共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future 总被引:5,自引:0,他引:5
C4 photosynthetic physiologies exhibit fundamentally different responses to temperature and atmospheric CO2 partial pressures (pCO2) compared to the evolutionarily more primitive C3 type. All else being equal, C4 plants tend to be favored over C3 plants in warm humid climates and, conversely, C3 plants tend to be favored over C4 plants in cool climates. Empirical observations supported by a photosynthesis model predict the existence of a climatological
crossover temperature above which C4 species have a carbon gain advantage and below which C3 species are favored. Model calculations and analysis of current plant distribution suggest that this pCO2-dependent crossover temperature is approximated by a mean temperature of 22°C for the warmest month at the current pCO2 (35 Pa). In addition to favorable temperatures, C4 plants require sufficient precipitation during the warm growing season. C4 plants which are predominantly graminoids of short stature can be competitively excluded by trees (nearly all C3 plants) – regardless of the photosynthetic superiority of the C4 pathway – in regions otherwise favorable for C4. To construct global maps of the distribution of C4 grasses for current, past and future climate scenarios, we make use of climatological data sets which provide estimates of
the mean monthly temperature to classify the globe into areas which should favor C4 photosynthesis during at least 1 month of the year. This area is further screened by excluding areas where precipitation
is <25 mm per month during the warm season and by selecting areas classified as grasslands (i.e., excluding areas dominated
by woody vegetation) according to a global vegetation map. Using this approach, grasslands of the world are designated as
C3, C4, and mixed under current climate and pCO2. Published floristic studies were used to test the accuracy of these predictions in many regions of the world, and agreement
with observations was generally good. We then make use of this protocol to examine changes in the global abundance of C4 grasses in the past and the future using plausible estimates for the climates and pCO2. When pCO2 is lowered to pre-industrial levels, C4 grasses expanded their range into large areas now classified as C3 grasslands, especially in North America and Eurasia. During the last glacial maximum (∼18 ka BP) when the climate was cooler
and pCO2 was about 20 Pa, our analysis predicts substantial expansion of C4 vegetation – particularly in Asia, despite cooler temperatures. Continued use of fossil fuels is expected to result in double
the current pCO2 by sometime in the next century, with some associated climate warming. Our analysis predicts a substantial reduction in the
area of C4 grasses under these conditions. These reductions from the past and into the future are based on greater stimulation of C3 photosynthetic efficiency by higher pCO2 than inhibition by higher temperatures. The predictions are testable through large-scale controlled growth studies and analysis
of stable isotopes and other data from regions where large changes are predicted to have occurred.
Received: 3 July 1997 / Accepted: 3 December 1997 相似文献
2.
Measurement of the internal CO(2) concentration (Ci) in tobacco leaves using a fast-response CO(2) exchange system showed that in the light, switching from 350 microLL(-1) to a low CO(2) concentration of 36.5 microLL(-1) (promoting high photorespiration) resulted in the Ci oscillating near the value of CO(2) compensation point (Gamma*). The oscillations are highly irregular, the range of Ci varying by 2-4 microLL(-1) in substomatal cavities with a period of a few seconds. The statistical properties of the time series became stationary after a transient of approximately 100s following transfer to low CO(2). Attractor reconstruction shows that the observed oscillations are not chaotic but exhibit stochastic behavior. The period of oscillations is consistent with the duration of photorespiratory post-illumination burst (PIB). We suggest that the observed oscillations may be due to a similar mechanism to that which leads to PIB, and may play a role in switching mitochondrial operation between oxidation of the photorespiratory glycine and of the tricarboxylic acid cycle substrates. 相似文献
3.
Mohn J Szidat S Fellner J Rechberger H Quartier R Buchmann B Emmenegger L 《Bioresource technology》2008,99(14):6471-6479
A field application of the radiocarbon ((14)C) method was developed to determine the ratio of biogenic vs. fossil CO(2) emissions from waste-to-energy plants (WTE). This methodology can be used to assign the Kyoto relevant share of fossil CO(2) emissions, which is highly relevant for emission budgets and emission trading. Furthermore, heat and electricity produced by waste incinerators might be labelled depending on the fossil or biogenic nature of the primary energy source. The method development includes representative on-site CO(2) absorption and subsequent release in the laboratory. Furthermore, a reference value for the (14)C content of pure biogenic waste (f(M,bio)) was determined as 1.130+/-0.038. Gas samples for (14)CO(2) analysis were taken at three WTEs during one month each. Results were compared to an alternative approach based on mass and energy balances. Both methods were in excellent agreement and indicated a fraction of biogenic CO(2) slightly above 50%. 相似文献
4.
Alan Mann Bernard Vandermeersch Anne Delagnes Jean-Franois Tournepiche 《Comptes Rendus Palevol》2007,6(8):581-589
The cave of Artenac is located about 20 km northeast of Angouleme, in the commune of Saint-Mary (Charente). In 1995 and 1996, two fragmentary hominine skull bones, a maxilla and a frontal, were uncovered during excavations in Mousterian levels of the cave. Biostratigraphic analyses of the abundant mammalian fauna place the Mousterian occupation of the cave at the beginning of Oxygen Isotope Stage 5. Although both bones come from adults, aspects of their morphology indicate they could derive from two individuals of different ages at death. The two bones are relatively fragmentary, but sufficient detail has been preserved, including an inflated maxillary region lacking an infra-orbital depression (or fossa canina) and the shape of the forehead, to establish their identity as Neandertals. 相似文献
5.
Leakey AD Lau JA 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1588):613-629
Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO(2)]. 相似文献
6.
《Ecological Complexity》2008,5(4):329-338
A conceptual framework is proposed for assessing and managing the ecosystem impacts of climate change. The framework can be used by ecosystem managers to systematically assess the potential adverse impacts of future climate change on ecosystems, and identify best adaptation strategies for alleviating those impacts. The proposed framework: (1) determines the acceptability of the current state of the ecosystem; (2) specifies climate change scenarios; (3) assesses the ecosystem impacts of the scenarios; and (4) identifies the best adaptation strategies for alleviating unacceptable impacts of the climate change scenarios. Concepts and methods employed in the framework include: (1) limits of acceptable change; (2) scenario analysis; (3) simulation; (4) Delphi method; (5) decision making under risk and uncertainty; (6) stochastic dominance; (7) multiple attribute evaluation; (8) Bayesian statistical inference; and (9) adaptive management. Implementation of the framework requires considerable technical, scientific, and other data/information that may not be available at this time, but is likely to become available in the future. It is recommended that a pilot program be initiated to test the proposed framework in a few targeted publicly managed ecosystems for which the requisite ecosystem data/information are available or can be readily obtained. Results of the pilot program would provide insights into the pros and cons of the framework and the conditions under which it is likely to be feasible. 相似文献
7.
A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning 总被引:2,自引:0,他引:2
As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet. 相似文献
8.
Hanba YT Shibasaka M Hayashi Y Hayakawa T Kasamo K Terashima I Katsuhara M 《Plant & cell physiology》2004,45(5):521-529
The internal conductance for CO(2) diffusion (g(i)) and CO(2) assimilation rate were measured and the related anatomical characteristics were investigated in transgenic rice leaves that overexpressed barley aquaporin HvPIP2;1. This study was performed to test the hypothesis that aquaporin facilitates CO(2) diffusion within leaves. The g(i) value was estimated for intact leaves by concurrent measurements of gas exchange and carbon isotope ratio. The leaves of the transgenic rice plants that expressed the highest levels of Aq-anti-HvPIP2;1 showed a 40% increase in g(i) as compared to g(i) in the leaves of wild-type rice plants. The increase in g(i) was accompanied by a 14% increase in CO(2) assimilation rate and a 27% increase in stomatal conductance (g(s)). The transgenic plants that had low levels of Aq-anti-HvPIP2;1 showed decreases in g(i) and CO(2) assimilation rate. In the plants with high levels of Aq-anti-HvPIP2;1, mesophyll cell size decreased and the cell walls of the epidermis and mesophyll cells thickened, indicating that the leaves had become xeromorphic. Although such anatomical changes could partially offset the increase in g(i) by the aquaporin, the increase in aquaporin content overcame such adverse effects. 相似文献
9.
10.
11.
Kaneyuki Nakane 《Ecological Research》2001,16(4):671-685
A model of soil carbon cycling in forest ecosystems was applied to predict the soil carbon balance in nine forest ecosystems from the tropics to the boreal zone during the past three decades (1965–95). The parameters of carbon flows and initial conditions of carbon pools were decided based on data obtained in each forest stand. Assumptions for model calculation were: (i) primary production (i.e. litterfall and root turnover rates) increased with increasing CO2 concentrations in the atmosphere (10% per 40 p.p.m. CO2); and (ii) temperature increased by 0.6°C per 100 years, but precipitation changed little. The simulation employed a daily time step and used daily air temperature and precipitation observed near each forest stand over an average year during the last decade. The model calculations suggest that the accumulation of total soil carbon increased 8.5–10.4 tC (ton of carbon) ha–1 in broad-leaved forests from the tropics to the cool-temperate zone during the past three decades, but the amount of soil carbon (3.0–8.4 tC ha–1) increased much less in needle forests from the subtropical to boreal zones during the same period. There is a linear relationship between the increasing rate of soil carbon stock during the past three decades (1965–95) in forest stands concerned (RMS, % per 30 years) and annual mean temperature of their soils (T0,°C), as: RMS = 0.34T0 + 4.1. Based on the data of carbon stock in forest soil in each climate zone reported, the global sink of atmospheric CO2 into forest soil was roughly estimated to be 42 GtC (billion tons of carbon) per 30 years, which was 1.4 GtC year–1 on average over the past three decades. 相似文献
12.
Sherwood B. Idso Kieth E. Idso Richard L. Garcia Bruce A. Kimball J. Kenneth Hoober 《American journal of botany》1995,82(1):26-30
Foliar spray applications of 40% aqueous methanol were made to sunlit leaves of sour orange trees that had been grown continuously in clear-plastic-wall open-top enclosures maintained out-of-doors at Phoenix, Arizona, for over 5.5 years in ambient air of approximately 400 μmol mol-1 CO2 and in air enriched with CO2 to a concentration of approximately 700 μmol mol-1. No unambiguous effects of the methanol applications were detected in net photosynthesis measurements made on foliage in either of the two CO2 treatments. The 75% increase in CO2, however, raised the upper-limiting leaf temperature for positive net photosynthesis by approximately 7 C, which resulted in a 75% enhancement in net photosynthesis at a leaf temperature of 31 C, a 100% enhancement at a leaf temperature of 35 C, and a 200% enhancement at 42 C. 相似文献
13.
Identification of fossil leaf impressions as Cercis has been questioned based upon the presence or absence of a pulvinus at the base of the lamina (upper pulvinus). In the present study, leaves of Cercis canadensis were examined before and after abscission to explore the degradation processes that could occur prior to fossilization, and the North American record for fossil foliage of Cercis was revised accordingly. Results for C. canadensis indicate that: (1) the pulvinus consists largely of tissues with nonlignified cells (a wide cortex, a nonlignified fiber sheath, phloem, and pith) that degrade rapidly after leaf abscission, (2) the lignified xylem tissue that remains in the pulvinus after degradation is in brittle strands, (3) the pulvinus degrades at a faster rate than the lamina or the petiole, and (4) the degraded pulvinus cushion leaves a semicircular pattern on the lamina. From examination of fossils as well as extant species, we: (1) demonstrated that in fossils, the upper pulvinus can show a greater degree of degradation than the adjoining petiole or lamina tissue, suggesting the degradation of upper pulvinus tissue is similar in modern vs. fossil specimens, (2) defined numerous other laminar characters that can be used in conjunction with, or in the absence of, an upper pulvinus to confirm the presence of Cercis in the fossil record, and (3) showed from those criteria that the earliest known North American fossil leaf record for Cercis, from a specimen newly reported in the present study, is from the middle Miocene Succor Creek flora of Oregon. 相似文献
14.
FRANCESCO CHERUBINI GLEN P. PETERS TERJE BERNTSEN ANDERS H. STRØMMAN EDGAR HERTWICH 《Global Change Biology Bioenergy》2011,3(5):413-426
Carbon dioxide (CO2) emissions from biomass combustion are traditionally assumed climate neutral if the bioenergy system is carbon (C) flux neutral, i.e. the CO2 released from biofuel combustion approximately equals the amount of CO2 sequestered in biomass. This convention, widely adopted in life cycle assessment (LCA) studies of bioenergy systems, underestimates the climate impact of bioenergy. Besides CO2 emissions from permanent C losses, CO2 emissions from C flux neutral systems (that is from temporary C losses) also contribute to climate change: before being captured by biomass regrowth, CO2 molecules spend time in the atmosphere and contribute to global warming. In this paper, a method to estimate the climate impact of CO2 emissions from biomass combustion is proposed. Our method uses CO2 impulse response functions (IRF) from C cycle models in the elaboration of atmospheric decay functions for biomass‐derived CO2 emissions. Their contributions to global warming are then quantified with a unit‐based index, the GWPbio. Since this index is expressed as a function of the rotation period of the biomass, our results can be applied to CO2 emissions from combustion of all the different biomass species, from annual row crops to slower growing boreal forest. 相似文献
15.
The detection of 12CO2 emission from leaves in air containing 13CO2 allows simple and fast determination of the CO2 emitted by different sources, which are separated on the basis of their labelling velocity. This technique was exploited to investigate the controversial effect of CO2 concentration on mitochondrial respiration. The 12CO2 emission was measured in illuminated and darkened leaves of one C4 plant and three C3 plants maintained at low (30-50 ppm), atmospheric (350-400 ppm) and elevated (700-800 ppm) CO2 concentration. In C3 leaves, the 12CO2 emission in the light (Rd) was low at ambient CO2 and was further quenched in elevated CO2, when it was often only 20-30% of the 12CO2 emission in the dark, interpreted as the mitochondrial respiration in the dark (Rn). Rn was also reduced in elevated CO2. At low CO2, Rd was often 70-80% of Rn, and a burst of 12CO2 was observed on darkening leaves of Mentha sativa and Phragmites australis after exposure for 4 min to 13CO2 in the light. The burst was partially removed at low oxygen and was never observed in C4 leaves, suggesting that it may be caused by incomplete labelling of the photorespiratory pool at low CO2. This pool may be low in sclerophyllous leaves, as in Quercus ilex where no burst was observed. Rd was inversely associated with photosynthesis, suggesting that the Rd/Rn ratio reflects the refixation of respiratory CO2 by photosynthesizing leaves rather than the inhibition of mitochondrial respiration in the light, and that CO2 produced by mitochondrial respiration in the light is mostly emitted at low CO2, and mostly refixed at elevated CO2. In the leaves of the C4 species Zea mays, the 12CO2 emission in the light also remained low at low CO2, suggesting efficient CO2 refixation associated with sustained photosynthesis in non-photorespiratory conditions. However, Rn was inhibited in CO2-free air, and the velocity of 12CO2 emission after darkening was inversely associated with the CO2 concentration. The emission may be modulated by the presence of post-illumination CO2 uptake deriving from temporary imbalance between C3 and C4 metabolism. These experiments suggest that this uptake lasts longer at low CO2 and that the imbalance is persistent once it has been generated by exposure to low CO2. 相似文献
16.
RUTH M. DOHERTY STEPHEN SITCH BENJAMIN SMITH SIMON L. LEWIS PHILIP K. THORNTON 《Global Change Biology》2010,16(2):617-640
We model future changes in land biogeochemistry and biogeography across East Africa. East Africa is one of few tropical regions where general circulation model (GCM) future climate projections exhibit a robust response of strong future warming and general annual‐mean rainfall increases. Eighteen future climate projections from nine GCMs participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment were used as input to the LPJ dynamic global vegetation model (DGVM), which predicted vegetation patterns and carbon storage in agreement with satellite observations and forest inventory data under the present‐day climate. All simulations showed future increases in tropical woody vegetation over the region at the expense of grasslands. Regional increases in net primary productivity (NPP) (18–36%) and total carbon storage (3–13%) by 2080–2099 compared with the present‐day were common to all simulations. Despite decreases in soil carbon after 2050, seven out of nine simulations continued to show an annual net land carbon sink in the final decades of the 21st century because vegetation biomass continued to increase. The seasonal cycles of rainfall and soil moisture show future increases in wet season rainfall across the GCMs with generally little change in dry season rainfall. Based on the simulated present‐day climate and its future trends, the GCMs can be grouped into four broad categories. Overall, our model results suggest that East Africa, a populous and economically poor region, is likely to experience some ecosystem service benefits through increased precipitation, river runoff and fresh water availability. Resulting enhancements in NPP may lead to improved crop yields in some areas. Our results stand in partial contradiction to other studies that suggest possible negative consequences for agriculture, biodiversity and other ecosystem services caused by temperature increases. 相似文献
17.
Elevated CO(2) induces biochemical and ultrastructural changes in leaves of the C(4) cereal sorghum 总被引:1,自引:0,他引:1
We analyzed the impact of growth at either 350 (ambient) or 700 (elevated) microL L(-1) CO(2) on key elements of the C(4) pathway (photosynthesis, carbon isotope discrimination, and leaf anatomy) using the C(4) cereal sorghum (Sorghum bicolor L. Moench.). Gas-exchange analysis of the CO(2) response of photosynthesis indicated that both carboxylation efficiency and the CO(2) saturated rate of photosynthesis were lower in plants grown at elevated relative to ambient CO(2). This was accompanied by a 49% reduction in the phosphoenolpyruvate carboxylase content of leaves (area basis) in the elevated CO(2)-grown plants, but no change in Rubisco content. Despite the lower phosphoenolpyruvate carboxylase content, there was a 3-fold increase in C isotope discrimination in leaves of plants grown at elevated CO(2) and bundle sheath leakiness was estimated to be 24% and 33%, respectively, for the ambient and elevated CO(2)-grown plants. However, we could detect no difference in quantum yield. The ratio of quantum yield of CO(2) fixation to PSII efficiency was lower in plants grown at elevated CO(2), but only when leaf internal was below 50 microL L(-1). This suggests a reduction in the efficiency of the C(4) cycle when [CO(2)] is low, and also implies increased electron transport to acceptors other than CO(2). Analysis of leaf sections using a transmission electron microscope indicated a 2-fold decrease in the thickness of the bundle sheath cell walls in plants grown at elevated relative to ambient CO(2). These results suggest that significant acclimation to increased CO(2) concentrations occurs in sorghum. 相似文献
18.
A. V. Gorokhov 《Paleontological Journal》2007,41(2):156-166
New taxa of the suborder Blattina (order Dictyoptera), possibly belonging to the family Corydiidae (Erucoblatta semicaeca gen. et sp. nov., Miocene; Proholocompsa gen. nov., Eocene; and Holocompsa nigra sp. nov. and H. abbreviata sp. nov., Miocene) and belonging to the family Ectobiidae (Plectoptera electrina sp. nov., Miocene; Agrabtoblatta symmetrica gen. et sp. nov. and ?Symploce rete sp. nov., Pleistocene) are described. The taxonomic position of the enigmatic genus Raphidiomimula Grimaldi et Ross from the Upper Cretaceous is discussed. 相似文献
19.
S. Bencze Z. Bamberger T. Janda K. Balla B. Varga Z. Bedő O. Veisz 《Photosynthetica》2014,52(1):71-82
In the phytotron experiment, the effect of elevated atmospheric CO2 (EC, 750 μmol mol?1) on the drought tolerance was studied in two winter varieties (Mv Mambo, tolerant; Mv Regiment, moderately tolerant) and in one spring variety of wheat (Lona, sensitive to drought). Changes in net photosynthetic rate (P N), stomatal conductance, transpiration, wateruse efficiency, effective quantum yield of photosystem II, and activities of glutathione reductase (GR), glutathione-Stransferase (GST), guaiacol peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were monitored during water withdrawal. Drought caused a faster decline of P N at EC, leading to the lower assimilation rates under severe drought compared with ambient CO2 (NC). In the sensitive variety, P N remained high for a longer period at EC. The growth at EC resulted in a more relaxed activation level of the antioxidant enzyme system in all three varieties, with very low activities of GR, GST, APX, and POD. The similar, low values were due to decreases in the varieties which had higher ambient values. A parallel increase of CAT was, however, recorded in two varieties. As the decline in P N was faster at EC under drought but there was no change in the rate of electron transport compared to NC values, a higher level of oxidative stress was induced. This triggered a more pronounced, general response in the antioxidant enzyme system at EC, leading to very high activities of APX, CAT, and GST in all three varieties. The results indicated that EC had generally favourable effects on the development and stress tolerance of plants, although bigger foliage made the plants more prone to the water loss. The relaxation of the defence mechanisms increased potentially the risk of damage due to the higher level of oxidative stress at EC under severe drought compared with NC. 相似文献