首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD   总被引:191,自引:0,他引:191  
W E Wright  D A Sassoon  V K Lin 《Cell》1989,56(4):607-617
  相似文献   

3.
The migration of myogenic precursors to the vertebrate limb exemplifies a common problem in development - namely, how migratory cells that are committed to a specific lineage postpone terminal differentiation until they reach their destination. Here we show that in chicken embryos, expression of the Msx1 homeobox gene overlaps with Pax3 in migrating limb muscle precursors, which are committed myoblasts that do not express myogenic differentiation genes such as MyoD. We find that ectopic expression of Msx1 in the forelimb and somites of chicken embryos inhibits MyoD expression as well as muscle differentiation. Conversely, ectopic expression of Pax3 activates MyoD expression, while co-ectopic expression of Msx1 and Pax3 neutralizes their effects on MyoD. Moreover, we find that Msx1 represses and Pax3 activates MyoD regulatory elements in cell culture, while in combination, Msx1 and Pax3 oppose each other's trancriptional actions on MyoD. Finally, we show that the Msx1 protein interacts with Pax3 in vitro, thereby inhibiting DNA binding by Pax3. Thus, we propose that Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors via direct protein-protein interaction. Our results implicate functional antagonism through competitive protein-protein interactions as a mechanism for regulating the differentiation state of migrating cells.  相似文献   

4.
5.
Regulation of MyoD function in the dividing myoblast   总被引:12,自引:0,他引:12  
Wei Q  Paterson BM 《FEBS letters》2001,490(3):171-178
Proliferating myoblasts express MyoD, yet no phenotypic markers are activated as long as mitogen levels are sufficient to keep the cells dividing. Depending upon mitogen levels, a decision is made in G1 that commits the myoblast to either continue to divide or to exit from the cell cycle and activate terminal differentiation. Ectopic expression of MyoD under the control of the RSV or CMV promoters causes 10T1/2 cells to rapidly exit the cell cycle and differentiate as single myocytes, even in growth medium, whereas expression of MyoD under the weaker SV40 promoter is compatible with proliferation. Co-expression of MyoD and cyclin D1, but not cyclins A, B, E or D3, blocks transactivation of a MyoD responsive reporter. Similarly, transfection of myoblasts with the cyclin-dependent kinase (cdk) inhibitors p16 and p21 supports some muscle-specific gene expression even in growth medium. Taken altogether, these results suggest cell cycle progression negatively regulates myocyte differentiation, possibly through a mechanism involving the D1 responsive cdks. We review evidence coupling growth status, the cell cycle and myogenesis. We describe a novel mitogen-sensitive mechanism that involves the cyclin D1-dependent direct interaction between the G1 cdks and MyoD in the dividing myoblast, which regulates MyoD function in a mitogen-sensitive manner.  相似文献   

6.
Recent evidence suggested an involvement of homeobox genes in tumorigenesis. Here we investigated whether one of homeobox-containing genes, Msx1, might be involved in the regulation of cell proliferation and cell cycle using Msx1 overexpressing human ovarian cancer cell line, OVCAR3. Overexpression of Msx1 in OVCAR3 cells inhibited cell proliferation by markedly increasing the length of the G1 phase of the cell cycle over control cells. Consistent with this result, dramatic suppression of cyclins D1, D3, E, cyclin-dependent kinase 4, c-Jun, and Rb was observed. Elevated expression of genes involved in the growth arrest and apoptosis (GADD153 and apoptotic cystein protease MCH4) and suppression of proliferation associated protein gene (PAG) in Msx1-overexpressing cells by cDNA expression array analysis provide further evidence for a potential repressor function of Msx1 in cell cycle progression.  相似文献   

7.
8.
9.
10.
11.
The epidermis consists of a squamous epithelium continuously replenished by committed stem cells, which can either self-renew or differentiate. We demonstrated previously that E2F genes are differentially expressed in developing epidermis (Dagnino, L., Fry, C. J., Bartley, S. M., Farnham, P., Gallie, B. L., and Phillips, R. A. (1997) Cell Growth Differ. 8, 553-563). Thus, we hypothesized that various E2F proteins likely play distinct growth regulatory roles in the undifferentiated stem cells and in terminally differentiated keratinocytes. To further understand the function of E2F genes in epidermal morphogenesis, we have examined the expression, regulation, and protein-protein interactions of E2F factors in undifferentiated cultured murine primary keratinocytes or in cells induced to differentiate with Ca(2+) or BMP-6 (bone morphogenetic protein 6). We find similar patterns of E2F regulation with both differentiating agents and demonstrate a switch in expression from E2F-1, -2, and -3 in undifferentiated, proliferating cells to E2F-5 in terminally differentiated keratinocytes. Inhibition of keratinocyte proliferation by transforming growth factor-beta1 did not enhance E2F-5 protein levels, suggesting that this response is specific to differentiation rather than reversible cell cycle withdrawal. E2F-5 up-regulation is also accompanied by formation of heteromeric nuclear complexes containing E2F5, p130, and histone deacetylase (HDAC) 1. Overexpression of E2F5 specifically inhibited DNA synthesis in undifferentiated keratinocytes in an HDAC-dependent manner, suggesting that E2F-5.p130.HDAC1 complexes are likely involved in the permanent withdrawal from the cell cycle of keratinocytes responding to differentiation stimuli.  相似文献   

12.
13.
14.
Proliferating myoblasts express the muscle determination factor, MyoD, throughout the cell cycle in the absence of differentiation. Here we show that a mitogen-sensitive mechanism, involving the direct interaction between MyoD and cdk4, restricts myoblast differentiation to cells that have entered into the G0 phase of the cell cycle under mitogen withdrawal. Interaction between MyoD and cdk4 disrupts MyoD DNA-binding, muscle-specific gene activation and myogenic conversion of 10T1/2 cells independently of cyclin D1 and the CAK activation of cdk4. Forced induction of cyclin D1 in myotubes results in the cytoplasmic to nuclear translocation of cdk4. The specific MyoD-cdk4 interaction in dividing myoblasts, coupled with the cyclin D1-dependent nuclear targeting of cdk4, suggests a mitogen-sensitive mechanism whereby cyclin D1 can regulate MyoD function and the onset of myogenesis by controlling the cellular location of cdk4 rather than the phosphorylation status of MyoD.  相似文献   

15.
16.
17.
Self-incompatible Brassica napus ssp. oleifera lines were generated by introgressing the S-locus from the self-incompatible B. napus ssp. rapifera Z line into the self-compatible cultivars, Topas and Regent, resulting in T2 and R2, respectively. Screening of a cDNA library made from R2 stigma RNA produced several candidate SLG (S-locus glycoprotein) cDNAs. One of the cDNAs, A14, was found to be represented in only the R2, T2 and Z lines. In addition, the corresponding A14 gene was demonstrated to segregate with the T2 self-incompatibility phenotype in an F2 population derived from a cross between T2 and Topas, and to exhibit high mRNA levels in the stigmas prior to anthesis. Sequence analysis of the A14 cDNA revealed close homology to B. oleracea SLG alleles associated with a Class I high activity self-incompatibility phenotype.  相似文献   

18.
A variety of differentiated cell types can be converted to skeletal muscle cells following transfection with the myogenic regulatory gene MyoD1. To determine whether multipotent embryonic stem (ES) cells respond similarly, cultures of two ES cell lines were electroporated with a MyoD1 cDNA driven by the beta-actin promoter. All transfected clones, carrying a single copy of the exogenous gene, expressed high levels of MyoD1 mRNA. Surprisingly, although maintained in mitogen-rich medium, this ectopic expression was associated with a transactivation of the endogenous myogenin and myosin light chain 2 gene but not the endogenous MyoD1, MRF4, Myf5, the skeletal muscle actin, or the myosin heavy chain genes. Preferential myogenesis and the appearance of contracting skeletal muscle fibers were observed only when the transfected cells were allowed to differentiate in vitro, via embryoid bodies, in low-mitogen-containing medium. Myogenesis was associated with the activation of MRF4 and Myf5 genes and resulted in a significant increase in the level of myogenin mRNA. Not all cells were converted to skeletal muscle cells, indicating that only a subset of stem cells can respond to MyoD1. Moreover, the continued expression of the introduced gene was not required for myogenesis. These results show that ES cells can respond to MyoD1, but environmental factors control the expression of its myogenic differentiation function, that MyoD1 functions in ES cells even under environmental conditions that favor differentiation is not dominant (incomplete penetrance), that MyoD1 expression is required for the establishment of the myogenic program but not for its maintenance, and that the exogenous MyoD1 gene can trans-activate the endogenous myogenin and MLC2 genes in undifferentiated ES cells.  相似文献   

19.
We have identified in a human cDNA library a clone (hp2F1) whose cognate RNA is growth-regulated. The insert has been sequenced and the nucleotide sequence shows a strong homology to the nucleotide sequences of the ADP/ATP carrier cDNA and gene, respectively, isolated from Neurospora crassa and Saccharomyces cerevisiae. The putative amino acid sequence of hp2F1 shows an 87% homology to the amino acid sequence of the ADP/ATP carrier from beef heart mitochondria. We conclude that the insert of hp2F1 contains the full coding sequence of a human ADP/ATP carrier. The steady-state RNA levels of the ADP/ATP carrier are growth-regulated. They increase when quiescent cells are stimulated by serum, platelet-derived growth factor, or epidermal growth factor, but not by platelet-poor plasma or insulin. RNA levels of the ADP/ATP carrier decrease instead when growing HL-60 cells are induced to differentiate by either phorbol esters or retinoic acid.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号