首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the current study, we showed that the combination of mammalian target of rapamycin (mTOR) inhibitor RAD001 (everolimus) and Akt inhibitor MK-2206 exerted synergistic cytotoxic effects against low-phosphatase and tensin homolog (PTEN) gastric cancer cells (HGC-27 and SNU-601 lines). In HGC-27 cells, RAD001 and MK-2206 synergistically induced G1/S cell cycle arrest, growth inhibition, cell death but not apoptosis. RAD001 and MK-2206 synergistically induced light chain 3B (LC3B) and beclin-1 expression, two important autophagy indicators. Meanwhile, the autophagy inhibitor 3-methyladenine (3-MA) and chloroquine inhibited the cytotoxic effects by RAD001 and MK-2206, suggesting that autophagic, but not apoptotic cell death was important for the cytotoxic effects by the co-administration. We observed that the combination of RAD001 and MK-2206 exerted enhanced effects on Akt/mTOR inhibition, cyclin D1 down-regulation and ERK/MAPK(extracellular signal-regulated kinase/mitogen-activated protein kinases) activation. Intriguingly, MEK/ERK inhibitors PD98059 and U0126 suppressed RAD001 plus MK-2206-induced beclin-1 expression, autophagy induction and cytotoxicity in HGC-27 cells. In conclusion, these results suggested that the synergistic anti-gastric cancer cells ability by RAD001 and MK-2206 involves ERK-dependent autophagic cell death pathway.  相似文献   

2.
AimsInsulin-like growth factor (IGF)-1 is a major mitogenic growth factor for mesangial cells (MCs). Statins slow the progression of chronic kidney disease by affecting inflammatory cell signaling pathways, in addition to improving lipid profile, however, no studies have investigated the effects of fluvastatin on mitogen-activated protein (MAP) kinase activity or MC proliferation in kidney cells. We investigated the effects of fluvastatin on IGF-1-induced activation of intracellular signal pathways and MC proliferation, and examined the inhibitory mechanisms of fluvastatin.Main methodsWestern blotting and cell proliferation assay were used.Key findingsIGF-1 induced phosphorylation of extracellular-related kinase (ERK)1/2, MAP or ERK kinase (MEK)1/2, and Akt, expression of cyclin D1, and MC proliferation in cultured human MCs. Fluvastatin or PD98059, an MEK1 inhibitor, completely abolished IGF-1-induced MEK1/2 and ERK1/2 phosphorylation and MC proliferation, whereas inhibition of Akt had no effect on MC proliferation. Mevalonic acid prevented fluvastatin inhibition of IGF-1-induced MEK1/2 and ERK1/2 phosphorylation, cyclin D1 expression, and MC proliferation.SignificanceFluvastatin inhibits IGF-1-induced activation of the MAP kinase pathway and MC proliferation by mevalonic acid depletion, and might have renoprotective effects by inhibiting IGF-1-mediated MC proliferation.  相似文献   

3.
This study examined how L-leucine affected DNA synthesis and cell cycle regulatory protein expression in cultured primary chicken hepatocytes. L-Leucine promoted DNA synthesis in a dose- and time-dependent manner, with concomitant increases in cyclin D1 and cyclin E expression. Phospholipase C (PLC) and protein kinase C (PKC) mediated the L-leucine-induced increases in [3H]-thymidine incorporation and cyclin D1/CDK4 and cyclin E/CDK2 expression, as U73122 (a PLC inhibitor) or bisindolylmaleimide I (a PKC blocker) inhibited these effects. L-Leucine also increased PKC phosphorylation and intracellular Ca2+ levels. L-Leucine-mediated increases in [3H]-thymidine incorporation and cyclin/CDK expression were sensitive to LY 294002 (PI3K inhibitor), Akt inhibitor, PD 98059 (MEK inhibitor). It was also observed that L-leucine-induced increases of cyclin/CDK expression were inhibited by PI3K siRNA and ERK siRNA; L-leucine increased extracellular signal-regulated kinases 1/2 (ERK1/2) and Akt phosphorylation levels. Bisindolylmaleimide I attenuated L-leucine-induced phosphorylation of ERK1/2 but did not influence Akt phosphorylation, and PI3K siRNA and LY 294002 inhibited L-leucine-induced ERK1/2 phosphorylation, suggesting some cross-talk between the PKC and ERK1/2 or PI3K/Akt and ERK1/2 pathways. L-Leucine also increased the levels of phosphorylated molecular target of rapamycin (mTOR) and two of its targets, ribosomal protein S6 kinase (p70S6K), and 4E binding protein 1 (4E-BP1); furthermore, rapamycin (an mTOR inhibitor) blocked all of the mitogenic effects of L-leucine. In addition, Akt inhibitor blocked L-leucine-induced mTOR phosphorylation. In conclusion, L-leucine stimulated DNA synthesis and promoted cell cycle progression in primary cultured chicken hepatocytes through PKC, ERK1/2, PI3K/Akt, and mTOR.  相似文献   

4.
Anthrax lethal toxin (LeTx) is a virulence factor causing immune suppression and toxic shock of Bacillus anthracis infected host. It inhibits cytokine production and cell proliferation/differentiation in various immune cells. This study showed that a brief exposure of LeTx caused a continual MEK1 cleavage and prevented tumor necrosis factor-alpha (TNF) production in response to lipopolysaccharide (LPS) in non-proliferating cells such as human peripheral blood mononuclear cells or mouse primary peritoneal macrophages. In human monocytic cell lines U-937 and THP-1, LeTx induced cell cycle arrest in G0-G1 phase by rapid down-regulation of cyclin D1/D2 and checkpoint kinase 1 through MEK1 inhibition. However, THP-1 cells adaptively adjusted to LeTx and overrode cell cycle arrest by activating the phosphatidylinositol 3-kinase/Akt signaling pathway. Inhibitory Ser-9 phosphorylation of glycogen synthase kinase 3beta (GSK3beta) by Akt prevented proteasome-mediated cyclin D1 degradation and induced cell cycle progress in LeTx-intoxicated THP-1 cells. Recovery from cell cycle arrest was required before recovering from on-going MEK1 cleavage and suppression of TNF production. Furthermore, pretreatment with LeTx or the GSK3-specific inhibitor SB-216763, or transfection with dominant active mutant Akt or degradation-defected mutant cyclin D1 protected cells from LeTx-induced cell cycle arrest, on-going MEK1 cleavage and suppression of TNF production. These results indicate that modulation of phosphatidylinositol 3-kinase/Akt/GSK3beta signaling cascades can be beneficial for protecting or facilitating recovery from cellular LeTx intoxication in cells that depend on basal MEK1 activity for proliferation.  相似文献   

5.
We explored the crosstalk between cell survival (phosphatidylinositol 3-kinase (PI3K)/Akt) and mitogenic (Ras/Raf/MEK/extracellular signal-regulated kinase (ERK)) signaling pathways activated by an epidermal growth factor (EGF) and analyzed their sensitivity to small molecule inhibitors in the PI3K-mutant estrogen receptor (ER)-positive MCF7 and T47D breast cancer cells. In contrast to MCF7 cells, ERK phosphorylation in T47D cells displayed resistance to MEK inhibition by several structurally different compounds, such as U0126, PD 098059 and PD 198306, MEK suppression by small interfering RNA (siRNA) and was also less sensitive to PI3K inhibition by wortmannin. Similar effect was observed in PI3K-wild type ER-positive BT-474 cells, albeit to a much lesser extent.MEK-independent ERK activation was induced only by ErbB receptor ligands and was resistant to inhibition of several kinases and phosphatases that are known to participate in the regulation of Ras/mitogen-activated protein kinase (MAPK) cascade. Although single agents against PDK1 or Akt did not affect EGF-induced ERK phosphorylation, a combination of PI3K/Akt and MEK inhibitors synergistically suppressed ERK activation and cellular growth. siRNA-mediated silencing of class I PI3K or Akt1/2 genes also significantly decreased U0126-resistant ERK phosphorylation.Our data suggest that in T47D cells ErbB family ligands induce a dynamic, PI3K/Akt-sensitive and MEK-independent compensatory ERK activation circuit that is absent in MCF7 cells. We discuss candidate proteins that can be involved in this activation circuitry and suggest that PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) may play a role in mediating MEK-independent ERK activation.  相似文献   

6.
Mouse kidney proximal tubular epithelial (MK-PT) cells die by apoptosis over 7-10 days when deprived of all survival factors. We show here that withdrawal of all survival factors from MK-PT cells is associated with a progressive increase in the activity of extracellular signal-regulated kinase-1 and -2 (ERK1/2) and a progressive decrease in phosphorylated Akt, a kinase critical to cell survival. Pharmacological inhibition of MEK1/2, the immediate upstream kinase for ERK1/2, not only prevented the decrease in phosphorylated Akt, but also prolonged MK-PT cell survival. Inhibition of ERK1/2, by itself, in the absence of any other known survival factors, was as potent as epidermal growth factor in maintaining MK-PT cell viability. ERK1/2 co-immunoprecipitated with Akt in a multimolecular assembly of signaling molecules, containing at a minimum ERK1/2, Akt, Rsk, and 3-phosphoinositide dependent kinase 1 (PDK1). We hypothesize that the kinase Rsk, whose activation requires phosphorylation by both ERK1/2 and PDK1, acts as a bridge bringing ERK1/2 into proximity with PDK1-associated Akt. Although a number of interactions between the Raf-MEK-ERK and PI3K-Akt signaling pathways have been described, our results are the first to show modulation of Akt activity by signaling events originating with ERK1/2. Spontaneous activation of ERK1/2 occurs via MEK1/2 and appears to depend on oxidant stress, accompanying induction of the default pathway of apoptosis. Together, these data suggest that the spontaneous activation of ERK1/2, in the absence of known extracellular stimuli, represents a previously unrecognized major regulatory pathway determining the fate of cells destined to die by the default pathway of apoptosis.  相似文献   

7.
Vitamin D(3) inhibits cell growth and induces apoptosis in several human cancer lines in vitro and in vivo. However, little is known about the molecular events involved in vitamin D(3)-induced apoptosis. Here, we demonstrate that the growth-promoting/pro-survival signaling molecule mitogen-activated protein kinase kinase (MEK) is cleaved in a caspase-dependent manner in murine squamous cell carcinoma (SCC) cells induced to undergo apoptosis by treatment with vitamin D(3). Cleavage resulted in nearly complete loss of full-length MEK and ERK1/2 phosphorylation. ERK1/2 expression was affected only slightly. The phosphorylation and expression of Akt, a kinase regulating a second cell survival pathway, was also inhibited after treatment with vitamin D(3). However, the pro-apoptotic signaling molecule MEKK-1 was up-regulated in both apoptotic and non-apoptotic cells with greater induction and partial N-terminal proteolysis of MEKK-1 observed in apoptotic cells. In contrast to vitamin D(3), cisplatin and etoposide down-regulated Akt levels only modestly, did not promote significant loss of MEK expression, and did not up-regulate MEKK-1. We propose that vitamin D(3) induces apoptosis in SCC cells by a unique mechanism involving selective caspase-dependent MEK cleavage and up-regulation of MEKK-1. Additional evidence is provided that vitamin D(3)-induced apoptosis may be mediated via p38 MAPK.  相似文献   

8.
B-Raf is the most frequently mutated protein kinase in the MAPK signaling cascade in human cancers, making it an important therapeutic target. Here, we describe the differential effects of two Raf-targeting drugs, sorafenib and PLX4720, on multidrug-resistant v-Ha-ras-transformed cells (Ras-NIH 3T3/Mdr). We demonstrate that the growth of the NIH 3T3/Mdr cell line was affected in a dose-dependent manner more significantly by the pan-Raf inhibitor sorafenib than by the selective mutant B-Raf inhibitor PLX4720. Despite their differential effects on LKB1/AMPK phosphorylation, both sorafenib and PLX4720 inhibited downstream mTOR signaling with concomitant induction of autophagy, implying that the differential effects of sorafenib and PLX4720 on multidrug-resistant cells might not be due to different levels of autophagy and apoptosis. Interestingly, sorafenib caused a dose-dependent increase in rhodamine 123 uptake and retention. More importantly, sorafenib reversed the resistance to paclitaxel in Ras-NIH 3T3/Mdr cells. Moreover, MEK/ERK signaling was hyperactivated by the selective mutant B-Raf inhibitor PLX4720 and inhibited by the pan-Raf inhibitor sorafenib. Our data suggest that sorafenib sensitivity in MDR cells is mediated through the inhibition of P-glycoprotein activity following strong inhibition of Raf/MEK/ERK signaling. Thus, Raf inhibition with sorafenib might be a promising approach to abrogate the multidrug resistance of cancer cells.  相似文献   

9.
Phosphatidylinositol 3-kinase (PI-3K) has been linked to promitogenic responses in splenic B cells following B cell Ag receptor (BCR) cross-linking; however identification of the signaling intermediates that link PI-3K activity to the cell cycle remains incomplete. We show that cyclin D2 induction is blocked by the PI-3K inhibitors wortmannin and LY294002, which coincides with impaired BCR-mediated mitogen-activated protein/extracellular signal-related kinase kinase (MEK)1/2 and p42/44ERK phosphorylation on activation residues. Cyclin D2 induction is virtually absent in B lymphocytes from mice deficient in the class I(A) PI-3K p85alpha regulatory subunit. In contrast to studies with PI-3K inhibitors, which inhibit all classes of PI-3Ks, the p85alpha regulatory subunit is not required for BCR-induced MEK1/2 and p42/44ERK phosphorylation, suggesting the contribution of another PI-3K family members in MEK1/2 and p42/44ERK activation. However, p85alpha(-/-) splenic B cells are defective in BCR-induced IkappaB kinase beta and IkappaBalpha phosphorylation. We demonstrate that NF-kappaB signaling is required for cyclin D2 induction via the BCR in normal B cells, implicating a possible link with the defective IkappaB kinase beta and IkappaBalpha phosphorylation in p85alpha(-/-) splenic B cells and their ability to induce cyclin D2. These results indicate that MEK1/2-p42/44ERK and NF-kappaB pathways link PI-3K activity to Ag receptor-mediated cyclin D2 induction in splenic B cells.  相似文献   

10.
11.
Increasing evidence suggests that obesity and aberrant proliferation of nucleus pulposus (NP) cells are associated with intervertebral disc degeneration. Leptin, a hormone with increased circulating level in obesity, has been shown to stimulate cell proliferation in a tissue-dependent manner. Nevertheless, the effect of leptin on the proliferation of human NP cells has not yet been demonstrated. Here, we show that leptin induced the proliferation of primary cultured human NP cells, which expressed the leptin receptors OBRa and OBRb. Induction of NP cell proliferation was confirmed by CCK8 assay and immunocytochemistry and Real-time PCR for PCNA and Ki-67. Mechanistically, leptin induced the phosphorylation of STAT3, Akt and ERK1/2 accompanied by the upregulation of cyclin D1. Pharmacological inhibition of JAK/STAT3, PI3K/Akt or MEK/ERK signaling by AG490, Wortmannin or U0126, respectively, reduced leptin-induced cyclin D1 expression and NP cell proliferation. These experiments also revealed an intricate crosstalk among these signaling pathways in mediating the action of leptin. Taken together, we show that leptin induces human NP cell cyclin D1 expression and proliferation via activation of JAK/STAT3, PI3K/Akt or MEK/ERK signaling. Our findings may provide a novel molecular mechanism that explains the association between obesity and intervertebral disc degeneration.  相似文献   

12.
13.
ABSTRACT: BACKGROUND: The combined effects of anticancer drugs with nutritional factors against tumor cells have been reported previously. This study characterized the efficacy and possible mechanisms of the combination of sorafenib and vitamin K1 (VK1) on glioma cell lines. METHODS: We examined the effects of sorafenib, VK1 or their combination on the proliferation and apoptosis of human malignant glioma cell lines (BT325 and U251) by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometry and 4',6-diamidino-2-phenylindole (DAPI) assay. The signaling pathway changes were detected by western blotting. RESULTS: Sorafenib, as a single agent, showed antitumor activity in a dose-dependent manner in glioma cells, but the effects were more pronounced when used in combination with VK1 treatment. Sorafenib in combination with VK1 treatment produced marked potentiation of growth inhibition and apoptosis, and reduced expression of phospho-mitogen-activated protein kinase kinase (MEK) and phospho-extracellular signal-regulated kinase (ERK). Furthermore, the expression levels of antiapoptotic proteins Bcl-2 and Mcl-1 were significantly reduced. CONCLUSIONS: Our findings indicated that VK1 enhanced the cytotoxicity effect of sorafenib through inhibiting the Raf/MEK/ERK signaling pathway in glioma cells, and suggested that sorafenib in combination with VK1 maybe a new therapeutic option for patients with gliomas.  相似文献   

14.
A requirement for cyclin D2 in G(1)-to-S phase progression has been definitively established in mature B cells stimulated via the B cell antigen receptor (BCR). However, the identity of constituents of the BCR signaling cascade that leads to cyclin D2 accumulation remains incomplete. We report that inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-1/2 blocked BCR-induced activation of extracellular signal-regulated kinase (ERK). Inhibition of the MEK1/2-ERK pathway was sufficient to abrogate BCR-induced cyclin D2 expression at the mRNA and protein levels. Disruption of endogenous heat shock protein 90 (hsp90) function with geldanamycin abrogated BCR-induced cyclin D2 expression and proliferation. Geldanamycin effects were attributed to a selective depletion of cellular Raf-1 that interrupted BCR-coupled activation of MEK1/2 and ERK. By contrast, signaling through the phosphatidylinositol 3-kinase and protein kinase C pathways was not affected, suggesting that disruption of hsp90 function did not cause a general impairment of BCR signaling. These results suggest that the MEK1/2-ERK pathway is essential for BCR signaling to cyclin D2 accumulation in ex vivo splenic B lymphocytes. Furthermore, these findings imply that hsp90 function is required for BCR signaling through the Raf-1-MEK1/2-ERK pathway but not through the phosphatidylinositol 3-kinase- or protein kinase C-dependent pathways.  相似文献   

15.
We previously reported that overexpression of HSP25 delayed cell growth, increased the level of p21(waf), reduced the levels of cyclin D1, cyclin A and cdc2, and induced radioresistance in L929 cells. In this study, we demonstrated that HSP25 induced-radioresistance was abolished by transfection with plasmids containing antisense hsp25 cDNA. Extracellular regulated kinase (ERK) and MAP kinase/ERK kinase (MEK) expressions as well as their activation (phospho-forms) were inhibited by hsp25 overexpression. Furthermore, when control vector transfected cells were treated with PD98059, MEK inhibitor, they became resistant to radiation, suggesting that inhibition of ERK1/2 activities was essential for radioresistance in L929 cells. To confirm the relationship between ERK1/2 and hsp25-mediated radioresistance, ERK1 or ERK2 cDNA was transiently transfected into the hsp25 overexpressed cells and their radioresistance was examined. HSP25-mediated radioresistance was abolished by overexpression of ERK2, but not by overexpression of ERK1. Alteration of cell cycle distribution and cell cycle related protein expressions (cyclin D, cyclin A and cdc2) by hsp25 overexpression were also recovered by ERK2 cDNA transfection. Increase in Bcl-2 protein by hsp25 gene transfection was also reduced by subsequent ERK2 cDNA-transfection. Taken together, these results suggest that downregulation of ERK2 is essential for the inhibition of radiation-induced cell death in HSP25 overexpressed cells.  相似文献   

16.
《Translational oncology》2020,13(11):100833
Head and neck cancer (HNC) is characterized with multiple aberrations in cell cycle pathways, including amplification of cyclin D1. Palbociclib (PAL), a cyclin-dependent kinase 4/6 (CDK4/6) inhibitor, has been reported to regulate cell cycle progression in HNC. However, recent studies have revealed the acquired resistance of certain cells to PAL through activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. Therefore, we investigated whether the inhibition of MEK/ERK pathway by trametinib (TRA) may overcome the limited efficacy of PAL in HNC. We evaluated the effect of PAL alone and in combination with TRA on the viability of HNC cells, and found that the combination treatment synergistically inhibited the proliferation of HNC cells. The combination treatment induced G0/G1 cell cycle arrest and apoptotic cell death. In particular, apoptosis mediated by the combination treatment was accompanied with an increase in caspase-3 activity and the number of TUNEL-positive apoptotic cells. These results were consistent with the decrease in cell cycle progression and mitogen-activated protein kinase (MAPK) pathway activation. In a xenograft mouse model of HNC, PAL and TRA synergistically inhibited tumor growth and enhanced tumor cell apoptosis, consistent with the increase in the number of TUNEL-positive cells. The anti-proliferative effects were evident in tumor tissues subjected to the combination treatment as compared with those treated with single drug. Taken together, our study demonstrates that the combination of PAL and TRA exerts synergistic anticancer effects and inhibits cell cycle check points and MEK/ERK pathway in HNC, suggestive of their potential application for HNC treatment.  相似文献   

17.
The cellular responses to activated Ras vary depending on cell type. Normal cells are often induced into pathways that lead to cell growth arrest, senescence, and/or apoptosis in response to activated Ras expression. These are important protective anti-tumorigenic responses that restrict the propagation of cells bearing activated oncogenes. Here we show that induction of Ha-Ras(Val-12) in Rat-1 fibroblasts resulted in G(1) growth arrest and apoptosis with loss of viable cells that is accompanied by a marked decrease in cyclin D1 levels via increased ubiquitin-proteasome-dependent cyclin D1 turnover. This is in contrast with a rat intestinal epithelial cell line in which induction of Ha-Ras(Val-12) results in transformation associated with sustained proliferation and increased levels of cyclin D1, that is not accompanied by anoikis or apoptosis. Expression of the cyclin D1 mutant (T286A) that contains an alanine for threonine 286 substitution and is resistant to ubiquitin-proteasome degradation in the Ha-Ras(Val-12) expressing Rat-1 cells resulted in a sustained transformed phenotype with no accumulation of cells in G(1). Inhibition of mitogen-activated protein kinase (MEK1/2) pathway partially reversed the Ras-mediated decrease in cyclin D1. Induction of Ha-Ras(Val-12) resulted in activation of Akt kinase and inactivation of glycogen-synthase-3beta kinase that are associated with reduction of cyclin D1 protein. These results suggest that Ras-mediated cyclin D1 degradation in Rat-1 cells appears to be partially dependent on activation of mitogen-activated protein kinase pathway and independent of glycogen-synthase-3beta kinase pathway.  相似文献   

18.
The mechanism of homocysteine‐induced cell proliferation in human vascular smooth muscle cells (SMCs) remains unclear. We investigated the molecular mechanisms by which homocysteine affects the expression of cyclins A and D1 in human umbilical artery SMCs (HUASMCs). Homocysteine treatment induced proliferation of HUASMCs and increased the expression levels of cyclins A and D1. Knocking down either cyclin A or cyclin D1 by small interfering RNA (siRNA) inhibited homocysteine‐induced cell proliferation. Furthermore, treatment with extracellular signal‐related kinase (ERK) inhibitor (PD98059) and dominant negative Ras (RasN17) abolished homocysteine‐induced cyclin A expression; and treatment with phosphatidylinositol 3‐kinase (PI3K) inhibitor (LY294002) and mammalian target of rapamycin (mTOR) inhibitor (rapamycin) attenuated the homocysteine‐induced cyclin D1 expression. Homocysteine also induced transient phosphorylation of ERK, Akt, and p70 ribosomal S6 kinase (p70S6K). Neutralizing antibody and siRNA for β1 integrin blocked cell proliferation, expression of cyclins A and D1, and phosphorylation of ERK and Akt. In conclusion, homocysteine‐induced differential activation of Ras/ERK and PI3K/Akt/p70S6K signaling pathways and consequent expression of cyclins A and D1 are dependent on β1 integrin. Homocysteine may accelerate progression of atherosclerotic lesions by promoting SMC proliferation. J. Cell. Physiol. 226: 1017–1026, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
Doxorubicin (DOX)-induced apoptosis is suppressed by p21 (waf1/cip1/sdi1), a cyclin dependent kinase (CDK) inhibitor. Here we show that exogenous expression of p21 before, but not after, the DOX-treatment protected p21-deficient human colorectal cancer cell line DLD1 from DOX-induced apoptosis. In previous work, we demonstrated that p21 inhibits DOX-induced apoptosis via its CDK-binding and CDK-inhibitory activity. Here we report that pre-existing p21 can associate with pro-caspase-3 and inhibit caspase-3 activation in the cells, which was at least in part responsible for enhancing survival of DOX-treated cells. Furthermore, the N-terminal domain of p21 was found to interact with pro-caspase-3 in DLD1 cells. Thus, we propose that pre-existing p21 is required to prevent DOX-induced apoptosis.  相似文献   

20.
We recently reported that Rho kinase is required for sustained ERK signaling and the consequent mid-G(1) phase induction of cyclin D1 in fibroblasts. The results presented here indicate that these Rho kinase effects are mediated by the formation of stress fibers and the consequent clustering of alpha5beta1 integrin. Mechanistically, alpha5beta1 signaling and stress fiber formation allowed for the sustained activation of MEK, and this effect was mediated upstream of Ras-GTP loading. Interestingly, disruption of stress fibers with ML-7 led to G(1) phase arrest while comparable disruption of stress fibers with Y27632 (an inhibitor of Rho kinase) or dominant-negative Rho kinase led to a more rapid progression through G(1) phase. Inhibition of either MLCK or Rho kinase blocked sustained ERK signaling, but only Rho kinase inhibition allowed for the induction of cyclin D1 and activation of cdk4 via Rac/Cdc42. The levels of cyclin E, cdk2, and their major inhibitors, p21(cip1) and p27(kip1), were not affected by inhibition of MLCK or Rho kinase. Overall, our results indicate that Rho kinase-dependent stress fiber formation is required for sustained activation of the MEK/ERK pathway and the mid-G(1) phase induction of cyclin D1, but not for other aspects of cdk4 or cdk2 activation. They also emphasize that G(1) phase cell cycle progression in fibroblasts does not require stress fibers if Rac/Cdc42 signaling is allowed to induce cyclin D1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号