首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of ketoconazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2+ levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 microM and above increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The ketoconazole-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 50 microM ketoconazole, thapsigargin-(1 microM)-induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change ketoconazole-induced [Ca2+]i rises. At concentrations between 5 and 100 microM, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 microM ketoconazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2+]i rise.  相似文献   

2.
In Madin-Darby canine kidney (MDCK) cells, the effect of nortriptyline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Nortriptyline (> 10 microM) caused a rapid increase of [Ca2+]i in a concentration-dependent manner (EC50 = 75 microM). Nortriptyline-induced [Ca2+]i increase was prevented by 40% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i, increase, after which the increasing effect of nortriptyline on [Ca2+], was abolished; also, pretreatment with nortriptyline reduced a large portion of thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, abolished ATP (but not nortriptyline)-induced [Ca2+]i increase. Overnight incubation with 10 microM nortriptyline decreased cell viability by 16%, and 50 microM nortriptyline killed all cells. Prechelation of cytosolic Ca2+ with BAPTA did not alter nortriptyline-induced cell death. These findings suggest that nortriptyline rapidly increased [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and was cytotoxic at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

3.
Continuous intracellular pH (pHi) measurements were performed in SIRC rabbit corneal epithelial cells using the pH-sensitive absorbance of intracellularly trapped 5(and 6)-carboxy-4',5'-dimethylfluorescein. Steady-state pHi in nominally bicarbonate free Ringer's solution averaged 6.87 +/- 0.02 (mean +/- S.E., n = 53). After intracellular acidification induced by the NH4Cl-prepulse technique, there was a sodium-dependent pHi recovery towards the normal steady-state pHi. The initial pHi recovery rate was a saturable function of extracellular sodium concentration with an apparent Km for external sodium of about 25 mM and a Vmax of about 0.28 pH units/min. Virtually no pHi recovery was observed in the absence of extracellular sodium. Sodium removal during steady state acidified the cells by 0.36 +/- 0.05 pH units (mean +/- S.E., n = 13) within 5 min. There was a dose-dependent inhibition of pHi recovery after NH4Cl prepulse by amiloride with an IC50 of about 15 microM. Amiloride in a concentration of 1 mM almost completely abolished pHi recovery. Amiloride (1 mM) applied during steady state induced an intracellular acidification of 0.2 +/- 0.03 pH units (mean +/- S.E., n = 7) within 5 min. These findings suggest that a Na+/H+ exchange is present in SIRC rabbit corneal epithelial cells. Na+/H+ exchange seems to be the major process involved in pHi recovery in SIRC cells after an intracellular acid load. Na+/H+ exchange also plays a role in the maintenance of steady-state pHi.  相似文献   

4.
Lin MC  Jan CR 《Life sciences》2002,71(9):1071-1079
The effect of the anti-anginal drug fendiline on intracellular free Ca(2+) levels ([Ca(2+)](i)) in a rabbit corneal epithelial cell line (SIRC) was explored using fura-2 as a fluorescent Ca(2+) indicator. At a concentration above 1 microM, fendiline increased [Ca(2+)](i) in a concentration-dependent manner with an EC(50) value of 7 microM. The [Ca(2+)](i) response consisted of an immediate rise and an elevated phase. Extracellular Ca(2+) removal decreased half of the [Ca(2+)](i )signal. Fendiline induced quench of fura-2 fluorescence by Mn(2+) (50 microM), suggesting the presence of Ca(2+) influx across the plasma membrane. This Ca(2+) influx was abolished by La(3+) (50 microM), but was insensitive to dihydropyridines, verapamil and diltiazem. Fendiline (10 microM)-induced store Ca(2+) release was largely reduced by pretreatment with thapsigargin (1 microM) (an endoplasmic reticulum Ca(2+) pump inhibitor) to deplete the endoplasmic reticulum Ca(2+). Conversely, pretreatment with 10 microM fendiline abolished thapsigargin-induced Ca(2+) release. Fendiline (10 microM)-induced Ca(2+) release was not altered by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Cumulatively, this study shows that fendiline induced concentration-dependent [Ca(2+)](i )increases in corneal epithelial cells by releasing the endoplasmic reticulum Ca(2+) in a phospholipase C-independent manner, and by causing Ca(2+) influx.  相似文献   

5.
Jan CR  Jiann BP  Lu YC  Chang HT  Su W  Chen WC  Yu CC  Huang JK 《Life sciences》2002,70(11):1337-1345
The effects of triethyltin on Ca2+ mobilization in human PC3 prostate cancer cells have been explored. Triethyltin increased [Ca2+]i at concentrations larger than 3 microM with an EC50 of 30 microM. Within 5 min, the [Ca2+]i signal was composed of a gradual rise and a sustained phase. The [Ca2+]i signal was reduced by half by removing extracellular Ca2+. The triethyltin-induced [Ca2+]i increases were inhibited by 40% by 10 microM nifedipine, nimodipine and nicardipine, but were not affected by 10 microM of verapamil or diltiazem. In Ca2+-free medium, pretreatment with thapsigargin (1 microM), an endoplasmic reticulum Ca+ pump inhibitor, reduced 200 microM triethyltin-induced Ca+ increases by 50%. Pretreatment with U73122 (2 microM) to inhibit phospholipase C did not alter 200 microM triethyltin-induced [Ca2+]i increases. Incubation with triethyltin at a concentration that did not increase [Ca2+]i (1 microM) in Ca2+-containing medium for 3 min potentiated ATP (10 microM)- or bradykinin (1 microLM)-induced [Ca2+]i increases by 41 +/- 3% and 51 +/- 2%, respectively. Collectively, this study shows that the environmental toxicant triethyltin altered Ca2+ handling in PC3 prostate cancer cells in a concentration-dependent manner: at higher concentrations it increased basal [Ca2+]i; and at lower concentrations it potentiated agonists-induced [Ca2+]i increases.  相似文献   

6.
7.
In human breast cancer cells, the effect of the widely prescribed estrogen diethylstilbestrol (DES) on intracellular Ca2+ concentrations ([Ca2+]i) and cell viability was explored by using fura-2 and trypan blue exclusion, respectively. DES caused a rise in [Ca2+]i in a concentration-dependent manner (EC50 = 15 microM). DES-induced [Ca2+]i rise was reduced by 80 % by removal of extracellular Ca2+. DES-induced Mn(2+)-associated quench of intracellular fura-2 fluorescence also suggests that DES induced extracellular Ca2+ influx. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of DES on [Ca2+]i was greatly inhibited. Conversely, pretreatment with DES to deplete intracellular Ca2+ stores totally prevented thapsigargin from releasing more Ca2+, whereas ionomycin added afterward still released some Ca2+. These findings suggest that in human breast cancer cells, DES increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum. Acute trypan blue exclusion studies suggest that 10-20 NM DES killed cells in a time-dependent manner.  相似文献   

8.
Prolactin and arachidonic acid increase milk casein secretion in mammary gland slices. These effects do not necessitate Ca2+ in the incubation medium. Prolactin does not modify the influx or the efflux of 45Ca2+. The Ca2+ channel blocking agent D600 (6 micrograms/ml) decreases the stimulatory effect of prolactin on casein secretion, but does not interfere in the stimulatory effect of arachidonic acid. The calmodulin inhibitor trifluoperazine (100 microM) inhibits stimulation of casein secretion by both prolactin and arachidonic acid. From these data, it is concluded that a flow of Ca2+ from the outside into the cell is not a requisite for the stimulation of casein secretion. However, stimulation by prolactin, but not stimulation by arachidonic acid, requires Ca2+ movement through calcium pathways. Intracellular transport of Ca2+ seems necessary for the stimulation of secretion.  相似文献   

9.
Ca2+ transport in kidney has gained considerable attention in the recent past. Our laboratory has been involved in understanding the regulatory mechanisms underlying Ca2+ transport in the kidney across the renal basolateral membrane. We have shown that ANP, a cardiac hormone, mediates its biological functions by acting on its receptors in the kidney basolateral membrane. Furthermore, it has been established that ANP receptors are coupled with Ca2+ ATPase, the enzyme that participates in the vectorial translocation of Ca2+ from the tubular lumen to the plasma. It is possible that a defect in the ANP-receptor-effector system in diabetes (under certain conditions such as hypertension) may be associated with abnormal Ca2+ homeostasis and the development of nephropathy. Accordingly, future studies are needed to establish this hypothesis.  相似文献   

10.
Autophagy and apoptosis function as important early cellular defense mechanisms in infections and other diseases. The outcome of an infection is determined by a complex interplay between the pathogenic microorganism and these intracellular pathways. To better understand the cytopathogenicity of Herpes simplex virus types 1 and 2 (HSV-1 and -2), we studied the effect of these viruses on the autophagic and apoptotic processes in the SIRC corneal cell line. Infection with the KOS strain of HSV-1 and a wild-type strain of HSV-2 enhanced autophagosome formation, triggered cytoplasmic acidification, increased LC3B lipidation and elevated the ratio of apoptotic cells. The autophagy inhibitor bafilomycin A1 triggered a significant increase in the apoptotic responses of HSV-1- and HSV-2-infected cells. Thus, both HSV types affect autophagy and apoptosis in a coordinated fashion, and autophagy plays cytoprotective role in HSV-infected cells via antagonizing apoptosis. Together these data implicate autophagy in the pathogenic mechanism of herpetic keratitis.  相似文献   

11.
We have studied arginine vasopressin (AVP)-, thapsigargin- and inositol 1,4,5-trisphosphate (InsP3)-mediated Ca2+ release in renal epithelial LLC-PK1 cells. AVP-induced changes in the intracellular free calcium concentration ([Ca2+]i) were studied in indo-1 loaded single cells by confocal laser cytometry. AVP-mediated Ca2+ mobilization was also observed in the absence of extracellular Ca2+, but was completely abolished after depletion of the intracellular Ca2+ stores by 2 μM thapsigargin. Using 45Ca2+ fluxes in saponin-permeabilized cell monolayers, we have analysed how InsP3 affected the Ca2+ content of nonmitochondrial Ca2+ pools in different loading and release conditions. Less than 10% of the Ca2+ was taken up in a thapsigargin-insensitive pool when loading was performed in a medium containing 0.1 μM Ca2+. The thapsigargin-insensitive compartment amounted to 35% in the presence of 110 μM Ca2+, but Ca2+ sequestered in this pool could not be released by InsP3. The thapsigargin-sensitive Ca2+ pool, in contrast, was nearly completely InsP3 sensitive. A submaximal [InsP3], however, released only a fraction of the sequestered Ca2+. This fraction was dependent on the cytosolic as well as on the luminal [Ca2+]. The cytosolic free [Ca2+] affected the InsP3-induced Ca2+ release in a biphasic way. Maximal sensitivity toward InsP3 was found at a free cytosolic [Ca2+] between 0.1 and 0.5 μM, whereas higher cytosolic [Ca2+] decreased the InsP3 sensitivity. Other divalent cations or La3+ did not provoke similar inhibitory effects on InsP3-induced Ca2+ release. The luminal free [Ca2+] was manipulated by varying the time of incubation of Ca2+ -loaded cells in an EGTA-containing medium. Reduction of the Ca2+ content to one-third of its initial value resulted in a fivefold decrease in the InsP3 sensitivity of the Ca2+ release. © 1993 Wiley-Liss, Inc.  相似文献   

12.
Membrane conductances for Ca2+ in cultured rat pigment epithelial cells were studied in the whole-cell configuration of the patch-clamp technique using barium (10 mM) as a charge carrier. Two types of voltage-dependent and verapamiland diltiazem-sensitive Ba2+ currents were observed. First, a nearly sustained current was activated by depolarization to potentials more positive than — 30mV and blocked by nifedipine (1 μM). This current was observed in cells of primary cultures less than 13 days old. Second, a transient nifedipine (1 μM) insensitive current was activated by depolarization to potentials more positive than — 55mV in cultures which were more than 13 days old. This current was not carried by sodium and blocked by 1 μM tetrodotoxin (TTX). In summary, cultured rat retinal pigment epithelial cells in younger primary cultures express Ba2+ currents indicating the presence of L-type Ca2+ channels. In order primary cultures a low-voltage activated channel was observed with properties different from T-type calcium channels or TTX-sensitive calcium conducting sodium channels. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The role of the cytoskeleton in regulating Ca(2+) release has been explored in epithelial cells. Trains of local Ca(2+) spikes were elicited in pancreatic acinar cells by infusion of inositol trisphosphate through a whole cell patch pipette, and the Ca(2+)-dependent Cl(-) current spikes were recorded. The spikes were only transiently inhibited by cytochalasin B, an agent that acts on microfilaments. In contrast, nocodazole (5-100 micrometer), an agent that disrupts the microtubular network, dose-dependently reduced spike frequency and decreased spike amplitude leading to total blockade of the response. Consistent with an effect of microtubular disruption, colchicine also inhibited spiking but neither Me(2)SO nor beta-lumicolchicine, an inactive analogue of colchicine, had any effect. The microtubule-stabilizing agent, taxol, also inhibited spiking. The nocodazole effects were not due to complete loss of function of the Ca(2+) signaling apparatus, because supramaximal carbachol concentrations were still able to mobilize a Ca(2+) response. Finally, as visualized by 2-photon excitation microscopy of ER-Tracker, nocodazole promoted a loss of the endoplasmic reticulum in the secretory pole region. We conclude that microtubules specifically maintain localized Ca(2+) spikes at least in part because of the local positioning of the endoplasmic reticulum.  相似文献   

14.
15.
Experiments were designed to differentiate the mechanisms of bradykinin receptors mediating the changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) in canine cultured corneal epithelial cells (CECs). Bradykinin and Lys-bradykinin caused an initial transient peak of [Ca(2+)](i) in a concentration-dependent manner, with half-maximal stimulation (pEC(50)) obtained at 6.9 and 7.1, respectively. Pretreatment of CECs with pertussis toxin (PTX) or cholera toxin (CTX) for 24 h did not affect the bradykinin-induced [Ca(2+)](i) changes. Application of Ca(2+) channel blockers, diltiazem and Ni(2+), inhibited the bradykinin-induced Ca(2+) mobilization, indicating that Ca(2+) influx was required for the bradykinin-induced responses. Addition of thapsigargin (TG), which is known to deplete intracellular Ca(2+) stores, transiently increased [Ca(2+)](i) in Ca(2+)-free buffer, and subsequently induced Ca(2+) influx when Ca(2+) was readded to this buffer. Pretreatment of CECs with TG completely abolished bradykinin-induced initial transient [Ca(2+)](i), but had slight effect on bradykinin-induced Ca(2+) influx. Pretreatment of CECs with 1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF96365) and 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122) inhibited the bradykinin-induced Ca(2+) release and Ca(2+) influx, consistent with the inhibition of receptor-gated Ca(2+) channels and phospholipase C (PLC) in CECs, respectively. These results demonstrate that bradykinin directly stimulates B(2) receptors and subsequently Ca(2+) mobilization via a PTX-insensitive G protein in canine CECs. These results suggest that bradykinin-induced Ca(2+) influx into the cells is not due to depletion of these Ca(2+) stores, as prior depletion of these pools by TG has no effect on the bradykinin-induced Ca(2+) influx that is dependent on extracellular Ca(2+) in CECs.  相似文献   

16.
17.
The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS), a presumed phospholipase C activator, on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unclear. This study explored whether m-3M3FBS changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. M-3M3FBS at concentrations between 10-60 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. M-3M3FBS-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca2+-free medium, 30 μM m-3M3FBS pretreatment inhibited the [Ca2+]i rise induced by the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin and 2,5-di-tert-butylhydroquinone (BHQ). Conversely, pretreatment with thapsigargin, BHQ or cyclopiazonic acid partly reduced m-3M3FBS-induced [Ca2+]i rise. Inhibition of inositol 1,4,5-trisphosphate formation with U73122 did not alter m-3M3FBS-induced [Ca2+]i rise. At concentrations between 5 and 100 μM m-3M3FBS killed cells in a concentration-dependent manner. The cytotoxic effect of m-3M3FBS was not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining data suggest that m-3M3FBS (20 or 50 μM) induced apoptosis in a Ca2+-independent manner. Collectively, in OC2 cells, m-3M3FBS induced [Ca2+]i rise by causing inositol 1,4,5-trisphosphate-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive store-operated Ca2+ channels. M-3M3FBS also induced Ca2+-independent cell death and apoptosis.  相似文献   

18.
The effect of nordihydroguaiaretic acid (NDGA), a compound commonly used as a lipoxygenases inhibitor, on intracellular free Ca2+ levels ([Ca2+]i) in PC3 human prostate cancer cells was investigated. [Ca2+]i was measured by using the Ca2+ -sensitive dye fura-2. NDGA increased [Ca2+]i in a concentration-dependent manner with an EC50 of 30 microM. The Ca2+ signal comprised a gradual and sustained increase. Removal of extracellular Ca2+ partly decreased the NDGA-induced [Ca2+]i increase, suggesting that the Ca2+ signal was due to both extracellular Ca2+ influx and intracellular Ca2+ release. NDGA-induced Ca2+ influx was independently confirmed by measuring NDGA-induced Mn2+ -coupled quench of fura-2 fluorescence. The NDGA-induced Ca2+ influx was not affected by L-type Ca2+ channel blockers. In Ca2+ -free medium, the NDGA-induced [Ca2+]i increase was abolished by pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), and conversely, pretreatment with NDGA abolished thapsigargin-induced [Ca2+]i increase. NDGA-induced intracellular Ca2+ release was not altered by inhibition of phospholipase C. Overnight treatment with 20-50 microM NDGA inhibited cell proliferation rate in a concentration-dependent manner. Several other lipoxygenases inhibitors did not alter [Ca2+]i. Collectively, this study shows that in prostate cells, NDGA induced a [Ca2+]i increase via releasing stored Ca2+ from the endoplasmic reticulum in a manner independent of phospholipase C activity, and by causing Ca2+ influx. NDGA also caused cytotoxicity at higher concentrations.  相似文献   

19.
Ca(2+)-antagonists change the contractility of isolated detrusor smooth muscle of rabbit influencing the translocation of intra- and extra-cellular Ca2+. This observation might be of clinical importance in the treatment of disorders of urinary bladder function. During field stimulation of different segments of isolated rabbit bladder it was found that the specific Ca(2+)-antagonist nifedipine and verapamil and the non-selective Ca(2+)-antagonist fendiline, prenylamine and cinnarizine blocked the contractions induced by field stimulus to different extent, which decreased from the bladder towards the bladder base (fundus). The highest rate of blocking effect was produced by nifedipine followed by verapamil, prenylamine and fendiline, respectively. Cinnarizine exerted the lowest effect. The change in amplitude and frequency of spontaneous peristalsis was similar in its tendency to the blockade of the field stimulus induced contraction.  相似文献   

20.
Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes   总被引:2,自引:0,他引:2  
It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d myocytes) than when mediated by I(Ca) ( approximately 3.0 for 56d myocytes). We conclude that the lower-efficiency NCX-mediated CICR is a predominant mode of CICR in the earliest developmental stages that gradually decreases as the more efficient L-type Ca(2+) channel-mediated CICR increases in prominence with ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号