首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To understand general aspects of stability and folding of c-type cytochromes, we have studied the folding characteristics of cytochrome c553 from Desulfovibrio vulgaris (Hildenborough). This cytochrome is structurally similar but lacks sequence homology to other heme proteins; moreover, it has an abnormally low reduction potential. Unfolding of oxidized and reduced cytochrome c553 by guanidine hydrochloride (GuHCl) was monitored by circular dichroism (CD) and Soret absorption; the same unfolding curves were obtained with both methods supporting that cytochrome c553 unfolds by an apparent two-state process. Reduced cytochrome c553 is 7(3) kJ/mol more stable than the oxidized form; accordingly, the reduction potential of unfolded cytochrome c553 is 100(20) mV more negative than that of the folded protein. In contrast to many other unfolded cytochrome c proteins, upon unfolding at pH 7.0 both oxidized and reduced heme in cytochrome c553 become high-spin. The lack of heme misligation in unfolded cytochrome c553 implies that its unfolded structure is less constrained than those of cytochromes c with low-spin, misligated hemes.  相似文献   

2.
Protein unfolding during guanidine HCl denaturant titration of the reduced and oxidized forms of cytochrome c is monitored with magnetic circular dichroism (MCD), natural CD, and absorption of the heme bands and far-UV CD of the amide bands. Direct MCD spectral evidence is presented for bis-histidinyl heme ligation in the unfolded states of both the reduced and oxidized protein. For both redox states, the unfolding midpoints measured with MCD, which is an indicator of tertiary structure, are significantly lower than those measured with far-UV CD, an indicator of secondary structure. The disparate titration curves are interpreted in terms of a compound mechanism for denaturant-induced folding and unfolding involving a molten globulelike intermediate state (MG) with near-native secondary structure and nonnative tertiary structure and heme ligation. A comparison of the dependence of the free energy of formation of the MG intermediate on the redox state with the known contributions from heme ligation and solvation suggests that the heme is significantly more accessible to solvent in the MG intermediate than it is in the native state.  相似文献   

3.
Equilibrium and kinetic folding studies of horse cytochrome c in the reduced state have been carried out under strictly anaerobic conditions at neutral pH, 10 degrees C, in the entire range of aqueous solubility of guanidinium hydrochloride (GdnHCl). Equilibrium unfolding transitions observed by Soret heme absorbance, excitation energy transfer from the lone tryptophan residue to the ferrous heme, and far-UV circular dichroism (CD) are all biphasic and superimposable, implying no accumulation of structural intermediates. The thermodynamic parameters obtained by two-state analysis of these transitions yielded DeltaG(H2O)=18.8(+/-1.45) kcal mol(-1), and C(m)=5.1(+/-0.15) M GdnHCl, indicating unusual stability of reduced cytochrome c. These results have been used in conjunction with the redox potential of native cytochrome c and the known stability of oxidized cytochrome c to estimate a value of -164 mV as the redox potential of the unfolded protein. Stopped-flow kinetics of folding and unfolding have been recorded by Soret heme absorbance, and tryptophan fluorescence as observables. The refolding kinetics are monophasic in the transition region, but become biphasic as moderate to strongly native-like conditions are approached. There also is a burst folding reaction unobservable in the stopped-flow time window. Analyses of the two observable rates and their amplitudes indicate that the faster of the two rates corresponds to apparent two-state folding (U<-->N) of 80-90 % of unfolded molecules with a time constant in the range 190-550 micros estimated by linear extrapolation and model calculations. The remaining 10-20 % of the population folds to an off-pathway intermediate, I, which is required to unfold first to the initial unfolded state, U, in order to refold correctly to the native state, N (I<-->U<-->N). The slower of the two observable rates, which has a positive slope in the linear functional dependence on the denaturant concentration indicating that an unfolding process under native-like conditions indeed exists, originates from the unfolding of I to U, which rate-limits the overall folding of these 10-20 % of molecules. Both fast and slow rates are independent of protein concentration and pH of the refolding milieu, suggesting that the off-pathway intermediate is not a protein aggregate or trapped by heme misligation. The nature or type of unfolded-state heme ligation does not interfere with refolding. Equilibrium pH titration of the unfolded state yielded coupled ionization of the two non-native histidine ligands, H26 and H33, with a pK(a) value of 5.85. A substantial fraction of the unfolded population persists as the six-coordinate form even at low pH, suggesting ligation of the two methionine residues, M65 and M80. These results have been used along with the known ligand-binding properties of unfolded cytochrome c to propose a model for heme ligation dynamics. In contrast to refolding kinetics, the unfolding kinetics of reduced cytochrome c recorded by observation of Soret absorbance and tryptophan fluorescence are all slow, simple, and single-exponential. In the presence of 6.8 M GdnHCl, the unfolding time constant is approximately 300(+/-125) ms. There is no burst unfolding reaction. Simulations of the observed folding-unfolding kinetics by numerical solutions of the rate equations corresponding to the three-state I<-->U<-->N scheme have yielded the microscopic rate constants.  相似文献   

4.
A J Wand  H Roder  S W Englander 《Biochemistry》1986,25(5):1107-1114
The hydrogen exchange behavior of the N-terminal helical segment in horse heart cytochrome c was studied in both the reduced and the oxidized forms by use of two-dimensional nuclear magnetic resonance methods. The amide protons of the first six residues are not H bonded and exchange rapidly with solvent protons. The most N-terminal H-bonded groups--the amide NH of Lys-7 to Phe-10--exhibit a sharp gradient in exchange rate indicative of dynamic fraying behavior, consistent with statistical-mechanical principles. This occurs identically in both reduced and oxidized cytochrome c. In the oxidized form, residues 11-14, which form the last helical turn, all exchange with a similar rate, about one million times slower than the rate characteristic of freely exposed peptide NH, even though some are on the aqueous face of the helix and others are fully buried. These and similar observations in several other proteins appear to document local cooperative unfolding reactions as determinants of protein H exchange reactions. The N-terminal segment of cytochrome c is insensitive to the heme redox state, as in the crystallographic model, except for residues closest to the heme (Cys-14 and Ala-15), which exchange about 15-fold more slowly in the reduced form. The cytochrome c H exchange results can be further considered in terms of the conformation of the native and the transiently unfolded forms and their free energy relationships in both the reduced and the oxidized states.  相似文献   

5.
Soluble cytochrome c-552 was purified from Thiobacillus ferrooxidans to an electrophoretically homogeneous state. The cytochrome showed absorption peaks at 276, 411 and 523 nm in the oxidized form and peaks at 315, 417, 523 and 552 nm in the reduced form. The molecular weight of the cytochrome was estimated to be 13,800 on the basis of the amino acid composition and heme content, and 14,000 from SDS-polyacrylamide gel electrophoresis analysis. Its midpoint redox potential at pH 7.0 was determined to be +0.36 V. The N-terminal amino acid sequence of the cytochrome was determined as follows: A-G-G-A-G-G-P-A-P-Y-R-I-S-?-D-?-M-V-?-S-G-M-P-G-. Ferrocytochrome c-552 was oxidized by the membrane fraction of T. ferrooxidans, and the oxidation rate was more rapid at pH 3.0 than at pH 6.5. Ferricytochrome c-552 was reduced by Fe(II)-cytochrome c oxidoreductase with Fe2+ at pH 3.5, while horse ferricytochrome c was not reduced by the enzyme under the same reaction conditions.  相似文献   

6.
Both the enthalpic and entropic contributions to unfolding of three heme proteins, cytochrome b(562), cytochrome c and myoglobin, are larger for the reduced than for the oxidized form. Thus, the higher thermodynamic stability of a reduced, as compared to an oxidized, heme protein is the net result of a large increase of favorable enthalpy and a small increase in unfavorable entropy. Upon comparing the unfolding energetics of the heme proteins to those of other single-domain proteins I find that protein length is the primary determinant of the thermodynamics.  相似文献   

7.
The relationship between pH-induced conformational changes in iso-2 cytochrome c from Saccharomyces cerevisiae and the guanidine hydrochloride induced unfolding transition has been investigated. Comparison of equilibrium unfolding transitions at acid, neutral, and alkaline pH shows that stability toward guanidine hydrochloride denaturation is decreased at low pH but increased at high pH. In the acid range the decrease in stability of the folded protein is correlated with changes in the visible spectrum, which indicate conversion to a high-spin heme state--probably involving the loss of heme ligands. The increase in stability at high pH is correlated with a pH-induced conformational change with an apparent pK near 8. As in the case of homologous cytochromes c, this transition involves the loss of the 695-nm absorbance band with only minor changes in other optical parameters. For the unfolded protein, optical spectroscopy and 1H NMR spectroscopy are consistent with a random coil unfolded state in which amino acid side chains serve as (low-spin) heme ligands at both neutral and alkaline pH. However, the paramagnetic region of the proton NMR spectrum of unfolded iso-2 cytochrome c indicates a change in the (low-spin) heme-ligand complex at high pH. Apparently, the folded and unfolded states of the (inactive) alkaline form differ from the corresponding states of the less stable native protein.  相似文献   

8.
We have measured the effect of temperature and denaturant concentration on the rate of intrachain diffusion in an unfolded protein. After photodissociating a ligand from the heme iron of unfolded horse cytochrome c, we use transient optical absorption spectroscopy to measure the time scale of the diffusive motions that bring the heme, located at His18, into contact with its native ligand, Met80. Measuring the rate at which this 62 residue intrachain loop forms under both folding and unfolding conditions, we find a significant effect of denaturant on the chain dynamics. The diffusion of the chain accelerates as denaturant concentration decreases, with the contact formation rate approaching a value near approximately 6x10(5) s(-1) in the absence of denaturant. This result agrees well with an extrapolation from recent loop formation measurements in short synthetic peptides. The temperature dependence of the rate of contact formation indicates an Arrhenius activation barrier, Ea approximately 20 kJ/mol, at high denaturant concentrations, comparable to what is expected from solvent viscosity effects alone. Although Ea increases by several kBT as denaturant concentration decreases, the overall rate of diffusion nevertheless increases. These results indicate that inter-residue energetic interactions do not control conformational diffusion in unfolded states, even under folding conditions.  相似文献   

9.
Incubation of the 125I-labeled apoprotein, prepared from 125I-labeled iso-1-cytochrome c, with a yeast mitochondrial fraction in the presence of hemin, NADPH, and an extract of the postmitochondrial fraction at 32 +/- 1 degree C for 30 min has resulted in formation of cytochrome c-like species in yields of up to 35%. This radioactive synthesized species contains a functional group which responds to reduction with ascorbate and oxidation with K3Fe(CN)6 in that it is resistant in the reduced form and susceptible in the oxidized form to trypsin action in a manner characteristic of native cytochrome c. The functional group cannot be removed from the protein by cold HCl-acetone or 8 M urea treatment. The reduced form of the synthesized species exhibits resistance against autoxidation and the oxidized form can be reduced also by cytochrome b2. The synthesized species exhibits the same compact hydrodynamic volume of native cytochrome c. Treatment with silver sulfate followed by incubation with dithiothreitol converts the synthesized species to the original apoprotein as judged by an increase in the hydrodynamic volume. Thus, the synthesized species is indistinguishable from the original labeled iso-1-cytochrome c by these measurements; i.e. the synthesized species consists of the apoprotein to which heme is covalently attached through the thioether bond(s). The active factor of the mitochondrial fraction is heat-labile. The synthetic activity is strongly dependent on pH with a maximum approximately at pH 7.0. Hemin (or heme) appears to be required for this synthesis. The postmitochondrial fraction is inactive by itself. However, its addition markedly increases the synthetic activity. This factor is heat-stable, soluble in 80% methanol (or 75% ethanol), and insoluble in ethyl ether or ethyl acetate. Addition of NADP(H) (or NAD(H)) also increases the synthetic activity, the reduced form being more effective than the oxidized form. The postmitochondrial factor and the pyridine nucleotides appear to enhance the effect of each other. Thus, it seems that cytochrome c or a cytochrome c-like species is formed from the apoprotein and heme (or hemin) by an enzyme, cytochrome c synthetase, present in mitochondria.  相似文献   

10.
The reversible unfolding of oxidized Bacillus pasteurii cytochrome c(553) by guanidinium chloride under equilibrium conditions has been monitored by NMR and optical spectroscopy. The results obtained indicate that unfolding takes place through a mechanism involving the detachment from heme iron coordination of the sulfur of the Met71 axial ligand and yielding either a high spin (HS) or a low spin (LS(1)) species, depending on the pH value. In the LS(1) form the Met71 is replaced by another protein ligand, possibly Lys. The ligand exchange reaction does not reach completion until the protein backbone reaches a largely unfolded state, as monitored through 1H-15N NMR experiments, thus demonstrating that there is a significant correlation between formation of the Fe-S bond and native structure stability. 1H/2H exchange data, however, show that helix alpha(3), the C-terminal region of helix alpha(4), and helix alpha(5) maintain low exchangeability of the amide protons in the LS(1) form. This finding most likely implies that these regions maintain some ordered non-covalent structure, in which the amide moieties are involved in H-bonds. Finally, a folding mechanism is proposed and discussed in terms of analogies and differences with the larger mitochondrial cytochrome c proteins. It is concluded that the thermodynamic stability of the region around the metal cofactor is determined by the chemical nature of the residues around the axial methionine residue.  相似文献   

11.
Nonnative heme coordination structures emerging upon guanidine hydrochloric acid (GdnHCl) induced unfolding of Hydrogenobacter thermophilus ferricytochrome c 552 were characterized by means of paramagnetic NMR. The heme coordination structure possessing the N-terminal amino group of the peptide chain in place of axial Met (His–Nterm form) was determined in the presence of GdnHCl concentrations in excess of 1.5 M at neutral pH. The stability of the His–Nterm form at pH 7.0 was found to be comparable with that of the bis-His form which has been recognized as a major nonnative heme coordination structure in cytochrome c folding/unfolding. Consequently, in addition to the bis-His form, the His–Nterm form is a substantial intermediate which affects the pathway and kinetics of the folding/unfolding of cytochromes c, of which the N-terminal amino groups are not acetylated. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Folding of globular proteins occurs with rates that range from microseconds to minutes; consequently, it has been necessary to develop new strategies to follow the faster processes that exceed stopped-flow capabilities. Rapid photochemical methods have been employed to study the rate of folding of reduced cytochrome c. In this protein, the iron of the covalently bound heme binds a His and a Met, proximal and distal. Unfolding by guanidine or urea weakens the Fe-Met bond, and the reduced unfolded cytochrome c easily binds CO and other heme ligands, which would react slowly or not at all with the native protein. Therefore in the presence of CO, reduced cytochrome c unfolds at lower denaturant concentrations than in the absence of this ligand, and rapid photochemical removal of CO from unfolded cytochrome c, is expected to trigger at least an incomplete refolding. This approach is complicated by the breakage of the proximal His-Fe bond that may occur as a consequence of CO photodissociation in the unfolded cytochrome c because of the so-called base elimination mechanism. Rebinding of CO to the four-coordinate heme yields kinetic intermediates unrelated to folding. Our hypothesis is supported by parallel observations carried out with protoheme and microperoxidase.  相似文献   

13.
The heme ligation in the isolated c domain of Paracoccus pantotrophus cytochrome cd(1) nitrite reductase has been characterized in both oxidation states in solution by NMR spectroscopy. In the reduced form, the heme ligands are His69-Met106, and the tertiary structure around the c heme is similar to that found in reduced crystals of intact cytochrome cd1 nitrite reductase. In the oxidized state, however, the structure of the isolated c domain is different from the structure seen in oxidized crystals of intact cytochrome cd1, where the c heme ligands are His69-His17. An equilibrium mixture of heme ligands is present in isolated oxidized c domain. Two-dimensional exchange NMR spectroscopy shows that the dominant species has His69-Met106 ligation, similar to reduced c domains. This form is in equilibrium with a high-spin form in which Met106 has left the heme iron. Melting studies show that the midpoint of unfolding of the isolated c domain is 320.9 +/- 1.2 K in the oxidized and 357.7 +/- 0.6 K in the reduced form. The thermally denatured forms are high-spin in both oxidation states. The results reveal how redox changes modulate conformational plasticity around the c heme and show the first key steps in the mechanism that lead to ligand switching in the holoenzyme. This process is not solely a function of the properties of the c domain. The role of the d1 heme in guiding His17 to the c heme in the oxidized holoenzyme is discussed.  相似文献   

14.
Manyusa S  Mortuza G  Whitford D 《Biochemistry》1999,38(43):14352-14362
The guanidine hydrochloride- (GuHCl-) induced unfolding and refolding of a recombinant domain of bovine microsomal cytochrome b(5) containing the first 104 amino acid residues has been characterized by both transient and equilibrium spectrophotometric methods. The soluble domain is reversibly unfolded and the equilibrium reaction may be monitored by changes in absorbance and fluorescence that accompany denaturation of the native protein. Both probes reveal a single cooperative transition with a midpoint at 3 M GuHCl and lead to a value for the protein stability (DeltaG(uw)) of 26.5 kJ mol(-1). This stability is much higher than that reported for the corresponding form of the apoprotein (approximately 7 kJ mol(-1)). Transient changes in fluorescence and absorbance during protein unfolding exhibit biphasic profiles. A fast phase occupying approximately 30% of the total amplitude is observed at high denaturant concentrations and becomes the dominant process within the transition region. The rates associated with each process show a linear dependency on GuHCl concentration, and at zero denaturant concentration the unfolding rates (k(uw)) are 4.5 x 10(-5) s(-1) and 5.2 x 10(-6) s(-1) at 25 degrees C. The pattern of unfolding is not correlated with covalent heterogeneity, since a wide range of variants and site-directed mutants exhibit identical profiles, nor is the unfolding correlated with cis-trans Pro isomerization in the native state. In comparison with the apo form of cytochrome b(5), the kinetics of refolding and unfolding are more complex and exhibit very different transition states. The data support a model for unfolding in which heme-protein interactions give rise to two discernible rates of unfolding. From an analysis of the activation parameters associated with each process it is established that two structurally similar transition states differing by less than 5 kJ mol(-1) exist in the unfolding reaction. Protein refolding exhibits monophasic kinetics but with distinct curvature apparent in plots of ln k(obs) versus denaturant concentration. The data are interpreted in terms of alternative routes for protein folding in which a "fast track" leads to the rapid ordering of structure around Trp26 for refolding while a slower route requires additional reorganization around the hydrophobic core.  相似文献   

15.
Sridevi K  Udgaonkar JB 《Biochemistry》2002,41(5):1568-1578
The folding and unfolding rates of the small protein, barstar, have been monitored using stopped-flow measurements of intrinsic tryptophan fluorescence at 25 degrees C, pH 8.5, and have been compared over a wide range of urea and guanidine hydrochloride (GdnHCl) concentrations. When the logarithms of the rates of folding from urea and from GdnHCl unfolded forms are extrapolated linearly with denaturant concentration, the same rate is obtained for folding in zero denaturant. Similar linear extrapolations of rates of unfolding in urea and GdnHCl yield, however, different unfolding rates in zero denaturant, indicating that such linear extrapolations are not valid. It has been difficult, for any protein, to determine unfolding rates under nativelike conditions in direct kinetic experiments. Using a novel strategy of coupling the reactivity of a buried cysteine residue with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) to the unfolding reaction of barstar, the global unfolding and refolding rates have now been determined in low denaturant concentrations. The logarithms of unfolding rates obtained at low urea and GdnHCl concentrations show a markedly nonlinear dependence on denaturant concentration and converge to the same unfolding rate in the absence of denaturant. It is shown that the native protein can sample the fully unfolded conformation even in the absence of denaturant. The observed nonlinear dependences of the logarithms of the refolding and unfolding rates observed for both denaturants are shown to be due to the presence of (un)folding intermediates and not due to movements in the position of the transition state with a change in denaturant concentration.  相似文献   

16.
The productive folding pathway of cytochrome c passes through an obligatory HW intermediate in which the heme is coordinated by a solvent water molecule and a native ligand, His-18, prior to the formation of the folded HM state with both the native His-18 and Met-80 heme coordination. Two off pathway intermediates, a five-coordinated state (5C) and a bis-histidine state (HH), were also identified during the folding reaction. In the present work, the thermodynamics and the kinetics of the unfolding reaction of cytochrome c were investigated with resonance Raman scattering, tryptophan fluorescence spectroscopy, and circular dichroism. The objective of these experiments was to determine if the protein opens up and diverges into the differing heme ligation states through a many pathway mechanism or if it passes through intermediate states analogous to those observed during the folding reaction. Equilibrium unfolding results indicate that, in contrast to 5C, the stability of HH with respect to HW decreases as the concentration of GdnHCl increases. The difference in their response to the denaturant indicates that the polypeptide structure of 5C is relatively loose as compared with HH in which the polypeptide is misfolded. Time-resolved resonance Raman measurements show that strikingly similar ligand exchange reactions occur during unfolding as were observed during folding. Combined with fluorescence data, a kinetic model is proposed in which local structural rearrangements controlled by heme ligand exchange reactions appear prior to the global relaxation of the polypeptide chain.  相似文献   

17.
A Model-Free analysis of the (15)N relaxation properties of oxidized cytochrome b(5), a heme-containing electron-transfer protein, has been performed in 2 M guanidinium chloride (GdmCl), i.e., just before the heme is released by the action of denaturant. This analysis provides information on the mobility in the nano- to picosecond time range. A parallel study on the motions in the milli- to microsecond time scale has also been performed by analyzing rotating-frame (15)N relaxation rates. The protein contains a 60:40 ratio of two conformers (A and B) differing for the rotation of the heme group around the alpha-gamma meso axis. The effect of denaturant has been followed for both species, and the mobility properties have been compared with the analogous information in the absence of denaturant. To complete the picture, we also performed (15)N relaxation measurements and the Model-Free analysis of the native B form, whereas data on the A form [Dangi, B., Sarma, S., Yan, C., Banville, D. L., Guiles, R. D. (1998) J. Phys. Chem. B 102, 8201-8208], as well as rotating-frame measurements for both native forms [Banci, L., Bertini, I., Cavazza, C., Felli, I. C., Koulougliotis, D. (1998) Biochemistry 37, 12320-12330; Arnesano, F., Banci, L., Bertini, I., Felli, I. C., Koulougliotis, D. (1999) Eur. J. Biochem. 260, 347-354], are already available in the literature. It is found that GdmCl tends to increase the internal mobility, although some residues are rigidified on both time scales. In the milli- to microsecond time scale, the tendency to increased mobility is reflected in a decrease in the tau(ex) values rather than in the number of residues experiencing conformational equilibria. In the nano- to picosecond time scale, the tendency to increased mobility is indicated by an overall decrease in the S(2) values. Color pictures are reported to visually show these effects. On the fast time scale, the B form is more mobile than the A form, reflecting the different stability with respect to unfolding. The increase in mobility upon addition of denaturant largely occurs around the heme pocket, which facilitates the release of the heme. The relevance of the internal motions with respect to the early steps of the unfolding process is also analyzed and discussed.  相似文献   

18.
A soluble c-type cytochrome was first purified from Geobacter metallireducens to an electrophoretically homogeneous state. The purified cytochrome c showed absorption peaks at 530 and 409 nm in the oxidized form and 552, 522, and 418 nm in the reduced form. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate allowed us to calculate the molecular mass at 9.5 kDa. It contained 3 mol of heme c per molecule of the protein on the basis of heme c and protein concentration. The mid-point redox potential at pH 7.0 was determined to be -190 mV. Although the N-terminal amino acid sequence of the first 17 residues was similar to that of Desulfuromonas acetoxidans cytochrome c7, G. metallireducens cytochrome c did not show Fe(III)-reducing activity.  相似文献   

19.
The peroxidase-like activity of cytochrome c is considerably increased by unfolding of the protein. The enhancement of the activity is due to the higher reaction rate of unfolded cytochrome c with hydrogen peroxide, which is the rate-determining step in the peroxidase cycle of cytochrome c (Gebicka, L., 2001, Res Chem Intermed 27, 717-23). In this study we checked whether combined action of two unfolding factors, SDS and peroxynitrite or radiation (hydroxyl radicals), increases the peroxidase-like activity of cytochrome c more than any single treatment alone. Peroxynitrite reacts with SDS-modified cytochrome c in the same way as with native cytochrome c, via intermediate radical products, *OH/*NO2, arising from peroxynitrite homolysis. We found that SDS-modified cytochrome c is much more sensitive to oxidative damage than the native protein. Partial unfolding of cytochrome c by SDS causes the peroxide substrate to have a better access to the heme center. On the other hand, the amino acids located in the vicinity of the active site and/or heme group become accessible for oxidizing radicals. The overall effect observed is that the peroxidase-like activity of SDS-modified cytochrome c decreases with an increase of the concentration of the oxidizing species (peroxynitrite or radiolytically generated hydroxyl radicals). The damage of SDS-modified cytochrome c caused by irradiation is much more significant than that observed after peroxynitrite treatment.  相似文献   

20.
Although the denaturant-induced unfolding transition of cytochrome c was initially thought to be a cooperative process, recent spectroscopic studies have shown deviations from two-state behavior consistent with accumulation of an equilibrium intermediate. However, little is known about the structural and thermodynamic properties of this state, and whether it is stabilized by the presence of non-native heme ligands. We monitored the reversible denaturant-induced unfolding equilibrium of oxidized horse cytochrome c using various spectroscopic probes, including fluorescence, near and far-UV CD, heme absorbance bands in the Soret, visible and near-IR regions of the spectrum, as well as 2D NMR. Global fitting techniques were used for a quantitative interpretation of the results in terms of a three-state model, which enabled us to determine the intrinsic spectroscopic properties of the intermediate. A well-populated intermediate was observed in equilibrium experiments at pH 5 using either guanidine-HCl or urea as a denaturant, both for wild-type cytochrome c as well as an H33N mutant chosen to prevent formation of non-native His-heme ligation. For a more detailed structural characterization of the intermediate, we used 2D 1H-15N correlation spectroscopy to follow the changes in peak intensity for individual backbone amide groups. The equilibrium state observed in our optical and NMR studies contains many native-like structural features, including a well-structured alpha-helical sub-domain, a short Trp59-heme distance and solvent-shielded heme environment, but lacks the native Met80 sulfur-iron linkage and shows major perturbations in side-chain packing and other tertiary interactions. These structural properties are reminiscent of the A-state of cytochrome c, a compact denatured form found under acidic high-salt conditions, as well as a kinetic intermediate populated at a late stage of folding. The denaturant-induced intermediate also resembles alkaline forms of cytochrome c with altered heme ligation, suggesting that disruption of the native methionine ligand favors accumulation of structurally analogous states both in the presence and absence of non-native ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号