首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this study was to measure the effects on serum lipids and plasma phytosterols of 6.6 g/day phytosterols from three foods (bread, breakfast cereal, and spread) consumed for 12 weeks compared with a diet that was not enriched with phytosterols. Thirty-five subjects undertook a nonrandomized, single-blind study consisting of a 2 week baseline period, 6 weeks on high-phytosterol intake, 6 weeks on high-phytosterol intake plus increased fruit and vegetable intake, and a final 2 week washout period. Serum total cholesterol decreased by 8.3% from 6.59 to 6.04 mmol/l, and LDL cholesterol decreased by 12.6% from 4.44 to 3.88 mmol/l. Plasma phytosterol levels increased by 45% (sitosterol) and 105% (campesterol). Cholesterol-adjusted plasma alpha- and beta-carotene levels decreased by 19-23%, lutein by 14%, and lycopene by 11%. Levels of alpha-carotene and lutein increased with extra fruit and vegetables. Only lycopene failed to increase during the washout phase. There were no significant changes in biochemical parameters. Serum LDL cholesterol lowering with 6.6 g/day ingested phytosterols was in the range seen with 1.6-3.2 g/day phytosterols. Lowering of plasma carotenoids was greater than that seen with lower phytosterol intake and was partially reversed by increased fruit and vegetable intake.  相似文献   

3.
Polycystic ovary syndrome (PCOS) is a variable disorder characterized by a broad spectrum of anomalies, including hyperandrogenemia, insulin resistance, dyslipidemia, body adiposity, low-grade inflammation and increased cardiovascular disease risks. Recently, a new polytherapy consisting of low-dose flutamide, metformin and pioglitazone in combination with an estro-progestagen resulted in the regulation of endocrine clinical markers in young and non-obese PCOS women. However, the metabolic processes involved in this phenotypic amelioration remain unidentified. In this work, we used NMR and MS-based untargeted metabolomics to study serum samples of young non-obese PCOS women prior to and at the end of a 30 months polytherapy receiving low-dose flutamide, metformin and pioglitazone in combination with an estro-progestagen. Our results reveal that the treatment decreased the levels of oxidized LDL particles in serum, as well as downstream metabolic oxidation products of LDL particles such as 9- and 13-HODE, azelaic acid and glutaric acid. In contrast, the radiuses of small dense LDL and large HDL particles were substantially increased after the treatment. Clinical and endocrine-metabolic markers were also monitored, showing that the level of HDL cholesterol was increased after the treatment, whereas the level of androgens and the carotid intima-media thickness were reduced. Significantly, the abundance of azelaic acid and the carotid intima-media thickness resulted in a high degree of correlation. Altogether, our results reveal that this new polytherapy markedly reverts the oxidant status of untreated PCOS women, and potentially improves the pro-atherosclerosis condition in these patients.  相似文献   

4.
The effects of oleuropein, a phenolic compound in extra virgin olive oil, on protein metabolism were investigated by measuring testicular testosterone and plasma corticosterone levels in rats fed diets with different protein levels. In Experiment 1, rats were fed experimental diets with different protein levels (40, 25 and 10 g/100 g casein) with or without 0.1 g/100 g oleuropein. After 28 days of feeding, the testosterone level in the testis was significantly higher and the plasma corticosterone level was significantly lower in rats fed the 40% casein diet with oleuropein than in those fed the same diet without oleuropein. The urinary noradrenaline level, nitrogen balance and hepatic arginase activity were significantly higher in rats fed the 40% casein diet with oleuropein supplementation than in those fed the 40% casein diet without oleuropein supplementation. In Experiment 2, the effects of oleuropein aglycone (a major phenolic compound in extra virgin olive oil and the absorbed form of oleuropein ingested in the gastrointestinal tracts) on the secretion of luteinizing hormone (LH) from the pituitary gland, which regulates testosterone production in the testis, were investigated in anesthetized rats. Plasma LH level increased dose dependently after the administration of oleuropein aglycone (P<.001, r= 0.691). These findings suggest that dietary supplementation with 0.1 g/100 g oleuropein alters the levels of hormones associated with protein anabolism by increasing urinary noradrenaline and testicular testosterone levels and decreasing plasma corticosterone level in rats fed a high-protein diet.  相似文献   

5.
The nuclear factor E2-related factor 2 (Nrf2)–Kelch-like ECH-associated protein 1 (Keap1) pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular oxidative stress. The contributions of Nrf2 to other cellular functions, such as lipid homeostasis, are emerging. This study was conducted to determine how enhanced Nrf2 activity influences the progression of metabolic syndrome with long-term high-fat diet (HFD) feeding. C57BL/6 and Keap1-knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for 24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid-binding protein 4, and monocyte chemoattractant protein 1 mRNA expression, as well as increased acetyl-CoA carboxylase 1 and stearoyl-CoA desaturase-1 protein expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice compared to C57BL/6 mice, which was accompanied by downregulation of insulin receptor substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1 knockdown, on treatment with HFD, increases certain markers of metabolic syndrome.  相似文献   

6.
7.
Testosterone administration to men is known to decrease high-density lipoprotein cholesterol (HDL-C) and the subclasses HDL(2) and HDL(3). It also might increase the number of small, dense, low-density lipoprotein cholesterol (LDL-C) particles in hypogonadal men. The decrease in HDL-C and in LDL-C size is potentially mediated by hepatic lipase activity, which hydrolyzes lipoprotein phospholipids and triacylglycerol. To determine how HDL-C and LDL-C particles are affected by testosterone administration to eugonadal men, testosterone was administered as a supraphysiological dose (600 mg/wk) for 3 wk to elderly, obese, eugonadal men before elective hip or knee surgery, and lipids were measured by routine methods and by density gradient ultracentrifugation. Hepatic lipase activity increased >60% above baseline levels, and HDL-C, HDL(2), and HDL(3) significantly declined in 3 wk. In addition, the LDL-C peak particle density and the amount of LDL-C significantly increased. Testosterone is therefore a potent stimulator of hepatic lipase activity, decreasing HDL-C, HDL(2), and HDL(3) as well as increasing LDL particle density changes, all associated with increased cardiovascular risk.  相似文献   

8.
The exchangeable apolipoproteins present in small, dense LDL (sdLDL) and large, buoyant LDL subclasses were evaluated with a quantitative proteomic approach in patients with the metabolic syndrome and with type 2 diabetes, both with subclinical atherosclerosis and the B LDL phenotype. The analyses included surface-enhanced laser adsorption/ionization, time-of-flight mass spectrometry, and subsequent identification by mass spectrometry or immunoblotting and were carried out in LDL subclasses isolated by ultracentrifugation in deuterium oxide gradients with near physiological salt concentrations. The sdLDLs of both types of patients were enriched in apolipoprotein C-III (apoC-III) and were depleted of apoC-I, apoA-I, and apoE compared with matched healthy controls with the A phenotype. The LDL complexes formed in serum from patients with diabetes with the arterial proteoglycan (PG) versican were also enriched in apoC-III. In addition, there was a significant correlation between the apoC-III content in sdLDL in patients and the apparent affinity of their LDLs for arterial versican. The unique distribution of exchangeable apolipoproteins in the sdLDLs of the patients studied, especially high apoC-III, coupled with the augmented affinity with arterial PGs, may contribute to the strong association of the dyslipidemia of insulin resistance with increased risk for cardiovascular disease.  相似文献   

9.
10.
In a randomized, cross-over feeding trial involving 10 men with polygenic hypercholesterolemia, a control, Mediterranean-type cholesterol-lowering diet, and a diet of similar composition in which walnuts replaced approximately 35% of energy from unsaturated fat, were given for 6 weeks each. Compared with the control diet, the walnut diet reduced serum total and LDL cholesterol by 4.2% (P = 0.176), and 6.0% (P = 0.087), respectively. No changes were observed in HDL cholesterol, triglycerides, and apolipoprotein A-I levels or in the relative proportion of protein, triglycerides, phospholipids, and cholesteryl esters in LDL particles. The apolipoprotein B level declined in parallel with LDL cholesterol (6.0% reduction). Whole LDL, particularly the triglyceride fraction, was enriched in polyunsaturated fatty acids from walnuts (linoleic and alpha-linolenic acids). In comparison with LDL obtained during the control diet, LDL obtained during the walnut diet showed a 50% increase in association rates to the LDL receptor in human hepatoma HepG2 cells. LDL uptake by HepG2 cells was correlated with alpha-linolenic acid content of the triglyceride plus cholesteryl ester fractions of LDL particles (r(2) = 0.42, P < 0.05). Changes in the quantity and quality of LDL lipid fatty acids after a walnut-enriched diet facilitate receptor-mediated LDL clearance and may contribute to the cholesterol-lowering effect of walnut consumption.  相似文献   

11.
Nondenaturing gradient gel electrophoresis of plasma low density lipoprotein (LDL) has been used to identify major LDL subclasses that are influenced by genetic and other factors. In the present paper, this technique has been extended by measuring absorbance of lipid- or protein-stained gels as an index of concentration at intervals of 0.05 nm across the entire LDL particle size range (21.8-30 nm) in moderately overweight men (n = 115) and women (n = 78). When LDL absorbance levels were correlated with other lipoprotein variables, we found that the strengths of the correlations with each of triglycerides, apolipoprotein (apo) B, high density lipoprotein (HDL)2, and apoA-I achieve relative maximum values for two regions within the small LDL range (21-26 nm), one within LDL-IVB (22-23.2 nm) and a second within LDL-III (24.2-25.5 nm). We also found that the increase in LDL accompanying higher triglyceride levels occurs below 25.5 nm in men and between 24.5 and 26.5 nm in women, suggesting either that triglycerides are related to different LDL subclasses in men and women, or that particle sizes of metabolically homologous LDL subclasses may differ in men and women. As compared to analytic ultracentrifuge measurements, gradient gel measurements of LDL absorbance by the procedure described here provide greater resolution of LDL subclasses but less precision in estimating LDL levels.  相似文献   

12.
A thermolyzed diet has the potential of providing exogenous oxidative stress in the form of advanced glycation end-products (AGE) and decreased thiamin. There is then a possibility that it could result in intracellular exposure to alpha-oxoaldehydes (glyoxal and methylglyoxal (MG)) with metabolic and genetic consequences. Two groups of Fischer 344 rats were fed the following diets: group A was given an AIN93G diet (control diet), while group B was given a thermolyzed AIN93G diet for 77 days. At the end of 77 days TK activity in red blood cells; glyoxal/MG levels in the plasma; glyoxal/MG HI protein adducts and dicarbonyls in the plasma, liver and colon tissues; glutathione levels of whole blood; and oxidative stress/inflammatory markers in the colon were measured. The thermolyzed diet resulted in: decreased thiamin status, increased plasma levels of glyoxal/MG and their adducts, increased protein dicarbonyls in the liver and plasma, lowered blood glutathione levels, increased infiltration of macrophages and increased colon nitrotyrosine levels. The thermolyzed diet increased the body burden of AGEs and decreased the thiamin status of the rats. This increased endogenous alpha-oxoaldehydes and oxidative stress has the potential to injure tissues that have low levels of antioxidant defenses such as the colon.  相似文献   

13.
Incubation of human LDL in vitro at 37 degrees C for 48 h with [14C]glucose at concentrations from 5 to 200 mM resulted in a glycosylated LDL, containing 0.4-20 mol of glucose incorporated per apolipoprotein B of 250 000 daltons. The extent of glucose incorporated was proportional to the time of incubation and concentration of glucose. Glycosylation of LDL abolished its uptake and degradation by the high-affinity process for LDL in normal human skin fibroblasts. 125I-labeled glycosylated LDL was bound, internalized and degraded by the fibroblasts via a nonspecific low-affinity process. The 125I-labeled glycosylated LDL and 125I-labeled LDL were taken up and degraded at similar rates in a non-saturable, low-affinity process by peritoneal macrophages isolated from mice. When 125I-labeled glycosylated LDL or 125I-labeled LDL were injected into rabbits, the glycosylated LDL had a delayed plasma clearance in comparison to the LDL. The mean fractional catabolic rates were 0.67 day-1 and 1.70 day-1 for 125I-labeled glycosylated LDL and 125I-labeled LDL, respectively. The uptake and degradation of 125I-labeled LDL by human skin fibroblasts was decreased as the concentration of free carbohydrate, glucose, sucrose or sorbitol, in the medium was increased from 10 mM to 1 M. It is speculated that pathologic levels of plasma glucose in vivo could result in a decrease in LDL uptake as a result of glycosylation of LDL. A decrease in uptake of native or modified LDL in vivo could contribute to hypercholesterolemia and its pathophysiology.  相似文献   

14.
Competitive collegiate swimmers commonly take a month off from swim training after their last major competition. This abrupt cessation of intense physical training has not been well studied and may lead to physiopsychological decline. The purpose of this investigation was to examine the effects of swim detraining (DT) on body composition, aerobic fitness, resting metabolism, mood state, and blood lipids in collegiate swimmers. Eight healthy endurance-trained swimmers (V(O2)peak, 46.7 ± 10.8 ml · kg(-1) · min(-1)) performed 2 identical test days, 1 in the trained (TR) state and 1 in the detrained (~5 weeks) state (DT). Body composition and circumferences, maximal oxygen consumption (V(O2)peak), resting metabolism (RMR), blood lipids, and mood state were measured. After DT, body weight (TR, 68.9 ± 9.7 vs. DT, 69.8 ± 9.8 kg; p = 0.03), fat mass (TR, 14.7 ± 7.6 vs. DT, 16.5 ± 7.4 kg; p = 0.001), and waist circumference (TR, 72.7 ± 3.1 vs. DT, 73.8 ± 3.6 cm; p = 0.03) increased, whereas V(O2)peak (TR, 46.7 ± 10.8 vs. DT, 43.1 ± 10.3 ml · kg(-1) · min(-1); p = 0.02) and RMR (TR, 1.34 ± 0.2 vs. DT, 1.25 ± 0.17 kcal · min(-1); p = 0.008) decreased, and plasma triglycerides showed a trend to increase (p = 0.065). Our data suggest that DT after a competitive collegiate swim season adversely affects body composition, fitness, and metabolism. Athletes and coaches need to be aware of the negative consequences of detraining from swimming, and plan off-season training schedules accordingly to allow for adequate rest/recovery and prevent overuse injuries. It's equally important to mitigate the negative effects on body composition, aerobic fitness and metabolism so performance may continue to improve over the long term.  相似文献   

15.
Plasma glucocorticoid hormones (GCs) increase intermediary metabolism, which may be reflected in whole-animal metabolic rate. Studies in fish, birds, and reptiles have shown that GCs may alter whole-animal energy expenditure, but results are conflicting and often involve GC levels that are not physiologically relevant. A previous study in red-legged salamanders found that male courtship pheromone increased plasma corticosterone (CORT; the primary GC in amphibians) concentrations in males, which could elevate metabolic processes to sustain courtship behaviors. To understand the possible metabolic effect of elevated plasma CORT, we measured the effects of male courtship pheromone and exogenous application of CORT on oxygen consumption in male red-legged salamanders (Plethodon shermani). Exogenous application of CORT elevated plasma CORT to physiologically relevant levels. Compared to treatment with male courtship pheromone and vehicle, treatment with CORT increased oxygen consumption rates for several hours after treatment, resulting in 12% more oxygen consumed (equivalent to 0.33 J) during our first 2 h sampling period. Contrary to our previous work, treatment with pheromone did not increase plasma CORT, perhaps because subjects used in this study were not in breeding condition. Pheromone application did not affect respiration rates. Our study is one of the few to evaluate the influence of physiologically relevant elevations in CORT on whole-animal metabolism in vertebrates, and the first to show that elevated plasma CORT increases metabolism in an amphibian.  相似文献   

16.
To assess the effects of endurance training on plasma glucose kinetics during moderate-intensity exercise in men, seven men were studied before and after 12 wk of strenuous exercise training (3 days/wk running, 3 days/wk cycling). After priming of the glucose and bicarbonate pools, [U-13C] glucose was infused continuously during 2 h of cycle ergometer exercise at 60% of pretraining peak O2 uptake (VO2) to determine glucose turnover and oxidation. Training increased cycle ergometer peak VO2 by 23% and decreased the respiratory exchange ratio during the final 30 min of exercise from 0.89 +/- 0.01 to 0.85 +/- 0.01 (SE) (P less than 0.001). Plasma glucose turnover during exercise decreased from 44.6 +/- 3.5 mumol.kg fat-free mass (FFM)-1.min-1 before training to 31.5 +/- 4.3 after training (P less than 0.001), whereas plasma glucose clearance (i.e., rate of disappearance/plasma glucose concentration) fell from 9.5 +/- 0.6 to 6.4 +/- 0.8 ml.kg FFM-1.min-1 (P less than 0.001). Oxidation of plasma-derived glucose, which accounted for approximately 90% of plasma glucose disappearance in both the untrained and trained states, decreased from 41.1 +/- 3.4 mumol.kg FFM-1.min-1 before training to 27.7 +/- 4.8 after training (P less than 0.001). This decrease could account for roughly one-half of the total reduction in the amount of carbohydrate utilized during the final 30 min of exercise in the trained compared with the untrained state.  相似文献   

17.
Chu YF  Liu RH 《Life sciences》2005,77(15):1892-1901
Cardiovascular disease (CVD) is the leading cause of death in most industrialized countries. Cranberries were evaluated for their potential roles in dietary prevention of CVD. Cranberry extracts were found to have potent antioxidant capacity preventing in vitro LDL oxidation with increasing delay and suppression of LDL oxidation in a dose-dependent manner. The antioxidant activity of 100 g cranberries against LDL oxidation was equivalent to 1000 mg vitamin C or 3700 mg vitamin E. Cranberry extracts also significantly induced expression of hepatic LDL receptors and increased intracellular uptake of cholesterol in HepG2 cells in vitro in a dose-dependent manner. This suggests that cranberries could enhance clearance of excessive plasma cholesterol in circulation. We propose that additive or synergistic effects of phytochemicals in cranberries are responsible for the inhibition of LDL oxidation, the induced expression of LDL receptors, and the increased uptake of cholesterol in hepatocytes.  相似文献   

18.
Metabolic syndrome is a group of disorders involving obesity, insulin resistance, dyslipidemia and hypertension. Obesity is the most crucial risk factor of metabolic syndrome, because it is known to precede other risk factors. Obesity is also associated with disturbances in the metabolism of the trace mineral, zinc. The overall purpose of this study was to investigate the effects of short-term weight loss on plasma zinc and metabolic syndrome risk factors. An 8-week weight loss intervention study was conducted with 90 low-income overweight/obese mothers, whose youngest child was 1–3 years old. Plasma levels of zinc, glucose, insulin, leptin, triglycerides, total, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol were measured and compared at weeks 0 and 8 of the weight loss program. At pre-study, plasma zinc was low in 39% and, within normal values in 46%, of obese/overweight mothers. By the end of intervention, plasma zinc rose by 22% and only 5% of the mothers continued to exhibit low plasma zinc. At post-study, the metabolic syndrome risk factors of waist circumference, HDL cholesterol, and diastolic blood pressure (p < 0.05) showed significant improvements. Plasma zinc increased by a greater margin (67%) in women with low zinc, as compared to those with normal zinc (18%); weight reduction was similar in both the groups. Finally, changes in % body fat were related negatively with changes in plasma zinc (r = ? 0.28, p < 0.05). The circulating levels of zinc, as well as the metabolic syndrome components, showed significant improvements in overweight/obese low-income women after weight loss.  相似文献   

19.
Obesity is frequently associated with consumption of high amounts of sugar and/or fat. Studies have demonstrated a high prevalence of overweight and obesity associated or not with increase rates of psychiatry disorders, in particular mood and anxiety disorders. Recent works have demonstrated an association between specific genes involved in oxidative stress metabolism and anxiety-like behavior. The aim of this study was to investigate the effect of a highly palatable diet enriched with sucrose in body fat mass composition, anxiety behavior and brain oxidative status. Twenty male Wistar rats received two different diets during four months: standard chow (SC) and highly palatable (HP). Metabolic parameters, behavioral tests and oxidative stress status were evaluated. Body fat mass, insulin sensitivity and glucose tolerance were altered in the HP group (p<0.01). The same group spends less time in light compartment and had a lower risk assessment behavior (p<0.05) but no differences were observed in the open field test habituation (p>0.05). Protein degradation, DCF and TBARS levels were not different in the hippocampus between groups; however, there were higher levels of protein degration in frontal cortex of HP groups (p<0.05), although DCF and TBARS levels don't differ from the SC group (p>0.05). In conclusion, our data suggest that the consumption of HP diet leads to an obese phenotype, increases protein oxidation in frontal cortex and appears to induce anxiety-like behavior in rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号