whether environmentally relevant doses can cause the same effects remains controversial. The current project was designed to determine the dose-response relationship between neonatal estradiol exposure and the development of the male reproductive tract in the rat. Neonatal male Sprague-Dawley (SD) and Fisher 344 (F344) rats were exposed to beta-estradiol-3-benzoate (EB) at concentrations ranging from 0.015 microg/kg body weight (BW) to 15.0 mg/kg BW and 0.15 microg/kg BW to 1.5 mg/kg BW, respectively. Results showed an inverted U-shaped dose-response profile for testis and epididymis weights in 35-day-old SD rats, with increased organ sizes at the low-dose end of the treatment. This effect was transient and was not sustained into adulthood. Increased hepatic testosterone hydroxylase activities in low-dose animals suggest an advancement of puberty as the cause for increased reproductive organ weights. On postnatal day (PND) 90, a stimulatory low-dose response to EB was present in SD rat testicular and epididymal weights, however at one order of magnitude lower dose than that seen on PND 35, suggesting a separate effect. All SD male reproductive tract organs and serum hormones showed a permanent inhibitory response to high doses of neonatal EB. F344 rats exhibited greater estrogen sensitivity on PND 90. Despite this heightened responsiveness, F344 rats did not exhibit a low-dose effect for any endpoint. These low-dose responses to estradiol are organ and strain specific.  相似文献   

6.
Steroid hormones and their receptors play critical roles in the growth, development, and maintenance of the male reproductive tract. Genistein, a naturally occurring isoflavonoid primarily found in soybeans, interacts with estrogen receptors alpha and beta (ER alpha and beta), with preferential affinity for ER beta. This is one mechanism whereby genistein may affect growth and development and potentially alter susceptibility to carcinogenesis. Previous studies have indicated effects of soy and/or genistein in the male rodent reproductive tract under certain exposure conditions. The current study was undertaken to determine if modulation of the expression of ER alpha and ER beta by dietary genistein may contribute to those effects. Rats in a two-generation study were fed 0, 5, 100, or 500 ppm genistein prior to mating and through pregnancy and lactation. At weaning, male pups were selected in each of the F(1) and F(2) generations and half of the pups continued on the same diet as their dams (G/G, continuous exposure) while their litter mates were placed on control chow (G/C, gestational and lactational exposure) until sacrifice on PND 140. Male reproductive organ weights, serum levels of testosterone and dihydrotestosterone (DHT), and ER alpha and ER beta protein levels in the ventral and dorsolateral prostate were the endpoints measured. Prostate sections were also evaluated microscopically. Statistically significant elevations in testosterone and DHT were observed in PND 140 animals from the F(1) generation, but they were not accompanied by organ weight changes. Body weight in the continuously dosed 500 ppm F(1) PND 140 animals was depressed relative to control, but organ weights in animals of either generation showed few treatment-related effects. While estrogen receptor levels were quite variable, levels of ER beta in the dorsolateral prostate were significantly depressed in all dose groups in the G/C exposure and the high dose group of the G/G exposure in F(1) rats, but not in F(2) rats. Given the growing body of knowledge on the significance of ER beta in the prostate, the evidence for apparent down regulation of this receptor by genistein may have implications for reproductive toxicity and carcinogenesis that warrant further investigation.  相似文献   

7.
Brief exposure of rats to high doses of natural estrogens early in life results in permanent alterations of the prostate gland, which include differentiation defects, altered gene expression, and dysplasia with aging. Whether low-dose treatments can cause similar effects in the developing prostate remains controversial. The current project was designed to determine the dose-response relationship of the prostate gland to estradiol exposure during the developmentally critical neonatal period in the rat. Male Sprague-Dawley (SD) rats were treated on Days 1, 3, and 5 of life by s.c. injections of a 7-log range of doses (0.015 microg/kg to 15.0 mg/kg) of beta-estradiol-3-benzoate (EB) in 25 microl of peanut oil (Arachis) as vehicle. In a separate block, neonatal Fisher 344 (F344) rats received 0.15, 15.0, or 1500.0 microg EB/kg. Rats were killed on Postnatal Day (PND) 35 or 90, and the prostates were microdissected, weighed, and frozen for immunohistochemistry. Preputial separation and hepatic testosterone hydroxlase activities were monitored and measured to determine the onset of puberty. On PND 35, there was an increase in prostate weights of SD rats treated with low doses of EB and a decrease in prostate weights of SD rats treated with high doses. The low-dose effect was entirely abolished by PND 90, and only high-dose suppression of organ sizes was found. The transient nature of the effect in low-dose animals suggests an advancement of puberty as the cause for increased reproductive organ weights on PND 35. F344 rats were more sensitive than SD rats to the suppressive effects of high doses of neonatal EB on PND 90. Despite this heightened responsiveness in the F344 rats, a low-dose estrogenic effect on adult prostate weights was not observed. Thus, in the rat model a sustained effect at low doses of natural estrogens is not present in the prostate glands.  相似文献   

8.
C57BL/6 female mice impregnated by C3H males mice to produce B6C3F1 fetuses were exposed daily for six hr to atmospheres containing 0, 250, 500, or 750 ppm methyl chloride, from gestation day 6 to gestation day 18. There were 74 to 77 females with copulation plugs per exposure concentration. Females exposed to 750 ppm ethyl chloride exhibited ataxia commencing on the seventh day of exposure (gestation day 12). They also showed hypersensitivity to touch or sound, tremors and convulsions. Six females in the 750 ppm group died and one was euthanized in extremis prior to scheduled sacrifice. On gestation day 18, all other females were euthanized for evaluation. Only dams exposed to 750 ppm exhibited significant decrease in body weight by gestation day 18, weight gain during the gestation period, and absolute weight gain (weight gain minus gravid uterine weight) versus controls. There were no treatment related-effects on these parameters in the other exposure groups. None of the groups exhibited exposure-related differences in pregnancy rate, gravid uterine weight, or maternal liver weight. There were no differences in the numbers of implantations, resorption, dead fetuses, nonlive (dead plus resorbed) fetuses, live fetuses, sex-ratio, or mean fetal body weight per litter. There was a significant exposure-related increase in the number and percentage of affected (nonlive plus malformed) fetuses per litter with the incidence of affected fetuses in the 750 ppm group significantly higher than controls. There was a statistically significant increase in the incidence of heart defects in the 500 and 750 ppm group relative to controls. Of the 37 fetuses in the study with heart defects, 23 were females, 14 were males. The heart defects observed included: absent or abnormal tricuspid valve, reduced number of papillary muscles and/or chordae tendineae on the right side, small right ventricle, globular heart, and white spots in the left ventricular wall. Multiple malformations were observed in one fetus from the 500 ppm group and in three fetuses in the 750 ppm group. It is concluded that methyl chloride inhalation exposure to pregnant C57BL/6 mice from gestation day 6 through gestation day 17 resulted in maternal toxicity only at the 750 ppm exposure concentration and was teratogenic to B6C3F1 conceptuses at exposure concentrations of 750 and 500 ppm, leading to fetal heart malformations. No evidence of embryo or fetotoxicity other than teratogenicity was seen at any of the exposure concentrations employed. No maternal, embryo or fetotoxicity or teratogenicity was associated with exposure of mice, during critical periods of embryo and fetal development, to 250 ppm of methyl chloride.  相似文献   

9.
Previous dose range-finding studies with nonylphenol (NP) administered to rats in a soy- and alfalfa-free diet showed apparent feminization of several endpoints in male rats at doses of 25 ppm and above. One possible mechanism contributing to these effects is a reduction of testosterone at critical developmental periods. The present study was conducted as an adjunct to a multigeneration study and was designed to examine the effect of NP on testosterone production. Male rats in the F1 and F2 generations were exposed through their dams or directly to various dietary doses of NP (0, 25, 200 and 750 ppm) throughout gestation and until sacrifice at either postnatal day 2 (PND2), PND50, or PND140. Male pups in the F3 generation were examined only on PND2. At PND2, serum testosterone levels were significantly decreased in all groups exposed to NP in the F1 generation, but not in the F2 or F3 generations. The activity of 17alpha-hydroxylase/C17, 20 lyase (P450c17) in PND2 testicular homogenates was not affected by NP treatment. In F1 and F2 PND50 and PND140 rats, NP treatment did not affect serum testosterone levels. The absolute dorsolateral prostate weight was increased in the 200 and 750 ppm dose groups only in the F1 PND50 rats, however, no significant effects were observed in other male reproductive organs. NP treatment did not affect P450c17 activity in microsomes prepared from testes of F1 PND50 or PND140 rats. However, P450c17 activity was significantly decreased in testicular microsomes of F(2) PND50 (200 and 750 ppm dose groups) and PND140 (25, 200, and 750 ppm dose groups) rats. A decrease in testicular beta-nicotinamide adenine dinucleotide phosphate (NADPH) P450 reductase was also observed in all PND50 and PND140 NP-exposed rats of the F1 and F2 generations. The ability of NP to directly inhibit P450c17 activity in vitro at concentrations of 1-100 microM was also demonstrated. These results indicate that NP can inhibit the activity of enzymes involved in testosterone synthesis, but suggest minimal effects on testosterone or testosterone-dependent endpoints via this mechanism.  相似文献   

10.
The presence of the mycotoxin ochratoxin A (OTA) in cereal grains is due to the growth of toxigenic Penicillium mold on stored crops. Human exposure to OTA is higher in infants, toddlers, and children than in adolescents and adults, based on exposure assessments of ng OTA consumed/kg body weight/day. Ochratoxin A is nephrotoxic and teratogenic in animals, but its effects on juveniles exposed during the reproduction and development period have not been studied. To address this, Fischer rats were exposed to 0, 0.16, 0.4, 1.0, or 2.5 mg OTA/kg diet throughout breeding, gestation, and lactation and its adverse effects were assessed in adult rats and their offspring on postnatal day (PND) 21. There were no effects on implantation but post-implantation fetotoxicity was observed in the 2.5 mg/kg dose group, corresponding to a calculated dose of 167.0 μg/kg bw/day in dams. Adverse effects on body and kidney weights and on clinical parameters indicative of renal toxicity were significant in adult rats exposed to 1.0 mg OTA/kg diet (55.2 and 73.3 μg/kg bw/day in adult males and females, respectively) and in PND21 rats at the 0.4 mg/kg dose (33.9 μg/kg bw/day in dams), suggesting that weanling rats were more sensitive to OTA than adults. Overall, nephrotoxicity was the primary effect of OTA in weanling rats exposed throughout gestation and lactation at sub-fetotoxic concentrations in diet.  相似文献   

11.
One hundred bred Fischer-344 female rats were exposed daily for 6 hours to atmospheres containing 0, 100, 500, or 1,500 ppm methyl chloride, 25 females per exposure concentration, from gestation day (gd) 7 through gd 19. On gd 20, the females were sacrificed for evaluation of maternal reproductive and fetal parameters. Maternal and fetal toxicity was apparent at the highest exposure concentration. There were no methyl chloride-induced external, skeletal, or visceral abnormalities seen in the fetuses. One hundred thirty-two C57BL/6 female mice bred to C3H males to produce B6C3F1 offspring were exposed daily for 6 hours to atmospheres containing 0, 100, 500, or 1,500 ppm methyl chloride, 33 females per exposure concentration, from gd 6 through gd 17. Exposure to the entire 1,500-ppm group was terminated on gd 10-14, with the animals killed in extremis. Selective necrosis of neurons in the internal granular layer of the cerebellum, ranging from individual cell involvement to focal areas comprising large numbers of neurons, was found in all females. On gd 18, the females from the other treatment groups, all of which survived, were killed for evaluation of maternal reproductive and fetal parameters. No evidence was seen of maternal or fetal toxicity in these exposure groups. There were no significant alterations in external appearance in fetuses from any of the exposure groups. Visceral examination of mouse fetuses revealed a small, but statistically significant, incidence of heart defects in litters of the 500-ppm group. The anomaly, a reduction or absence of the atrioventricular valve, chordae tendineae, and papillary muscle, was observed on the left side (bicuspid valve) in three fetuses and the right side (tricuspid valve) in six fetuses: three males and six females. It is concluded that methyl chloride inhalation exposure in pregnant rats, during critical periods of embryo and fetal development, is not teratogenic at concentrations which elicit maternal and fetal toxicity. In pregnant mice, methyl chloride was severely toxic to dams following 4 days or more of exposure to 1,500 ppm in air. Methyl chloride, at 500, but not 100 ppm, was teratogenic in mice, leading to a malformation in the heart. No embryo-fetal toxicity or teratogenicity was associated with exposure of mice, during critical periods of embryo and fetal development, to 100 ppm of ethyl chloride.  相似文献   

12.
Male and female reproductive functions have been proposed as possibly sensitive targets for the biological effects of 60-Hz (power frequency) magnetic fields (MF). However, experimental data relevant to this hypothesized association are very limited. In the present study, the "reproductive assessment by continuous breeding" design was used to identify possible effects of MF exposure on reproductive performance, fetal development, and early postnatal growth in rats. Groups of age-matched Sprague-Dawley rats (40 breeding pairs/group) were exposed continuously (18.5 hr per day) to linearly polarized, transient-free 60-Hz MF at field strengths of 0 Gauss (G; sham control), 0.02 G, 2.0 G, or 10.0 G. An additional group of 40 breeding pairs received intermittent (1 hr on/1 hr off) exposure to 10.0 G fields. F0 breeding pairs were exposed to MF or sham fields for 1 week prior to mating, during a 14-week period of cohabitation, and during a 3-week holding period after cohabitation. The duration of the cohabitation period was selected to be sufficient for the delivery of five litters in the sham control group. Pups from the final F1 litter from each breeding pair were exposed to MF or sham fields until sexual maturity, were cohabitated in MF or sham fields for 7 days with nonsiblings from the same exposure group, and were held in the MF or sham fields for 22 days to permit delivery of F2 pups for evaluation. No evidence of exposure-related toxicity was identified in any rat in the F0, F1, or F2 generations. Fetal viability and body weights in all litters of groups exposed to MF were comparable to those of sham controls. No significant differences between sham controls and MF-exposed groups were seen in any measure of reproductive performance (litters/breeding pair, percent fertile pairs, latency to parturition, litter size, or sex ratio) in either the F0 or F1 generation. Exposure of Sprague-Dawley rats to 60-Hz MF strengths of up to 10.0 G either during their peak reproductive period (F0) or during gestation and throughout their life span (F1) has no biologically significant effects on reproductive performance. These results do not support the hypothesis that exposure to pure, linearly polarized 60-Hz MF is a significant reproductive or developmental toxicant.  相似文献   

13.
BACKGROUND: Gestational exposure to di-n-butyl phthalate (DBP), a ubiquitous environmental contaminant, has been shown to interfere with the development of the male reproductive tract by acting as an antiandrogen. This study was conducted to identify the critical days for the abnormal development of the male reproductive tract, specifically the testis and epididymis. METHODS: Timed-pregnant Sprague-Dawley rats were dosed with DBP at 500 mg/kg/day on gestation day (GD) 14 and 15, 15 and 16, 16 and 17, 17 and 18, 18 and 19, or 19 and 20 (GD 0=plug day). Anogenital distance (AGD) was measured on postnatal day (PND) 1 and 13, while areloa number was recorded on PND 13 only. After weaning, males were allowed to mature to PND 90 at which time they were necropsied. Areloa number and AGD were recorded and testes, epididymides, seminal vesicles, prostate gland, kidneys, and liver weighed. Blood serum was collected and assayed for total testosterone concentration. RESULTS: There were no observable effects on litter size, sex ratio, serum testosterone concentration, or mortality of pups. Statistically significant permanent reductions in AGD were seen in males exposed prenatally to DBP on GD 15 and 16 or GD 18 and 19. On PND 13, areola were present in males exposed to DBP on GD 15 and 16, 16 and 17, 17 and 18, and 19 and 20. However, permanent retention occurred only in males after DBP exposure on GD 16 and 17. Exposure to DBP on only GD 17 and 18 elicited a reduction in epididymal weights; while exposure on only GD 16 and 17 caused a significant increase in the weights of the testes due to edema. In this study, epididymal and testicular malformations were most prevalent after exposure to DBP on any gestational day. Epididymal malformations, characterized by agenesis of various regions and small or flaccid testes were significantly increased in DBP-exposed males only on GD 16 and 17. CONCLUSIONS: These findings suggest that 2-day DBP exposure is highly detrimental to the developing reproductive tract of the male fetus and the critical window for abnormal development is GD 16-18.  相似文献   

14.
The immunomodulator tilorone hydrochloride was administered (gastric intubation) once to time-pregnant Upj:TUC(SD)spf (Sprague-Dawley) rats in four experiments. In experiment 1, tilorone (250 or 500 mg/kg) was administered on day 10 of gestation. The dams were killed 4 or 72 hr after dosing. Interferon-like activity and drug levels were determined in maternal blood, spleen, and thymus, as well as in the embryos. In experiment 2, the test groups received progesterone (2 mg/kg), or tilorone (200 or 400 mg/kg), or progesterone and tilorone. The dams from each group were killed 24 or 48 hr after receiving tilorone. Experiment 3 was similar to experiment 2, except that the dams were killed on gestation day 20. In experiment 4, tilorone (400 mg/kg) was administered on gestation day 17, 18, or 19, and the dams were killed 24 hr after dosing or on gestation day 20. In all four experiments, tilorone-related maternal toxicity (regardless of whether progesterone also was administered) was observed, as characterized by marked decreases in weight gain, the occurrence of clinical signs, and in experiment 1 by decreased thymus weights, 72 hr post-dosing. Dose-related increases in the mean number of dead embryos and in serum interferon titers occurred 72 hr postdosing. In experiment 2, there was an increase in the number of dams in the 400-mg/kg (tilorone only) group with dead embryos only, 24 hr postdosing; similar results occurred in both the 200- and 400-mg/kg groups, 48 hr postdosing. However, in the groups that also received progesterone, a partial prevention of such embryolethality was evident. In experiment 3, embryotoxicity again was observed in both tilorone-treated groups, whereas several of the dams that were also given progesterone through day 19 of gestation experienced at least a partial prevention of the embryolethal effects of tilorone. In experiment 4, no fetotoxicity was observed despite the severe maternal toxicity evident.  相似文献   

15.
The amount of arsenic compounds was determined in the liver and brain of pups and in breast milk in the pup's stomach in relation to the route of exposure: transplacental, breast milk, or drinking water. Forty-eight pregnant rats were randomly divided into four groups, each group was given free access to drinking water that contained 0, 10, 50, and 100 mg/L NaAsO2 from gestation day 6 (GD 6) until postnatal day 42 (PND 42). Once pups were weaned, they started to drink the same arsenic-containing water as the dams. Contents of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), and trimethylarsenic acid (TMA) in livers and brains of the pups on PND 0, 15, 28, and 42 and breast milk taken from the pup's stomach on PND 0 and 15 were detected using the hydride generation atomic absorption spectroscopy method. Concentrations of iAs, MMA, and DMA in the breast milk, the brain, and the liver of the pups increased with the concentration of arsenic in drinking water on PND 0, 15, 28, and 42. Compared to the liver or brain, breast milk had the lowest arsenic concentrations. There was a significant decrease in the levels of arsenic species on PND 15 compared to PND 0, 28, or 42. It was confirmed that arsenic species can pass through the placental barrier from dams to offspring and across the blood–brain barrier in the pups, and breast milk from dams exposed to arsenic in drinking water contains less arsenic than the liver and brain of pups.  相似文献   

16.
The data for the in vivo genotoxicity of styrene (STY) are equivocal. To evaluate the clastogenicity and sister-chromatid exchange (SCE)-inducing potential of STY in vivo under carefully controlled conditions, B6C3F1 female mice were exposed by inhalation for 6 h/day for 14 consecutive days to either 0, 125, 250 or 500 ppm STY. One day after the final exposure, peripheral blood, spleen, and lungs were removed and cells were cultured for the analysis of micronucleus (MN) induction using the cytochalasin B-block method, chromosome breakage, and SCE induction. Peripheral blood smears were also made for scoring MN in erythrocytes. There was a significant concentration-related elevation of SCE frequency in lymphocytes from the spleen and the peripheral blood as well as in cells from the lung. However, no statistically significant concentration-related increases were found in the frequency of chromosome aberrations in the cultured splenocytes or lung cells, and no significant increases in MN frequencies were observed in binucleated splenocytes or normochromatic erythrocytes in peripheral blood smears.  相似文献   

17.
The effects of cadmium (Cd) were evaluated in offspring exposed from birth until weaning (neonatal day 0–21) and 4 weeks after exposure cessation focusing on iron (Fe) and zinc (Zn) levels in organs and hematological parameters. Wistar female rats were administered 50 mg Cd/L in drinking water (Cd-exposed) for 4 weeks before mating and during 3 weeks of gestation plus 3 weeks of lactation. Controls were supplied drinking water. At birth, part of Cd-exposed dams’ litters was cross-fostered to control dams (CCd group) and their control litters were cross-fostered to Cd-exposed dams (CdC group). This procedure enabled to discern the effects of gestational, lactational and gestational plus lactational Cd exposure until weaning in F1 offspring. Elements were analyzed by atomic absorption spectrometry; hematological parameters manually; and histopathological changes by light microscopy. Gestational plus lactational exposure in Cd-exposed dams and their offspring increased Cd and decreased Fe levels, increased Zn in dams and decreased Zn and body weights in 11- and 21-day pups. In 21-day weanling pups, decreased red blood cell (RBC) count, hemoglobin and hematocrit values and increased reticulocytes in peripheral blood were also found with concomitant histopathological finding of extramedullary hematopoiesis in the liver. In cross-fostered pups with gestational exposure (CCd pups), Fe in the liver decreased on day 11 and Zn increased in the kidney on day 21 whereas in pups with lactational exposure (CdC pups) Zn in the brain decreased on day 11 and Fe decreased in the liver and brain on day 21. Regardless of exposure cessation at weaning, in offspring with gestational plus lactational exposure (Cd-exposed) body weights, kidney and brain Fe levels and RBC and hemoglobin remained decreased in blood until puberty. Furthermore Zn levels increased in the liver, kidney and brain. It was concluded that gestational plus lactational Cd exposure caused decreases in Fe and Zn levels and hematotoxic effects in F1 offspring more pronouncedly than exposure during either gestational or lactational period alone and the adverse effects of maternally mediated Cd exposure continued after exposure cessation into adulthood.  相似文献   

18.
1,3-Butadiene (BD) was carcinogenic in rodents. This effect is related to reactive metabolites such as 1,2-epoxy-3-butene (EB) and especially 1,2:3,4-diepoxybutane (DEB). A third mutagenic epoxide, 3,4-epoxy-1,2-butanediol (EBD), can be formed from DEB and from 3-butene-1,2-diol (B-diol), the hydrolysis product of EB. In BD exposed rodents, only blood concentrations of EB and DEB have been published. Direct determinations of EBD and B-diol in blood are missing. In order to investigate the BD-dependent blood burden by all of these metabolites, we exposed male B6C3F1 mice and male Sprague-Dawley rats in closed chambers over 6-8h to constant atmospheric BD concentrations. BD and exhaled EB were measured in chamber atmospheres during the BD exposures. EB blood concentrations were obtained as the product of the atmospheric EB concentration at steady state with the EB blood-to-air partition coefficient. B-diol, EBD, and DEB were determined in blood collected immediately at the end of BD exposures up to 1200 ppm (B-diol, EBD) and 1280 ppm (DEB). Analysis of BD was done by GC/FID, of EB, DEB, and B-diol by GC/MS, and of EBD by LC/MS/MS. EB blood concentrations increased with BD concentrations amounting to 2.6 micromol/l (rat) and 23.5 micromol/l (mouse) at 2000 ppm BD and to 4.6 micromol/l in rats exposed to 10000 ppm BD. DEB (detection limit 0.01 micromol/l) was found only in blood of mice rising to 3.2 micromol/l at 1280 ppm BD. B-diol and EBD were quantitatively predominant in both species. B-diol increased in both species with the BD exposure concentration reaching 60 micromol/l at 1200 ppm BD. EBD reached maximum concentrations of 9.5 micromol/l at 150 ppm BD (rat) and of 42 micromol/l at 300 ppm BD (mouse). At higher BD concentrations EBD blood concentrations decreased again. This picture probably results from a competitive inhibition of the EBD producing CYP450 by BD, which occurs in both species.  相似文献   

19.
We hypothesized that in utero and lactational exposure of male rats to a mixture of more than 15 organochlorines, resembling that found in blubber from northern Quebec seals, alters reproductive development and function. Female rats were gavaged with either corn oil (controls) or the organochlorine mixture in increasing doses (low, medium, and high) for 5 wk before mating and through gestation. Developmental effects were monitored in the male offspring from Postnatal Day (PND) 2 until PND 90. The high-dose mixture reduced the number of pups per litter, percentage of live offspring, and pup weights (P < 0.05). Because only three rats from the high-dose treatment survived, data from this group beyond PND 2 were not included in the statistical analyses. As assessed by the time of preputial separation, puberty was delayed in the pups from treated dams (P < 0.05). Testes weights in the medium-dose group were greater than those in controls on PND 21 (P < 0.05). Ventral prostate weights were lower for the medium-dose group on PND 60 (P < 0.05). On PND 90, weights of the epididymis, ventral prostate, and seminal vesicle of the medium-dose rats were reduced compared to those of controls (P < 0.05). On PND 90, sperm motility parameters assessed by computer-assisted sperm analysis were altered in the low- and medium-dose groups (P < 0.05). Testicular and epididymal morphology was severely affected in rats exposed to the high dose of the mixture. Serum testosterone, LH, FSH, prolactin, and total thyroxine levels did not differ because of organochlorine treatment. Therefore, in utero and lactational exposure to an environmentally relevant organochlorine mixture adversely affects the reproductive system of male rats, perhaps via antiandrogenic effects during testis development, suggesting a possible reproductive health hazard for humans and other species.  相似文献   

20.
OBJECTIVE: The purpose of this study was to examine whether gestational exposure to major environmental endocrine‐disrupting chemicals, nonylphenol (NP), would lead to nerve behavioral and learning and memory capacity alterations in the male offspring of rats, and reproductive development alterations in the male offspring of rats. METHODS: Dams were gavaged with NP at a dose level of 50 mg/kg/day, 100 mg/kg/day or 200 mg/kg/day daily from gestational day 9 to 15, and at a dose level of 40 mg/kg/day, 80 mg/kg/day or 200 mg/kg/day daily from gestational day 14 to 19 (transplacental exposures). RESULTS: Exposure to 200 mg/kg/day NP produced a significant decrease in learning and memory functions in offspring rats (P<0.05) in Morris water maze task, as demonstrated by the increased escape latency and number of error. In Step‐down Avoidance Test, offspring rats exposed to NP spent more reaction time (RT) and presented lower latency to first step‐down than the control offspring (P<0.01). In utero exposure to 80 and 200 mg/kg/day NP produced a significant decrease in the number of live pups per litter and ratio of anogenital distance to body length on PND 0 (P<0.05), and also testes and prostate weight, activities of ALP, plasma testosterone concentration, cauda epididymis sperm counts, daily sperm production et al. respectively on PND 90 (P<0.05). Histopathological examination of the brain biopsy illustrates that exposure to NP at high dose induces the presence of abnormal distribution of spermatozoa showed in lumina of the seminiferous tubules, and absence of spermatogenesis and spermiogenesis. CONCLUSION: Gestational exposure to nonylphenol might induce neurotoxic and reproductive toxic effects on F1 male rats. Birth Defects Res (Part B) 89:418–428, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号