首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

2.
When grown under elevated atmospheric carbon dioxide (CO2), leaf nitrogen content decreases less for legumes than for nonlegume C3 plants. Given that elevated CO2 adversely affects insect herbivores primarily through dilution of plant nitrogen, it is reasonable to expect that legume-feeding herbivores will be relatively buffered against CO2-induced reduction in performance. However, despite their ecological and economic importance, very few studies have addressed the effects of elevated CO2 on legume-feeding herbivores. Unlike the responses of the vast majority of nonlegume C3 plants, when the legumes Trifolium pratense and Melilotus alba were grown under elevated (742 ppm) CO2, leaf nitrogen and carbon contents and C : N ratios did not change. For Colias philodice larvae fed T. pratense , elevated CO2 had little or no effect on consumption, digestion, or conversion of whole food or nitrogen and, consequently, no effect on growth rate, instar duration, or pupal weight. For larvae fed M. alba , elevated CO2 had little or no effect on consumption of whole food or nitrogen, increased digestion but decreased conversion of both and, consequently, had no effect on growth rate, instar duration or pupal weight. These results suggest that, relative to herbivores of nonlegume C3 plants, legume-feeding herbivores will be less affected as atmospheric CO2 continues to rise.  相似文献   

3.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

4.
The interaction of rising CO2 and temperatures with water use efficiency   总被引:14,自引:10,他引:4  
Abstract. Recent data concerning the impact of elevated atmospheric CO2 upon water use efficiency (WUE) and the related measure, instantaneous transpiration efficiency (ITE), are reviewed. It is concluded from both short and long-term studies that, at the scale of the individual leaf or plant, an increase in WUE or ITE is generally observed in response to increased atmospheric CO2 levels. However, the magnitude of this increase may decline with time. The opinion that elevated CO2 may substantially decrease transpiration at the regional scale is discussed. The mechanisms by which elevated CO2 may cause a change in these measures are discussed in terms of stomatal conductance, assimilation and respiration responses to elevated CO2. Finally, recent experimental data and model outputs concerning the impact of the interaction of increased temperature with elevated CO2 on WUE, ITE and yield are reviewed. It is concluded that substantially more data is required before reliable predictions about the regional scale response of WUE and catchment hydrology can be made.  相似文献   

5.
The composition and morphology of leaves exposed to elevated [CO2] usually change so that the leaf nitrogen (N) per unit dry mass decreases and the leaf dry mass per unit area increases. However, at ambient [CO2], leaves with a high leaf dry mass per unit area usually have low leaf N per unit dry mass. Whether the changes in leaf properties induced by elevated [CO2] follow the same overall pattern as that at ambient [CO2] has not previously been addressed. Here we address this issue by using leaf measurements made at ambient [CO2] to develop an empirical model of the composition and morphology of leaves. Predictions from that model are then compared with a global database of leaf measurements made at ambient [CO2]. Those predictions are also compared with measurements showing the impact of elevated [CO2]. In the empirical model both the leaf dry mass and liquid mass per unit area are positively correlated with leaf thickness, whereas the mass of C per unit dry mass and the mass of N per unit liquid mass are constant. Consequently, both the N:C ratio and the surface area:volume ratio of leaves are positively correlated with the liquid content. Predictions from that model were consistent with measurements of leaf properties made at ambient [CO2] from around the world. The changes induced by elevated [CO2] follow the same overall trajectory. It is concluded that elevated [CO2] enhances the rate at which dry matter is accumulated but the overall trajectory of leaf development is conserved.  相似文献   

6.
Seedlings of three species native to central North America, a C3 tree, Populus tremuloides Michx., a C3 grass, Agropyron smithii Rybd., and a C4 grass, Bouteloua curtipendula Michx., were grown in all eight combinations of two levels each of CO2, O3 and nitrogen (N) for 58 days in a controlled environment. Treatment levels consisted of 360 or 674 μmol mol-1 CO2, 3 or 92 nmol mol-1 O3, and 0.5 or 6.0 m M N. In situ photosynthesis and relative growth rate (RGR) and its determinants were obtained at each of three sequential harvests, and leaf dark respiration was measured at the second and third harvests. In all three species, plants grown in high N had significantly greater whole-plant mass, RGR and photosynthesis than plants grown in low N. Within a N treatment, elevated CO2 did not significantly enhance any of these parameters nor did it affect leaf respiration. However, plants of all three species grown in elevated CO2 had lower stomatal conductance compared to ambient CO2-exposed plants. Seedlings of P. tremuloides (in both N treatments) and B. curtipendula (in high N) had significant ozone-induced reductions in whole-plant mass and RGR in ambient but not under elevated CO2. This negative O3 impact on RGR in ambient CO2 was related to increased leaf dark respiration, decreased photosynthesis and/or decreased leaf area ratio, none of which were noted in high O3 treatments in the elevated CO2 environment. In contrast, A. smithii was marginally negatively affected by high O3.  相似文献   

7.
While the influence of elevated CO2 on the production, mass and quality of plant seeds has been well studied, the effect of warming on these characters is largely unknown; and there is practically no information on possible interactions between warming and elevated CO2, despite the importance of these characters in population maintenance and recovery. Here, we present the impacts of elevated CO2 and warming, both in isolation and combination, on seed production, mass, quality, germination success and subsequent seedling growth of Austrodanthonia caespitosa , a dominant temperate C3 grass from Australia, using seeds collected from the TasFACE experiment. Mean seed production and mass were not significantly affected by either elevated CO2 or warming, but elevated CO2 more than doubled the proportion of very light, inviable seeds ( P < 0.05) and halved mean seed N concentration ( P < 0.04) and N content ( P < 0.03). The dependence of seed germination success on seed mass was affected by an elevated CO2× warming interaction ( P < 0.004), such that maternal exposure to elevated CO2 or warming reduced germination if applied in isolation, but not when applied in combination. Maternal effects were retained when seedlings were grown in a common environment for 6 weeks, with seedlings descended from warmed plants 20% smaller ( P < 0.008) with a higher root : shoot ratio ( P < 0.001) than those from unwarmed plants. Given that both elevated CO2 and warming reduced seed mass, quality, germinability or seedling growth, it is likely that global change will reduce population growth or distribution of this dominant species.  相似文献   

8.
Abstract. Herbaceous C3 plants grown in elevated CO2 show increases in carbon assimilation and carbohydrate accumulation (particularly starch) within source leaves. Although changes in the partitioning of biomass between root and shoot occur, the proportion of this extra assimilate made available for sink growth is not known. Root:shoot ratios tend to increase for CO2-enriched herbaceous plants and decrease for CO2-enriched trees. Root:shoot ratios for cereals tend to remain constant. In contrast, elevated temperatures decrease carbohydrate accumulation within source and sink regions of a plant and decrease root:shoot ratios. Allometric analysis of at least two species showing changes in root: shoot ratios due to elevated CO2 show no alteration in the whole-plant partitioning of biomass. Little information is available for interactions between temperature and CO2. Cold-adapted plants show little response to elevated levels of CO2, with some species showing a decline in biomass accumulation. In general though, increasing temperature will increase sucrose synthesis, transport and utilization for CO2-enriched plants and decrease carbohydrate accumulation within the leaf. Literature reports are discussed in relation to the hypothesis that sucrose is a major factor in the control of plant carbon partitioning. A model is presented in support.  相似文献   

9.
Genotypic variability was studied in two Mediterranean grass species, Bromus erectus and Dactylis glomerata , with regard to the response to CO2 of leaf total non-structural carbohydrate concentration ([TNC]lf), specific leaf area (SLA), and leaf carbon and nitrogen concentrations ([C]lf and [N]lf, respectively). Fourteen genotypes of each species were grown together on intact soil monoliths at ambient and elevated CO2 concentrations (350 and 700 μmol mol−1, respectively). In both species, the most consistent effect of elevated CO2 was an increase in [TNC]lf and a decrease in leaf nitrogen concentration when expressed either as total dry mass [Nm]lf, structural dry mass [Nmst]lf or leaf area [Na]lf. The SLA decreased only in D. glomerata , due to an accumulation of total non-structural carbohydrates and to an increase in leaf density. No genotypic variability was found for any variable in B. erectus , suggesting that genotypes responded in a similar way to elevated CO2. In D. glomerata , a genotypic variability was found only for [Cst], [Nm]lf, [Nmst]lf and [Na]lf. Since [Nm]lf is related to plant growth and is a strong determinant of plant–herbivore interactions, our results suggest evolutionary consequences of elevated CO2 through competitive interactions or herbivory.  相似文献   

10.
Plantago lanceolata L. seedlings were grown in sand microcosm units over a 43‐day experimental period under two CO2 regimes (800 or 400 µmol mol−1) to investigate the effect of elevated atmospheric CO2 concentration on carbon partitioning and exudate release. Total organic carbon (TOC) content of the collected exudate material was measured throughout the experimental period. After 42 days growth the seedlings were labelled with [14C]‐CO2 and the fate of the label within the plant and its release by the roots monitored. Elevated CO2 significantly (P ≤ 0.001) enhanced shoot, root and total dry matter production although the R:S ratio was unaltered, suggesting no alteration in gross carbon partitioning. The cumulative release of TOC (in mg C) over 0‐42 days was unaltered by CO2 treatment however, when expressed as a percentage of net assimilated C, ambient‐grown plants released a significantly (P≤ 0.001) higher percentage from their roots compared to elevated CO2‐grown plants (i.e. 8 vs 3%). The distribution of 14C‐label was markedly altered by CO2 treatment with significantly (P≤ 0.001) greater per cent label partitioned to the roots under elevated CO2. This indicates increased partitioning of recent assimilate below‐ground under elevated CO2 treatment although there was no significant difference in the percentage of 14C‐label released by the roots. Comparison of plant C budgets based on 14C‐pulse‐chase methodology and TOC measurements is discussed.  相似文献   

11.
The long-term response of citrus rootstock seedlings to CO2 enrichment was examined in Carrizo estrange ( Poncirua trifoliata (L.) Raf. x Citrus sinensis (L.) Osbeck] and Swingle citrumelo ( P. trifoliate x C. parodist Macf.]. Plaotlets 14 weeks old were transferred to outdoor controlled-environment chambers and maintained for 5 months from Feb. 14 to July 21. During this period, new growth (cm) of citrange and citrumelo shoots at 660 μl1−1 was 94 and 69% greater, respectively, than at 330 μ1 1−1. Total dry weight of both rootstock shoots had increased by over 100%. Growth of few species is affected this markedly by elevated CO2 levels.
More carbon was partitioned to above-ground organs in CO2-enriched citrus seedlings. Stem dry matter per unit length was also 32 and 44% greater in citrange and citrumelo, respectively. Total leaf area was increased by 124% in citrange and 85% in citrumelo due to greater leaf number and size. Variations in overall relative growth rate appeared to be related to the rapid, sequential, flush-type growth in citrus, in which an entire shoot segment with its associated leaves remains an active sink until fully expanded. RuBP carboxylase (EC 4.1.1.39) activity in leaves of recently-expanded flushes was higher in citrumelo plants grown at 660 vs 330 μ1 1−1 CO2 and changed diurnally for citrange (but not citrumelo) leaves at both CO2 levels. The results are consistent with the hypothesis that positive long-term effects of CO2 enrichment may be greater in species or during growth periods where sink capacity for carbon utilization is high.  相似文献   

12.
Rice ( Oryza sativa L. cv. IR72) was grown at three different CO2 concentrations (ambient, ambient + 200 μmol mol−1, ambient + 300 μmol mol−1) at two different growth temperatures (ambient, ambient + 4°C) from sowing to maturity to determine longterm photosynthetic acclimation to elevated CO2 with and without increasing temperature. Single leaves of rice showed a cooperative enhancement of photosynthetic rate with elevated CO2 and temperature during tillering, relative to the elevated CO2 condition alone. However, after flowering, the degree of photosynthetic stimulation by elevated CO2 was reduced for the ambient + 4°C treatment. This increasing insensitivity to CO2 appeared to be accompanied by a reduction in ribulose-1.5-bisphosphate carboxylase/oxygenase (Rubisco) activity and/or concentration as evidenced by the reduction in the assimilation (A) to internal CO2 (C1) response curve. The reproductive response (e.g. percent filled grains, panicle weight) was reduced at the higher growth temperature and presumably reflects a greater increase in floral sterility. Results indicate that while CO2 and temperature could act synergistically at the biochemical level, the direct effect of temperature on floral development with a subsequent reduction in carbon utilization may change sink strength so as to limit photosynthetic stimulation by elevated CO2 concentration.  相似文献   

13.
Second-generation, dedicated lignocellulosic crops for bioenergy are being hailed as the sustainable alternative to food crops for the generation of liquid transport fuels, contributing to climate change mitigation and increased energy security. Across temperate regions they include tree species grown as short rotation coppice and intensive forestry (e.g. Populus and Salix species) and C4 grasses such as miscanthus and switchgrass. For bioenergy crops it is paramount that high energy yields are maintained in order to drive the industry to an economic threshold where it has competitive advantage over conventional fossil fuel alternatives. Therefore, in the face of increased planting of these species, globally, there is a pressing need for insight into their responses to predicted changes in climate to ensure these crops are 'climate proofed' in breeding and improvement programmes. In this review, we investigate the physiological responses of bioenergy crops to rising atmospheric CO2 ([Ca]) and drought, with particular emphasis on the C3 Salicaceae trees and C4 grasses. We show that while crop yield is predicted to rise by up to 40% in elevated [Ca], this is tempered by the effects of water deficit. In response to elevated [Ca] stomatal conductance and evapotranspiration decline and higher leaf–water potentials are observed. However, whole-plant responses to [Ca] are often of lower magnitude and may even be positive (increased water use in elevated [Ca]). We conclude that rising [Ca] is likely to improve drought tolerance of bioenergy crop species due to improved plant water use, consequently yields in temperate environments may remain high in future climate scenarios.  相似文献   

14.
Preliminary studies have indicated that after addition of C2H2 there is a rapid decline in nitrogenase activity in the nodules of Datisca glomerata . The present work was undertaken to determine whether (1) there is also a decline in respiration and (2) the decline is associated with the cessation of ammonia production. The rates of C2H4 and CO2 evolution by nodulated root systems of Datisca were measured as a function of time after exposure to C2H2. The peak rate of C2H4 evolution occurred at 30 s after C2H2 exposure, while the rate of CO2 evolution started to decline at 60 s after exposure to C2H2. Incubation of nodules in a gas mixture containing Ar also caused a decline in CO2 evolution. Further, pretreatment with Ar eliminated most of the C2H2-induced decline in nitrogenase activity and CO2 evolution. These C2H2- and Ar-induced declines in Datisca nodules are more rapid than those reported in any other nodules. They are evidence that continued ammonia formation is essential for maintenance of normal nitrogenase activity in Datisca nodules.  相似文献   

15.
Arbuscular mycorrhizal (AM) fungi form mutualistic symbioses with the root systems of most plant species. These mutualisms regulate nutrient exchange in the plant–soil interface and might influence the way in which plants respond to increasing atmospheric CO2. In other experiments, mycorrhizal responses to elevated CO2 have been variable, so in this study we test the hypothesis that different genera of AM fungi differ in their response, and in turn alter the plant's response, to elevated CO2. Four species from three genera of AM fungi were tested. Artemisia tridentata Nutt. seedlings were inoculated with either Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, Acaulospora sp. or Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders and grown at either ambient CO2 (350 ppm) or elevated CO2 (700 ppm). Several significant inter-specific responses were detected. Elevated CO2 caused percent arbuscular and hyphal colonization to increase for the two Glomus species, but not for Acaulospora sp. or S. calospora . Vesicular colonization was not affected by elevated CO2 for any fungal species. In the extra-radical phase, the two Glomus species produced a significantly higher number of spores in response to elevated CO2, whereas Acaulospora sp. and S. calospora developed significantly higher hyphal lengths. These data show that AM fungal taxa differ in their growth allocation strategies and in their responses to elevated CO2, and that mycorrhizal diversity should not be overlooked in global change research.  相似文献   

16.
The effect of drought on CO2 assimilation and leaf conductance was studied in three northern hardwood species: Quercus rubra L., Acer rubrum L. and Populus grandidentata Michx. Leaf gas exchange characteristics at two CO2 levels (320 and 620 μl I−1) and temperatures from 20 to 35°C were measured at the end of a dry period and shortly after 10 cm of rainfall. The effects of drought varied with species, temperature and CO2 level. Calculated values of internal CO2 concentration showed little or no decline during drought. Differences in assimilation, before vs after the rains, were most apparent at the higher CO2 level. These latter two observations indicate nonstomatal disruption of CO2 assimilation during the dry period. In P. grandidentata there was a substantial interaction between drought and temperature, with a resultant shift in the temperature for maximum assimilation to lower temperatures during drought. During drought, internal CO2 concentrations increased sharply in all three species under the combined conditions of high temperatures and the higher CO2 level.  相似文献   

17.
Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations   总被引:5,自引:0,他引:5  
The atmospheric CO2 concentration has risen from the preindustrial level of approximately 290 μl l−1 to more than 350 μl l−1 in 1993. The current rate of rise is such that concentrations of 420 μl l−1 are expected in the next 20 years. For C3 plants, higher CO2 levels favour the photosynthetic carbon reduction cycle over the photorespiratory cycle, resulting in higher rates of carbohydrate production and plant productivity. The change in balance between the two photosynthetic cycles appears to alter nitrogen and carbon metabolism in the leaf, possibly causing decreases in nitrogen concentrations in the leaf. This may result from increases in the concentration of storage carbohydrates of high molecular weight (soluble or insoluble) and/or changes in distribution of protein or other nitrogen containing compounds. Uptake of nitrogen may also be reduced at high CO2 due to lower transpiration rates. Decreases in foliar nitrogen levels have important implications for production of crops such as wheat, because fertilizer management is often based on leaf chemical analysis, using standards estimated when the CO2 levels were considerably lower. These standards will need to be re-evaluated as the CO2 concentration continues to rise. Lower levels of leaf nitrogen will also have implications for the quality of wheat grain produced, because it is likely that less nitrogen would be retranslocated during grain filling.  相似文献   

18.
Abstract. While a short-term exposure to elevated atmospheric CO2 induces a large increase in photosynthesis in many plants, long-term growth in elevated CO2 often results in a smaller increase due to reduced photosynthetic capacity. In this study, it was shown that, for a wild C3 species growing in its natural environment and exposed to elevated CO2 for four growing seasons, the photosynthetic capacity has actually increased by 31%. An increase in photosynthetic capacity has been observed in other species growing in the field, which suggests that photosynthesis of certain field grown plants will continue to respond to elevated levels of atmospheric CO2  相似文献   

19.
Elevated CO2 and conifer roots: effects on growth, life span and turnover   总被引:5,自引:4,他引:1  
Elevated CO2 increases root growth and fine (diam. 2 mm) root growth across a range of species and experimental conditions. However, there is no clear evidence that elevated CO2 changes the proportion of C allocated to root biomass, measured as either the root:shoot ratio or the fine root:needle ratio. Elevated CO2 tends to increase mycorrhizal infection, colonization and the amount of extramatrical hyphae, supporting their key role in aiding the plant to more intensively exploit soil resources, providing a route for increased C sequestration. Only two studies have determined the effects of elevated CO2 on conifer fine-root life span, and there is no clear trend. Elevated CO2 increases the absolute fine-root turnover rates; however, the standing crop root biomass is also greater, and the effect of elevated CO2 on relative turnover rates (turnover:biomass) ranges from an increase to a decrease. At the ecosystem level these changes could lead to increased C storage in roots. Increased fine-root production coupled with increased absolute turnover rates could also lead to increases in soil organic C as greater amounts of fine roots die and decompose. Although CO2 can stimulate fine-root growth, it is not known if this stimulation persists over time. Modeling studies suggest that a doubling of the atmospheric CO2 concentration initially increases biomass, but this stimulation declines with the response to elevated CO2 because increases in assimilation are not matched by increases in nutrient supply.  相似文献   

20.
The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 μ mol mol–1[CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102·8 ± 4·7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0·05) and root respiration (24%, P < 0·05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号