首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the “classic” cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.  相似文献   

4.
5.
6.
Glial cells play a pivotal role in brain fatty acid metabolism and membrane biogenesis. However, the potential regulation of lipogenesis and cholesterologenesis by fatty acids in glial cells has been barely investigated. Here, we show that physiologically relevant concentrations of various saturated, monounsaturated, and polyunsaturated fatty acids significantly reduce [1-(14)C]acetate incorporation into fatty acids and cholesterol in C6 cells. Oleic acid was the most effective at depressing lipogenesis and cholesterologenesis; a decreased label incorporation into cellular palmitic, stearic, and oleic acids was detected, suggesting that an enzymatic step(s) of de novo fatty acid biosynthesis was affected. To clarify this issue, the activities of acetyl-coenzyme A carboxylase (ACC) and FAS were determined with an in situ digitonin-permeabilized cell assay after incubation of C6 cells with fatty acids. ACC activity was strongly reduced ( approximately 80%) by oleic acid, whereas no significant change in FAS activity was observed. Oleic acid also reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). The inhibition of ACC and HMGCR activities is corroborated by the decreases in ACC and HMGCR mRNA abundance and protein levels. The downregulation of ACC and HMGCR activities and expression by oleic acid could contribute to the reduced lipogenesis and cholesterologenesis.  相似文献   

7.
The low-density lipoprotein receptor-related protein LRP1 is a cell surface receptor with functions in diverse physiological pathways, including lipid metabolism. Here we show that LRP1-deficient fibroblasts accumulate high levels of intracellular cholesterol and cholesteryl-ester when stimulated for adipocyte differentiation. We demonstrate that LRP1 stimulates a canonical Wnt5a signaling pathway that prevents cholesterol accumulation. Moreover, we show that LRP1 is required for lipolysis and stimulates fatty acid synthesis independently of the noradrenergic pathway, through inhibition of GSK3beta and its previously unknown target acetyl-CoA carboxylase (ACC). As a result of ACC inhibition, mature LRP1-deficient adipocytes of adult mice are hypotrophic, and lower uptake of fatty acids into adipose tissue leads to their redistribution to the liver. These results establish LRP1 as a novel integrator of adipogenic differentiation and fat storage signals.  相似文献   

8.
9.
Medium-chain fatty acid synthesis   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
Recent studies have revealed that mitochondria are able to synthesize fatty acids in a malonyl-CoA/acyl carrier protein (ACP)-dependent manner. This pathway resembles bacterial fatty acid synthesis (FAS) type II, which uses discrete, nuclearly encoded proteins. Experimental evidence, obtained mainly through using yeast as a model system, indicates that this pathway is essential for mitochondrial respiratory function. Curiously, the deficiency in mitochondrial FAS cannot be complemented by inclusion of fatty acids in the culture medium or by products of the cytosolic FAS complex. Defects in mitochondrial FAS in yeast result in the inability to grow on nonfermentable carbon sources, the loss of mitochondrial cytochromes a/a3 and b, mitochondrial RNA processing defects, and loss of cellular lipoic acid. Eukaryotic FAS II generates octanoyl-ACP, a substrate for mitochondrial lipoic acid synthase. Endogenous lipoic acid synthesis challenges the hypothesis that lipoic acid can be provided as an exogenously supplied vitamin. Purified eukaryotic FAS II enzymes are catalytically active in vitro using substrates with an acyl chain length of up to 16 carbon atoms. However, with the exception of 3-hydroxymyristoyl-ACP, a component of respiratory complex I in higher eukaryotes, the fate of long-chain fatty acids synthesized by the mitochondrial FAS pathway remains an enigma. The linkage of FAS II genes to published animal models for human disease supports the hypothesis that mitochondrial FAS dysfunction leads to the development of disorders in mammals.  相似文献   

12.
Dietary cholesterol, membrane cholesterol and cholesterol synthesis.   总被引:2,自引:0,他引:2  
C Lutton 《Biochimie》1991,73(10):1327-1334
  相似文献   

13.
1. The importance of fatty acid synthesis as a pathway for the disposal of ingested glucose has been evaluated in rats and mice given a purified diet high in glucose and low in fat. [U-14C]Glucose was either added to the diet and fed for 24hr. or given by stomach tube as a 250mg. (mice) or 1000mg. (rats) meal. The two methods of isotope administration gave similar results. 2. Under the conditions employed fatty acid synthesis appeared to be a more important pathway for glucose disposal in mice than in rats. In mice 15·3% of ingested [U-14C]glucose was converted into fatty acid and in rats the corresponding value was 8·6%. In contrast, the conversion of [U-14C]glucose into cholesterol, as a percentage of dose, was twice as high in rats as in mice. 3. The effect of 20% of corn oil in the diet on the conversion of dietary [U-14C]glucose into fat was also investigated. Mice given diets containing 1% or 20% of corn oil converted 14·6% or 7·0% respectively of dietary [U-14C]glucose into fatty acid over a 24hr. period. There was no effect of fat on the incorporation of the isotope into cholesterol. 4. In mice given diets containing 1% or 20% of corn oil approx. 10% and 2% respectively of newly synthesized fatty acids were found in the liver. Hepatic fatty acid synthesis appears to be more sensitive to dietary fat than is extrahepatic synthesis.  相似文献   

14.
15.
16.
Significant advances have been made in the past few years in our understanding of the mechanism of synthesis of fatty acids, the structural organization of fatty acid synthetase complexes and the mechanism of regulation of activity of these enzyme systems. Numerous fatty acid synthetase complexes have been purified to homogeneity and the mechanism of synthesis of fatty acids by these enzyme systems has been ascertained from tracer, and recently, kinetic studies. The results obtained by these methods are in complete agreement. Furthermore, the kinetic results have indicated that fatty acid synthesis proceeds by a seven-site ping-pong mechanism. Several of the fatty acid synthetases have been dissociated completely to nonidentical half-molecular weight subunit species and these have been separated by affinity chromatography. From one of these subunits acyl carrier protein has been obtained. Whether the nonidentical subunits can be dissociated into individual proteins or whether these subunits are each comprised of one peptide is still a matter of controversy. However, it appears to us that each of the half-molecular weight subunits is indeed comprised of individual proteins. Studies on the regulation of activity of fatty acid synthetase complexes of avian and mammalian liver have resulted in the separation by affinity chromatography of three species (apo, holo-a and holo-b) of fatty acid synthetase. Since these species have radically different enzyme activities they may provide a mechanism of short-term regulation of fatty acid synthetase activity. Other studies have shown that the quantity of avian and mammalian liver fatty acid synthetases is controlled by a change in the rate of synthesis of this enzyme complex. This change in the rate of synthesis of enzyme complex is under the control of insulin and glucagon. The former hormone increases the rate of enzyme synthesis, whereas the latter decreases it. Further studies on fatty acid synthetase complexes will undoubtedly concentrate upon more refined aspects of the structural organization of these enzyme systems, including the sequencing of acyl carrier proteins, the effects of protein-protein interaction on the kinetics of the partial reactions of fatty acid synthesis catalyzed by separated enzymes of the complex, the mechanism of hormonal regulation of fatty acid synthetase activity and x-ray diffraction analysis of subunits and complex.  相似文献   

17.
Inhibiting bacterial fatty acid synthesis   总被引:1,自引:0,他引:1  
The type II fatty acid synthase consists of a series of individual enzymes, each encoded by a separate gene, that catalyze discrete steps in chain elongation. The formation of fatty acids is vital to bacteria, and each of the essential enzymes and their acyl group carriers represent a potential target for the development of novel antibacterial therapeutics. High resolution x-ray and/or NMR structures of representative members of every enzyme in the type II pathway are now available, and these structures are a valuable resource to guide antibacterial drug discovery. The role of each enzyme in regulating pathway activity and the diversity in the components of the pathway in the major human pathogens are important considerations in deciding the most suitable targets for future drug development.  相似文献   

18.
19.
The relationship between fatty acid binding proteins, ATP citrate lyase activity and fatty acid synthesis in developing human placenta has been studied. Fatty acid binding proteins reverse the inhibitory efect of palmitoyl-CoA and oleate on ATP citrate lyase and fatty acid synthesis. In the absence of these inhibitors fatty acid binding proteins activate ATP citrate lyase and stimulate [ 1-14 C] acetate incorporation into placental fatty acids indicating binding of endogenous inhibitors by these proteins. Thus these proteins regulate the supply of acetyl-CoA as well as the synthesis of fatty acids from that substrates. As gestation proceeds and more lipids are required by the developing placenta fatty acid binding protein content, activity of ATP citrate lyase and rate of fatty acid synthesis increase indicating a cause and efect relationship between the demand of lipids and supply of precursor fatty acids during human placental development.  相似文献   

20.

Metformin, a generic glucose lowering drug, inhibits cancer growth expressly in models that employ high fat/cholesterol intake and/or low glucose availability. Here we use a targeted tracer fate association study (TTFAS) to investigate how cholesterol and metformin administration regulates glucose-derived intermediary metabolism and macromolecule synthesis in pancreatic cancer cells. Wild type K-ras BxPC-3 and HOM: GGT(Gly) → TGT(Cys) K12 transformed MIA PaCa-2 adenocarcinoma cells were cultured in the presence of [1,2-13C2]-d-glucose as the single tracer for 24 h and treated with either 100 μM metformin (MET), 1 mM cholesteryl hemisuccinate (CHS), or the dose matching combination of MET and CHS (CHS–MET). Wild type K-ras cells used 11.43 % (SD = ±0.32) of new acetyl-CoA for palmitate synthesis that was derived from glucose, while K-ras mutated MIA PaCa-2 cells shuttled less than half as much, 5.47 % [SD = ±0.28 (P < 0.01)] of this precursor towards FAS. Cholesterol treatment almost doubled glucose-derived acetyl-CoA enrichment to 9.54 % (SD = ±0.24) and elevated the fraction of new palmitate synthesis by over 2.5-fold in MIA PaCa-2 cells; whereby 100 μM MET treatment resulted in a 28 % inhibitory effect on FAS. Therefore, acetyl-CoA shuttling towards its carboxylase, from thiolase, produces contextual synthetic inhibition by metformin of new palmitate production. Thereby, metformin, mutated K-ras and high cholesterol each contributes to limit new fatty acid and potentially cell membrane synthesis, demonstrating a previously unknown mechanism for inhibiting cancer growth during the metabolic syndrome.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号