首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissociation of porcine erythrocyte catalase [EC 1.11.1.6] into subunits on denaturation with alkali, GuHCl and urea was investigated by following the changes in hydrodynamic properties, absorption and CD spectra in the Soret region and inactivation of the enzyme. It was found that dissociation proceeded in an "all or none" manner from the native tetramer (molecular weight, ca. 250,000) into identical 1/4-sized monomers (molecular weight, ca. 54,000 with alkali, 65,000 with urea and 71,000 with GuHCl) as estimated by ultracentrifugal analyses. On this dissociation, the sedimentation coefficient decreased from about 11S to 5.1 - 3.7S, and absorption spectra in the Soret region decreased to about 40% of the native level and showed a broad band around 365-375 nm and a shoulder around 415-420 nm; these changes were accompanied by complete loss of enzyme activity. The change in enzyme activity correlated well with that of absorption and CD spectra in the Soret region, depending on denaturation time, alkaline pH used and concentration of both denaturants. The reassociated catalase obtained by removing urea by dialysis was characterized by recovery of distinct CD bands in the Soret and near ultraviolet regions, although the partial refolding of alpha-helical conformation occurred without recovery of enzyme activity. These results indicate that the conformational changes and dissociation process of catalase into subunits can be monitored spectrophotometrically in relation to enzyme activity, and that subtle conformations near the heme groups and polypeptide backbone play an important role in maintaining full enzyme activity of the catalase molecule.  相似文献   

2.
The optical absorption and circular dichroic spectra of human erythrocyte catalase (EC 1.11.1.6) and its cyanide, azide, and fluoride derivatives over the wavelength range of 210 to 700 nm are reported. Treatment with acid or alkaline solutions causes spectral changes which may be due to dissociation of the enzyme into subunits and removal of the heme group from the protein. The fractions of the protein structure present as alpha helix, beta pleated sheet, and unordered structure have been estimated from the CD spectrum in the far-ultraviolet region. The CD spectra also indicate that the protein conformation does not change appreciably after cyanide binding. The epr spectroscopy of the native enzyme and its cyanide complex are reported. The spectral results are compared with catalase obtained from other mammalian and bacterial sources.  相似文献   

3.
Bovine liver catalase with molecular weight of 248,000, which consists of four subunits, was modified with 2,4-bis(o-methoxypolyethylene glycol)-6-chloro-s-triazine(activated PEG2). The modified catalase became soluble in organic solvents such as benzene by increasing the degree of modification of amino groups in the enzyme with activated PEG2. The enzymic activity of the modified catalase in benzene, in which 42% of the total amino groups were coupled with the modifier, was unexpectedly high in comparison with the activity of non-modified catalase in aqueous system. The absorption spectrum of the modified catalase in benzene showed the characteristic pattern of a haem protein with Soret band at 405 nm. The temperature-activity profile of the modified catalase in benzene was clarified and its activation energy was estimated to be 1900 cal/mol.  相似文献   

4.
Aspergillus niger catalase has been characterized by a variety of physical techniques including gel filtration, sedimentation rate and equilibrium methods and photon correlation spectroscopy. The catalase has a sedimentation coefficient (S200) of 14.2 ± 0.08 S and diffusion coefficient (D200) of 4.14 ± 0.35 × 10−7 cm2 s−1. The average molecular weight of the catalase from all available data including current sedimentation equilibrium measurements and two previous literature values is 345 000. The frictional ratio of the molecule assuming a hydration parameter similar to that of bovine liver catalase (.3 g H2O g−1) is 1.103, suggesting that Aspergillus niger catalase has an asymmetric structure with an axial ratio of approximately 3 (the Stokes radius is 5.83 ± 0.49 nm). The titration curve and amino acid analysis indicate that in the native conformation only 23% of the ionizable amino acid residues are titratable between pH 3 and 10.5. Denaturation with sodium n-dodecylsulphate increases the number of titratable groups to 46%. The ratio of anionic to cationic amino acid residues in Aspergillus niger catalase is 2.46 and the isoelectric point is 6.5. The optimum pH for catalytic activity is approximately 7.  相似文献   

5.
In this study, an approx. 2.5-kb gene fragment including the catalase gene from Rhodospirillum rubrum S1 was cloned and characterized. The determination of the complete nucleotide sequence revealed that the cloned DNA fragment was organized into three open reading frames, designated as ORF1, catalase, and ORF3 in that order. The catalase gene consisted of 1,455 nucleotides and 484 amino acids, including the initiation and stop codons, and was located 326 bp upstream in the opposite direction of ORF1. The catalase was overproduced in Escherichia coli UM255, a catalase-deficient mutant, and then purified for the biochemical characterization of the enzyme. The purified catalase had an estimated molecular mass of 189 kDa, consisting of four identical subunits of 61 kDa. The enzyme exhibited activity over a broad pH range from pH 5.0 to pH 11.0 and temperature range from 20 degrees C to 60 degrees C. The catalase activity was inhibited by 3-amino-1,2,4-triazole, cyanide, azide, and hydroxylamine. The enzyme's K(m) value and V(max) of the catalase for H2O2 were 21.8 mM and 39,960 U/mg, respectively. Spectrophotometric analysis revealed that the ratio of A406 to A280 for the catalase was 0.97, indicating the presence of a ferric component. The absorption spectrum of catalase-4 exhibited a Soret band at 406 nm, which is typical of a heme-containing catalase. Treatment of the enzyme with dithionite did not alter the spectral shape and revealed no peroxidase activity. The combined results of the gene sequence and biochemical characterization proved that the catalase cloned from strain S1in this study was a typical monofunctional catalase, which differed from the other types of catalases found in strain S1.  相似文献   

6.
The formation of Compound I from Aspergillus niger catalase and methyl hydroperoxide (CH3OOH) has been investigated kinetically by means of rapid-scanning stopped-flow techniques. The spectral changes during the reaction showed distinct isobestic points. The second-order rate constant and the activation energy for the formation of Compound I were 6.4 x 10(3) M-1s-1 and 10.4 kcal.mol-1, respectively. After formation of Compound I, the absorbance at the Soret peak returned slowly to the level of ferric enzyme with a first-order rate constant of 1.7 x 10(-3) s-1. Spectrophotometric titration of the enzyme with CH3OOH indicates that 4 mol of peroxide react with 1 mol of enzyme to form 1 mol of Compound I. The amount of Compound I formed was proportional to the specific activity of the catalase. The irreversible inhibition of catalase by 3-amino-1,2,4-triazole (AT) was observed in the presence of CH3OOH or H2O2. The second-order rate constant of the catalase-AT formation in CH3OOH was 3.0 M-1 min-1 at 37 degrees C and pH 6.8 and the pKa value was estimated to be 6.10 from the pH profile of the rate constant of the AT-inhibition. These results indicate that A. niger catalase forms Compound I with the same properties as other catalases and peroxidases, but the velocity of the Compound I formation is lower than that of the others.  相似文献   

7.
1. The primary intermediate of catalase and hydrogen peroxide was identified and investigated in peroxisome-rich mitochondrial fractions of rat liver. On the basis of kinetic constants determined in vitro, it is possible to calculate with reasonable precision the molecular statistics of catalase action in the peroxisomes. 2. The endogenous hydrogen peroxide generation is adequate to sustain a concentration of the catalase intermediate (p(m)/e) of 60-70% of the hydrogen peroxide saturation value. Total amount of catalase corresponds to 0.12-0.15nmol of haem iron/mg of protein. In State 1 the rate of hydrogen peroxide generation corresponds to 0.9nmol/min per mg of protein or 5% of the mitochondrial respiratory rate in State 4. 3. Partial saturation of the catalase intermediate with hydrogen peroxide (p(m)/e) in the mitochondrial fraction suggests its significant peroxidatic activity towards its endogenous hydrogen donor. A variation of this value (p(m)/e) from 0.3 in State 4 to 0 under anaerobic conditions is observed. 4. For a particular preparation the hydrogen peroxide generation rate in the substrate-supplemented State 4 corresponds to 0.17s(-1) (eqn. 6), the hydrogen peroxide concentration to 2.5nm and the hydrogen-donor concentration (in terms of ethanol) to 0.12mm. The reaction is 70% peroxidatic and 30% catalatic. 5. A co-ordinated production of both oxidizing and reducing substrates for catalase in the mitochondrial fraction is suggested by a 2.2-fold increase of hydrogen peroxide generation and a threefold increase in hydrogen-donor generation in the State 1 to State 4 transition. 6. Additional hydrogen peroxide generation provided by the urate oxidase system of peroxisomes (8-12nmol of uric acid oxidized/min per mg of protein) permits saturation of the catalase with hydrogen peroxide to haem occupancy of 40% compared with values of 36% for a purified rat liver catalase ofk(1)=1.7x10(7)m(-1).s(-1) and k'(4)=2.6x10(7)m(-1). s(-1)(Chance, Greenstein & Roughton, 1952). 7. The turnover of the catalase ethyl hydrogen peroxide intermediate (k'(3)) in the peroxisomes is initially very rapid since endogenous hydrogen peroxide acts as a hydrogen donor. k'(3) decreases fivefold in the uncoupled state of the mitochondria.  相似文献   

8.
We had previously isolated a facultatively anaerobic hyperthermophilic archaeon, Pyrobaculum calidifontis strain VA1. Here, we found that strain VA1, when grown under aerobic conditions, harbors high catalase activity. The catalase was purified 91-fold from crude extracts and displayed a specific activity of 23,500 U/mg at 70 degrees C. The enzyme exhibited a K(m) value of 170 mM toward H(2)O(2) and a k(cat) value of 2.9 x 10(4) s(-1).subunit(-1) at 25 degrees C. Gel filtration chromatography indicated that the enzyme was a homotetramer with a subunit molecular mass of 33,450 Da. The purified catalase did not display the Soret band, which is an absorption band particular to heme enzymes. In contrast to typical heme catalases, the catalase was not strongly inhibited by sodium azide. Furthermore, with plasma emission spectroscopy, we found that the catalase did not contain iron but instead contained manganese. Our biochemical results indicated that the purified catalase was not a heme catalase but a manganese (nonheme) catalase, the first example in archaea. Intracellular catalase activity decreased when cells were grown anaerobically, while under aerobic conditions, an increase in activity was observed with the removal of thiosulfate from the medium, or addition of manganese. Based on the N-terminal amino acid sequence of the purified protein, we cloned and sequenced the catalase gene (kat(Pc)). The deduced amino acid sequence showed similarity with that of the manganese catalase from a thermophilic bacterium, Thermus sp. YS 8-13. Interestingly, in the complete archaeal genome sequences, no open reading frame has been assigned as a manganese catalase gene. Moreover, a homology search with the sequence of kat(Pc) revealed that no orthologue genes were present on the archaeal genomes, including those from the "aerobic" (hyper)thermophilic archaea Aeropyrum pernix, Sulfolobus solfataricus, and Sulfolobus tokodaii. Therefore, Kat(Pc) can be considered a rare example of a manganese catalase from archaea.  相似文献   

9.
Two different fractions were present in crystalline bovine liver catalase, and could be resolved using dye-ligand affinity chromatography with Red-A Matrex gel containing Procion HE 3B. The major part (alpha) was not adsorbed on this gel. The second fraction (beta) was firmly adsorbed to the gel, and could be eluted either by high salt or by NADPH in the micromolar range. Elution of catalase beta was also obtained with NADH, NADP+, and ADP at higher concentration. Fractions alpha and beta displayed no detectable difference in specific activity, stability to heat, and light absorption data. It is suggested that the difference in behavior between alpha and beta is related to the binding of NADPH to the mammalian catalase [H. N. Kirkman and G. F. Gaetani (1984) Proc. Natl. Acad. Sci. USA 81, 4343-4347], and that the beta fraction corresponds to the enzyme molecules that have at least one free site for NADPH binding. Modifications of catalase molecules in the presence of dithioerythritol (DTE) were examined using light absorption and EPR data. Thiol induced changes that corresponded to the formation of catalase complex II. They were partially reversed by NADPH at very low level, and the dinucleotide appeared to be oxidized in this process. DTE-treated bovine catalase was totally adsorbed on the Red-A Matrex columns, and could be eluted as fraction beta. Similar spectral changes in the presence of DTE and NADPH were displayed by a bacterial catalase from Proteus mirabilis. This enzyme was also able to oxidize NADPH, but was not adsorbed by Red-A Matrex. This work suggests that dye-affinity chromatography provides a very convenient tool for isolating dinucleotide-depleted catalase from bovine liver, facilitating further study of the physiological function of this cofactor within the enzyme.  相似文献   

10.
Helicobacter pylori catalase   总被引:15,自引:0,他引:15  
Helicobacter pylori is the major aetiological agent of gastroduodenitis in humans. Due to the potential importance of catalase in the growth and survival of Helicobacter pylori on the surface of inflamed mucosae, we have characterized catalase from H. pylori as a prelude to further studies on the function of the enzyme in vivo. The catalase activity of H. pylori was significantly affected by the presence of blood, serum or erythrocytes in the growth medium: the greatest activity was expressed when the bacterium was grown on medium containing serum. H. pylori catalase is a tetramer with a subunit Mr of 50,000. The enzyme had a pI of 9.0-9.3, was active over a broad pH range and was stable at 56 degrees C. It was non-competitively inhibited by sodium azide, and had no detectable peroxidase activity. The Km for the purified catalase was measured as 43 +/- 3 mM-H2O2 and the V as 60 +/- 3 mmol H2O2 min-1 (mg protein)-1. The native catalase has absorption maxima at 280 nm and 405 nm with further minor shoulders or peaks at 510 nm, 535 nm and 625 nm, consistent with the presence of an iron-porphyrin prosthetic group.  相似文献   

11.
The abilities of various sorbents to adsorb catalase (CAT; EC 1.11.1.6) from filtered culture liquid (FCL) of the fungus Penicillium piceum F-648 were compared. Potassium phosphate, hydroxyapatite (HAP), and coprecipitated sorbents containing calcium phosphate and magnesium hydroxide adsorbed extracellular CAT more efficiently than aluminum oxide, aluminum phosphate, or quartz sand. The enzyme was isolated from FCL of Penicillium piceum with the use of HAP and a binary coprecipitated sorbent, Ca3(PO4)2 + Mg(OH)2, 1:1 (CM). The CAT(CM) sample contained the least amount of protein admixture. Its spectra had absorption maximums at 279.6, 406.8 (Soret band), 540, 585, 636, and 703 nm and negative molar ellipticity minimums at 207 and 210-214 nm. The kinetic indices of the samples (KM, Vmax:KM, and specific activity) were intricately dependent on protein concentration in the reaction mixture. In dilute solutions, the KM and specific activities of CAT(CM) and CAT(HAP) equaled 667 and 137 mM; 300.9 x 10(4) and 30.0 x 10(4) U/mg protein, respectively. The effective velocity constants of inactivation of CAT(HAP), CAT(CM), and FCL in the reaction of H2O2 decomposition increased dramatically after dilution of samples. In the infinitely dilute solution, they were 4.30 x 10(-2), 6.46 x 10(-2), and 1.12 x 10(-2), respectively.  相似文献   

12.
1. Kinetic studies of the thermal deactivation of bacterial catalase in the absence of substrate suggest that the reaction involves a protonation-induced reversible dissociation of catalase into catalatically inactive sub-units, followed by an irreversible transformation of the sub-units into deactivated products. It is possible that the sub-units are mono-haem species. The rate of deactivation decreases with increasing pressure in accordance with the predictions of the proposed model. 2. The results also imply that the addition of hydrogen peroxide substrate induces the re-formation of active catalase. Under appropriate conditions the activity of catalase is found to increase with time in a manner that is quantitatively consistent with the results of deactivation studies.  相似文献   

13.
Catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1(T), which was isolated from an environment exposed to H(2)O(2) and exhibited high catalase activity, was purified and characterized, and its localization in the cell was determined. Its molecular mass was 230 kDa, and the molecule consisted of four identical subunits. The enzyme, which was not apparently reduced by dithionite, showed a Soret peak at 406 nm in a resting state. The catalytic activity was 527,500 U. mg of protein(-1) under standard reaction conditions at 40 degrees C, 1.5 and 4.3 times faster, respectively, than those of the Micrococcus luteus and bovine catalases examined under the same reaction conditions, and showed a broad optimum pH range (pH 6 to 10). The catalase from strain S-1(T) is located not only in the cytoplasmic space but also in the periplasmic space. There is little difference in the activation energy for the activity between strain S-1(T) catalase and M. luteus and bovine liver catalases. The thermoinstability of the activity of the former catalase were significantly higher than those of the latter catalases. The thermoinstability suggests that the catalase from strain S-1(T) should be categorized as a psychrophilic enzyme. Although the catalase from strain S-1(T) is classified as a mammal type catalase, it exhibits the unique enzymatic properties of high intensity of enzymatic activity and thermoinstability. The results obtained suggest that these unique properties of the enzyme are in accordance with the environmental conditions under which the microorganism lives.  相似文献   

14.
The rapid detection and identification of bacteria has application in a number of fields, e.g. the food industry, environmental monitoring and biomedicine. While in biomedicine the number of organisms present during infection is multiples of millions in the other fields it is the detection of low numbers of organisms that is important, e.g. an infective dose of Escherichia coli O157:H7 from contaminated food is less than 100 organisms. A rapid and sensitive technique has been developed to detect low numbers of the model organism E. coli O55, combining Lateral Flow Immunoassay (LFI) for capture and amperometry for sensitive detection. Nitrocellulose membranes were used as the solid phase for selective capture of the bacteria using antibodies to E. coli O55. Different concentrations of E. coli O55 in Ringers solution were applied to LFI strips and allowed to flow through the membrane to an absorbent pad. The capture region of the LFI strip was placed in close contact with the electrodes of a Clarke cell poised at +0.7 V for the detection of hydrogen peroxide. Earlier research identified that the consumption of hydrogen peroxide by bacterial catalase provided a sensitive indicator of aerobic and facultative anaerobic microorganisms numbers. Modification and application of this technique to the LFI strips demonstrated that the consumption of 8 mM hydrogen peroxide was correlated with the number of microorganisms presented to the LFI strips in the range of 2 x 10(1)-2 x 10(7) colony forming units (cfu). Capture efficiency was dependent on the number of organisms applied and varied from 71% at 2 x 10(2) cfu to 25% at 2 x 10(7) cfu. The procedure was completed in less than 10 min and could detect less than 10 cfu captured from a 200 microl sample applied to the LFI strip. The approached adopted provides proof of principle for the basis of a new technological approach to the rapid, quantitative and sensitive detection of bacteria that express catalase activity.  相似文献   

15.
On the basis of evolutionary conservation of sequence in catalases, we have designed a heme-binding peptide (Ac-RLKSYTDTQISR12-(GGGG)-CRIVHC22-NH2) for the 'redox activity modulation' of heme. Heme-binding studies showed a blue-shifted Soret (369 nm) in the presence of TFE and a red-shifted Soret (418 nm) in the absence of TFE. These blue- and red-shifted Sorets suggest ligation through tyrosinate and histidine, respectively. This is the first designed peptide ligating to heme through tyrosine. NMR studies have confirmed that tyrosine ligation to heme in this heme-peptide complex occurs only in the presence of TFE. We suggest that TFE induces helicity in the peptide and brings the arginine and tyrosine in proximity, resulting in ionization of the phenolic side chain of tyrosine. In the absence of TFE, the unstructured peptide lacks the intra-molecular Arg(+)Tyr(-) ion pair, allowing heme binding to histidine. This peptide has significant peroxidase activity though it does not have catalase activity.  相似文献   

16.
The stabilizing effects of Ca2+ and Mg2+ ions on the decameric structure of hemocyanins from two representative chitons, Stenoplax conspicua and Mopalia muscosa were investigated by light-scattering molecular weight measurements, ultracentrifugation, absorbance, and circular dichroism methods. The dissociation profiles at any given pH resulting from the decrease in divalent ion concentration, investigated at a fixed protein concentration of 0.1 g.liter-1, could be fitted by a decamer-to-dimer-to monomer scheme of subunit dissociation. The initial decline in the light-scattering molecular weight curves required one or two apparent binding sites per hemocyanin dimer formed as intermediate dissociation product, with apparent dissociation constants (kD,2) for Ca2+ ions of 0.7 to 7 X 10(-4) M, not very different from the value of 2.5 X 10(-4) M obtained by Makino by equilibrium dialysis for the hemocyanin of the opistobranch, Dolabella auricularia. The binding of Mg2+ ion to S. conspicua and M. muscosa hemocyanins appears to be both weaker than the binding of Ca2+ and more pH dependent, with kD,2 values ranging from the 3 X 10(-4) to 4 X 10(-2) M at pH 8.5 to 9.5. The dissociation the decameric hemocyanin species (sedimentation coefficient ca. 60 S) is also observed in the ultracentrifugation with the initial appearance of 18-20 S dimers, followed by a shift in equilibrium to monomeric species of lower sedimentation rates of 11-12 S as the divalent ion concentration is reduced below 1 X 10(-4) M Ca2+ and Mg2+. The dissociation of dimers to monomers in the second step of the reaction is characterized by one or two binding sites per subunit and a somewhat stronger affinity for divalent ions, indicated by apparent dissociation constants (kD,1) of 0.7 X 10(-4) to 3 X 10(-3) M. Circular dichroism and absorbance measurements at 222 and 346 nm suggest no significant changes in the conformation of the hemocyanin subunits produced by the different stages of subunit dissociation.  相似文献   

17.
In order to elucidate the possible roles of histidine and tyrosine residues of catalase [EC 1.11.1.6] in maintaining the quaternary structure and catalatic activity, diethylpyrocarbonate modification experiments were carried out. A method for the estimation of N-ethoxyformyl (EF)-His at pH 5--7 and of O-ethoxyformyl (EF)-Tyr in alkaline solution by measuring A 242 nm (ximM = 3.2) and A278 nm (ximM = 1.16), respectively, was developed. The formation of EF-His and EF-Tyr was an electrophilic reaction and was dependent on pH, exhibiting pK values of 6.8 and 9.9, respectively. The maximal yield of EF-His at pH 6.0 was 49% of the total histidine content, but no inactivation nor unfolding of the enzyme was observed. The formation of 12 EF-Tyr residues per mole of catalase at pH 8.1 did not cause any inactivation, but the formation of 8 more EF-Tyr residues at pH 8.9 resulted in both inactivation and unfolding. Nearly complete inactivation and partial splitting of catalase were observed when 43-46 EF-Tyr residues per mole were produced at pH 10.0. More EF-His residues were formed by the reaction of diethyl pyrocarbonate with cyanoethylated (CE)-catalase monomer (subunit) than with CE-catalase tetramer. The CE-catalase tetramer and monomer were extensively O-ethoxyformylated, reaching 100% EF-Tyr formation. These results indicate that a half of the histidine residues may lie outside the protein core and that three-quarters of the tyrosine residues are probably in the protein core of the enzyme. The production of 2--3 EF-Tyr residues per mole of the monomer by ethoxyformylation at pH 7.0 was accompanied by a decrease in the magnitude of the Soret peak. A possible interaction of those tyrosine residues with porphyrin of the heme group is discussed.  相似文献   

18.
The rate of dissociation of labeled estradiol from [3H] estradiol-8-9 S receptor complexes ([3H]E2-8-9 S ER) molybdate-stabilized was determined in the presence of either an excess of unlabeled hormone ("chase") or of charcoal/dextran suspension ("stripping"). Biphasic dissociation of the hormone was observed in both cases, but the fraction of the fast-dissociating component was dramatically reduced (5% instead of 60%) when stripping was used. As the dissociation patterns were independent of the degree of saturation of the receptor, the results do not favor the possibility of cooperative effects between binding sites in the 8-9 S ER. After pretreatment of cytosol by charcoal at 28 degrees C for 15 min, the dissociation studied by chase displayed only the slowly dissociating component (t1/2 approximately 65 min). This effect was dependent on temperature and influenced by the ligand bound to 8-9 S ER, being pronounced with estradiol (E2) and absent with [3H]4-hydroxytamoxifen. The slow-dissociating component obtained after charcoal treatment was reconverted to fast-dissociating state by adding dithiothreitol or by incubation with cytosol at 20 degrees C. The charcoal treatment did not change the sedimentation coefficient (approximately 9 S) and the Stokes radius (approximately 7 nm) of the [3H]E2-8-9 S ER, and the slow-dissociating form obtained did not bind to DNA-cellulose either in the presence or absence of molybdate ions. Thus there are likely small but functionally significant changes of structure in the 8-9 S ER which remain in a non-DNA-binding form, whereas the rate of estradiol dissociation is modified.  相似文献   

19.
Cytochrome P450 2E1 (CYP2E1) is an effective producer of reactive oxygen species such as superoxide radical and hydrogen peroxide, which may contribute to the development of alcohol liver disease or cytotoxicity. To investigate the protective role of catalase against CYP2E1-dependent cytotoxicity, E47 cells, a transfected HepG2 cell line overexpressing CYP2E1, were infected with adenoviral vectors containing human catalase cDNA (AdCat) and catalase cDNA with a mitochondrial leader sequence (AdmCat). Forty-eight hours after infection with AdCat or AdmCat at a multiplicity of infection of 100, intracellular catalase protein was increased >2-fold compared with uninfected E47 cells and E47 cells infected with empty adenoviral vector (AdNull) as determined by Western blotting and catalase activity measurements. Overexpression of catalase in the cytosol (AdCat) and in mitochondria (AdmCat) was confirmed by confocal microscopy. Cell death caused by arachidonic acid plus iron was considerably suppressed in both AdCat- and AdmCat-infected E47 cells as determined by assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide absorbance, lactate dehydrogenase release, and morphology changes. AdCat- and AdmCat-infected cells were also more resistant to the loss of mitochondrial membrane potential and to the increase in lipid peroxidation induced by arachidonic acid and iron. This study indicates that catalase in the cytosol and catalase in mitochondria are capable of protecting HepG2 cells expressing CYP2E1 against cytotoxicity induced by oxidants that promote lipid peroxidation and suggests the possibility that such agents may be useful in protecting against the development of alcohol liver injury.  相似文献   

20.
Homology among bacterial catalase genes   总被引:4,自引:0,他引:4  
Catalase activities in crude extracts of exponential and stationary phase cultures of various bacteria were visualized following gel electrophoresis for comparison with the enzymes from Escherichia coli. Citrobacter freundii, Edwardsiella tarda, Enterobacter aerogenes, Klebsiella pneumoniae, and Salmonella typhimurium exhibited patterns of catalase activity similar to E. coli, including bifunctional HPI-like bands and a monofunctional HPII-like band. Proteus mirabilis, Erwinia carotovora, and Serratia marcescens contained a single band of monofunctional catalase with a mobility intermediate between the HPI-like and HPII-like bands. The cloned genes for catalases HPI (katG) and HPII (katE) from E. coli were used as probes in Southern hybridization analyses for homologous sequences in genomic DNA of the same bacteria. katG was found to hybridize with fragments from C. freudii, Ent. aerogenes, Sal. typhimurium, and K. pneumoniae but not at all with Ed. tarda, P. mirabilis, S. marcesens, or Er. carotovora. katE hybridized with C. freundii and K. pneumoniae DNAs and not with the other bacterial DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号