共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《FEBS letters》1986,203(1):31-35
The properties of some photosynthetic mutants of Chlamydomonas reinhardtii which were known to have impaired intersystem electron transport were examined. A new mutant, F18, is described which lacked all the redox centres of the cytochrome bf complex. The known mutant ac21 was shown to contain a cytochrome bfcomplex that lacked the Rieske iron-sulphur centre. Cytochrome b-559LP was present in all strains examined at about the same concentration as cytochrome fin the wild ype and so is unlikely to be an integral component of the cytochrome bfcomplex.Cytochrome bf complexCytochrome b-559Iron-sulfur centerPhotosynthetic mutant(Chlamydomonas reinhardtii) 相似文献
3.
Using Brownian dynamics simulations, all of the charged residues in Chlamydomonas reinhardtii cytochrome c(6) (cyt c(6)) and plastocyanin (PC) were mutated to alanine and their interactions with cytochrome f (cyt f) were modeled. Systematic mutation of charged residues on both PC and cyt c(6) confirmed that electrostatic interactions (at least in vitro) play an important role in bringing these proteins sufficiently close to cyt f to allow hydrophobic and van der Waals interactions to form the final electron transfer-active complex. The charged residue mutants on PC and cyt c(6) displayed similar inhibition classes. Our results indicate a difference between the two acidic clusters on PC. Mutations D44A and E43A of the lower cluster showed greater inhibition than do any of the mutations of the upper cluster residues. Replacement of acidic residues on cyt c(6) that correspond to the PC's lower cluster, particularly E70 and E69, was observed to be more inhibitory than those corresponding to the upper cluster. In PC residues D42, E43, D44, D53, D59, D61, and E85, and in cyt c(6) residues D2, E54, K57, D65, R66, E70, E71, and the heme had significant electrostatic contacts with cyt f charged residues. PC and cyt c(6) showed different binding sites and orientations on cyt f. As there are no experimental cyt c(6) mutation data available for algae, our results could serve as a good guide for future experimental work on this protein. The comparison between computational values and the available experimental data (for PC-cyt f interactions) showed overall good agreement, which supports the predictive power of Brownian dynamics simulations in mutagenesis studies. 相似文献
4.
We studied the process of photosynthetic inactivation during gametogenesis of the unicellular green alga Chlamydomonas reinhardtii. We show that it is caused by the selective destabilization of a single transmembrane protein complex, the cytochrome b6/f complex, which is initially accumulated in the thylakoid membranes of vegetative cells. This protein destabilization is controlled by the intracellular energy sources available in the gametes, i.e. the coupled electron flow in the mitochondria and the amount of starch accumulated in the chloroplast. It nevertheless requires the expression of gamete-specific proteins. The loss of cytochrome b6/f complexes during gametogenesis is prevented by the addition of cycloheximide, but is chloramphenicol insensitive. Therefore, it is likely to involve some translation product of nuclear origin, specifically expressed during gametogenesis. Among the new polypeptides specifically found in the gametes, we detected a soluble polypeptide M alpha (approximate molecular mass of 63 kDa), which shared common epitopes with cytochrome f. Its synthesis displays an antibiotic sensitivity typical of a nuclear-encoded polypeptide and is controlled by the same intracellular signals which control the destabilization of the cytochrome b6/f complexes in the thylakoid membranes. 相似文献
5.
Cytochrome b6f complexes, prepared from spinach and Chlamydomonas thylakoids, have been examined for their content of low molecular weight subunits. The spinach complex contains two prominent low molecular weight subunits of 3.7 and 4.1 kD while a single prominent component of 4.5 kD was present in the Chlamydomonas complex. An estimation of the relative stoichiometry of these subunits suggests several are present at levels approximating one copy per cytochrome complex. The low molecular weight subunits were purified by reversed phase HPLC and N-terminal sequences obtained. Both the spinach and Chlamydomonas cytochrome complexes contain a subunit that is identified as the previously characterized petG gene product (4.8 kD in spinach and 4.1 kD in Chlamydomonas). A second subunit (3.8 kD in spinach and 3.7 kD in Chlamydomonas) appears to be homologous in the two complexes and is likely to be a nuclear gene product. The possible presence of other low molecular weight subunits in these complexes is also considered. 相似文献
6.
Deoxyribonucleic acid base composition, deoxyribonucleic acid-deoxyribonucleic acid hybridization, and biochemical studies were performed on some enterococci from clinical sources of uncertain taxonomic position. Our results indicate that 6 human strains, a single clinical isolate and a strain from bovine mastitis are genetically distinct from each other and all other previously described Enterococcus species and constitute three new species, for which the names Enterococcus raffinosus, Enterococcus solitarius and Enterococcus pseudoavium are proposed. 相似文献
7.
Chlamydomonas reinhardtii chloroplasts as protein factories 总被引:1,自引:0,他引:1
Mayfield SP Manuell AL Chen S Wu J Tran M Siefker D Muto M Marin-Navarro J 《Current opinion in biotechnology》2007,18(2):126-133
Protein-based therapeutics are the fastest growing sector of drug development, mainly because of the high sensitivity and specificity of these molecules. Their high specificity leads to few side effects and excellent success rates in drug development. However, the inherent complexity of these molecules restricts their synthesis to living cells, making recombinant proteins expensive to produce. In addition to therapeutic uses, recombinant proteins also have a variety of industrial applications and are important research reagents. Eukaryotic algae offer the potential to produce high yields of recombinant proteins more rapidly and at much lower cost than traditional cell culture. Additionally, transgenic algae can be grown in complete containment, reducing any risk of environmental contamination. This system might also be used for the oral delivery of therapeutic proteins, as green algae are edible and do not contain endotoxins or human viral or prion contaminants. 相似文献
8.
Satoh T Itoga A Isogai Y Kurihara M Yamada S Natori M Suzuki N Suruga K Kawachi R Arahira M Nishio T Fukazawa C Oku T 《FEBS letters》2002,531(3):543-547
To investigate the role of the heme axial ligand in the conformational stability of c-type cytochrome, we constructed M58C and M58H mutants of the red alga Porphyra yezoensis cytochrome c(6) in which the sixth heme iron ligand (Met58) was replaced with Cys and His residues, respectively. The Gibbs free energy change for unfolding of the M58H mutant in water (DeltaG degrees (unf)=1.48 kcal/mol) was lower than that of the wild-type (2.43 kcal/mol), possibly due to the steric effects of the mutation on the apoprotein structure. On the other hand, the M58C mutant exhibited a DeltaG degrees (unf) of 5.45 kcal/mol, a significant increase by 3.02 kcal/mol compared with that of wild-type. This increase was possibly responsible for the sixth heme axial bond of M58C mutant being more stable than that of wild-type according to the heme-bound denaturation curve. Based on these observations, we propose that the sixth heme axial ligand is an important key to determine the conformational stability of c-type cytochromes, and the sixth Cys heme ligand will give stabilizing effects. 相似文献
9.
《BBA》1986,851(2):229-238
We have analyzed the heme-associated peroxidase activity in thylakoid membranes from the green algae Chlamydomonas reinhardtii after electrophoresis in the presence of sodium dodecyl sulfate. Besides cytochrome f and cytochrome b6, we observed peroxidase activity in two other bands, of 34 and 11 kDa, of unknown origin. Characterization of the b6/f complex subunits was undertaken by means of a comparison of the polypeptide deficiencies in several b6/f mutants with the polypeptide content of preparations enriched in b6/f complexes. We conclude that the b6/f complex consists of five subunits. Using site-specific translation inhibitors, we show that cytochrome f, cytochrome b6 and subunit IV are of chloroplast origin, whereas the Rieske protein and probably subunit V are translated on cytoplasmic ribosomes. A model of assembly of the complex is proposed: a cytochrome moiety, comprising the subunits of chloroplast origin, is assembled in the thylakoid membranes prior to the insertion and assembly of the subunits encoded in the nuclear genome. 相似文献
10.
In Chlamydomonas reinhardtii several nucleus-encoded proteins that participate in the mitochondrial oxidative phosphorylation are targeted to the organelle by unusually long mitochondrial targeting sequences. Here, we explored the components of the mitochondrial import machinery of the green alga. We mined the algal genome, searching for yeast and plant homologs, and reconstructed the mitochondrial import machinery. All the main translocation components were identified in Chlamydomonas as well as in Arabidopsis thaliana and in the recently sequenced moss Physcomitrella patens. Some of these components appear to be duplicated, as is the case of Tim22. In contrast, several yeast components that have relatively large hydrophilic regions exposed to the cytosol or to the intermembrane space seem to be absent in land plants and green algae. If present at all, these components of plants and algae may differ significantly from their yeast counterparts. We propose that long mitochondrial targeting sequences in some Chlamydomonas mitochondrial protein precursors are involved in preventing the aggregation of the hydrophobic proteins they carry. 相似文献
11.
Gudynaite-Savitch L Gretes M Morgan-Kiss RM Savitch LV Simmonds J Kohalmi SE Hüner NP 《Molecular genetics and genomics : MGG》2006,275(4):387-398
Although cytochrome f from the Antarctic psychrophile, Chlamydomonas raudensis UWO 241, exhibits a lower apparent molecular mass (34 kD) than that of the mesophile C. reinhardtii (41 kD) based on SDS-PAGE, both proteins are comparable in calculated molecular mass and show 79% identity in amino acid
sequence. The difference in apparent molecular mass was maintained after expression of petA from both Chlamydomonas species in either E. coli or a C. reinhardtii ΔpetA mutant and after substitution of a unique third cysteine-292 to phenylalanine in the psychrophilic cytochrome f. Moreover, the heme of the psychrophilic form of cytochrome f was less stable upon heating than that of the mesophile. In contrast to C. raudensis, a C. reinhardtii ΔpetA mutant transformed with petA from C. raudensis exhibited the ability to undergo state transitions and a capacity for intersystem electron transport comparable to that of
C. reinhardtii wild type. However, the C. reinhardtii
petA transformants accumulated lower levels of cytochrome b
6
/f complexes and exhibited lower light saturated rates of O2 evolution than C. reinhardtii wild type. We show that the presence of an altered form of cytochrome f in C. raudensis does not account for its inability to undergo state transitions or its impaired capacity for intersystem electron transport
as previously suggested. A combined survey of the apparent molecular mass, thermal stability and amino acid sequences of cytochrome
f from a broad range of mesophilic species shows unequivocally that the observed differences in cytochrome f structure are
not related to psychrophilly. Thus, caution must be exercised in relating differences in amino acid sequence and thermal stability
to adaptation to cold environments.
Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献
12.
Monogalactosyldiacylglycerol (MGDG) in Chlamydomonas reinhardtii and other green algae contains hexadeca-4,7,10,13-tetraenoic acid (16:4) in the glycerol sn-2 position. While many genes necessary for the introduction of acyl chain double bonds have been functionally characterized, the Δ4-desaturase remained unknown. Using a phylogenetic comparison, a candidate gene encoding the MGDG-specific Δ4-desaturase from Chlamydomonas (CrΔ4FAD) was identified. CrΔ4FAD shows all characteristic features of a membrane-bound desaturase, including three histidine boxes and a transit peptide for chloroplast targeting. But it also has an N-terminal cytochrome b(5) domain, distinguishing it from other known plastid desaturases. Cytochrome b(5) is the primary electron donor for endoplasmic reticulum (ER) desaturases and is often fused to the desaturase domain in desaturases modifying the carboxyl end of the acyl group. Difference absorbance spectra of the recombinant cytochrome b(5) domain of CrΔ4FAD showed that it is functional in vitro. Green fluorescent protein fusions of CrΔ4FAD localized to the plastid envelope in Chlamydomonas. Interestingly, overproduction of CrΔ4FAD in Chlamydomonas not only increased levels of 16:4 acyl groups in cell extracts but specifically increased the total amount of MGDG. Vice versa, the amount of MGDG was lowered in lines with reduced levels of CrΔ4FAD. These data suggest a link between MGDG molecular species composition and galactolipid abundance in the alga, as well as a specific function for this fatty acid in MGDG. 相似文献
13.
Finazzi G 《Biochemistry》2002,41(23):7475-7482
The pH dependence of cytochrome b(6)f catalytic activity has been measured in whole cells of the green alga Chlamydomonas reinhardtii over the 5-8 range. An acid pH slowed the reactions occurring at the lumenal side of the complex (cytochrome b(6) and f reduction) and affected also the rate and amplitude of the slow electrogenic reaction (phase b), which is supposed to reflect transmembrane electron flow in the complex. On the other hand, a direct measurement of the transmembrane electron flow from the kinetics of cytochrome b(6) oxidation revealed no pH sensitivity. This suggests that a substantial fraction of the electrogenicity associated with cytochrome b(6)f catalysis is not due to electron transfer in the b(6) hemes but to a plastoquinol-oxidation-triggered charge movement, in agreement with previous suggestions that a redox-coupled proton pump operates in cytochrome b(6)f complex. The pH dependence of cytochrome b(6)f activity has also been measured in two mutant strains, where the glutamic 78 of the conserved PEWY sequence of subunit IV has been substituted for a basic (E78K) and a polar (E78Q) residue [Zito, F., Finazzi, G., Joliot, P., and Wollman, F.-A. (1998) Biochemistry 37, 10395-10403]. Their comparison with the wild type revealed that this residue plays an essential role in plastoquinol oxidation at low pH, while it is not required for efficient activity at neutral pH. Its involvement in gating the redox-coupled proton pumping activity is also shown. 相似文献
14.
The assembly of cytochrome b6/f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. 总被引:7,自引:2,他引:5
下载免费PDF全文
![点击此处可从《The EMBO journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
As an approach to the study of the biogenesis of the cytochrome b6/f complex, we characterized the behaviour of its constitutive subunits in mutant strains of Chlamydomonas reinhardtii bearing well-defined mutations. To this end, we have constructed three deletion mutant strains, each lacking one of the major chloroplast pet genes: the delta petA, delta petB and delta petD strains were unable to synthesize cyt f, cyt b6 and subunit IV (suIV) respectively. Western blotting analysis, pulse-labelling and pulse-chase experiments allowed us to compare the cellular accumulation, the rates of synthesis and the turnover of the cyt b6/f subunits remaining in the various strains. We show that the rates of synthesis of cyt b6 and suIV are independent of the presence of the other subunits of the complex but that their stabilization in the thylakoid membranes is a concerted process, with a marked dependence of suIV stability on the presence of cyt b6. In contrast, mature cyt f was stable in the absence of either suIV or cyt b6 but its rate of synthesis was severely decreased in these conditions. We conclude that the stoichiometric accumulation of the chloroplast-encoded subunits of the cyt b6/f complex results from two regulation processes: a post-translational regulation leading to the proteolytic disposal of unassembled cyt b6 and suIV and a co-translational (or early post-translational) regulation which ensures the production of cyt f next to its site of assembly. 相似文献
15.
Atteia A van Lis R Wetterskog D Gutiérrez-Cirlos EB Ongay-Larios L Franzén LG González-Halphen D 《Molecular genetics and genomics : MGG》2003,268(5):637-644
The sequence and organization of the Chlamydomonas reinhardtii genes encoding cytochrome c(1) ( Cyc1) and the Rieske-type iron-sulfur protein ( Isp), two key nucleus-encoded subunits of the mitochondrial cytochrome bc(1) complex, are presented. Southern hybridization analysis indicates that both Cyc1 and Isp are present as single-copy genes in C. reinhardtii. The Cyc1 gene spans 6404 bp and contains six introns, ranging from 178 to 1134 bp in size. The Isp gene spans 1238 bp and contains four smaller introns, ranging in length from 83 to 167 bp. In both genes, the intron/exon junctions follow the GT/AG rule. Internal conserved sequences were identified in only some of the introns in the Cyc1 gene. The levels of expression of Isp and Cyc1 genes are comparable in wild-type C. reinhardtii cells and in a mutant strain carrying a deletion in the mitochondrial gene for cytochrome b (dum-1). Nevertheless, no accumulation of the nucleus-encoded cytochrome c(1) or of core proteins I and II was observed in the membranes of the respiratory mutant. These data show that, in the green alga C. reinhardtii, the subunits of the cytochrome bc(1) complex fail to assemble properly in the absence of cytochrome b. 相似文献
16.
Mutants of the unicellular, green alga Chlamydomonas reinhardtii were recovered by screening for the absence of photoautotrophic growth at 35°C. Whereas nonconditional mutants required acetate for growth at both 25 and 35°C, the conditional mutants have normal photoautotrophic growth at 25°C. The conditional mutants consisted of two classes: (a) Temperature-sensitive mutants died under all growth conditions at 35°C, but (b) temperature-sensitive, acetate-requiring mutants were capable of heterotrophic growth at 35°C when supplied with acetate in the dark. The majority of mutants within the latter of these two classes had defects in photosynthetic functions. These defects included altered pigmentation, reduced whole-chain electron-transport activity, reduced ribulosebis-phosphate carboxylase activity, or pleiotropic alterations in a number of these photosynthetic components. Both nuclear and chloroplast mutants were identified, and a correlation between light-sensitive and photosynthesis-deficient phenotypes was observed. 相似文献
17.
18.
19.
20.
A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii
下载免费PDF全文
![点击此处可从《Biophysical journal》网站下载免费的PDF全文](/ch/ext_images/free.gif)
The availability of seven different structures of cytochrome f (cyt f) from Chlamydomonas reinhardtii allowed us, using Brownian dynamics simulations, to model interactions between these molecules and their redox partners, plastocyanin (PC) and cytochrome c6 (cyt c6) in the same species to study the effect of cyt f structure on its function. Our results showed that different cyt f structures, which are very similar, produced different reaction rates in interactions with PC and cyt c6. We were able to attribute this to structural differences among these molecules, particularly to a small flexible loop between A-184 and G-191 (which has some of the highest crystallographic temperature factors in all of the cyt f structures) on the cyt f small domain. We also showed that deletion of the cyt f small domain affected cyt c6 more than PC, due to their different binding positions on cyt f. One function of the small domain in cyt f may be to guide PC or cyt c6 to a uniform dock with cyt f, especially due to electrostatic interactions with K-188 and K-189 on this domain. Our results could serve as a good guide for future experimental work on these proteins to understand better the electron transfer process between them. Also, these results demonstrated the sensitivity and the power of the Brownian dynamics simulations in the study of molecular interactions. 相似文献