首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1994,127(6):1655-1670
A novel anaphase block phenotype was found in fission yeast temperature- sensitive cut9 mutants. Cells enter mitosis with chromosome condensation and short spindle formation, then block anaphase, but continue to progress into postanaphase events such as degradation of the spindle, reformation of the postanaphase cytoplasmic microtubule arrays, septation, and cytokinesis. The cut9 mutants are defective in the onset of anaphase and possibly in the restraint of postanaphase events until the completion of anaphase. The cut9+ gene encodes a 78-kD protein containing the 10 34-amino acid repeats, tetratricopeptide repeats (TPR), and similar to budding yeast Cdc16. It is essential for viability, and the mutation sites reside in the TPR. The three genes, namely, nuc2+, scn1+, and scn2+, genetically interact with cut9+. The nuc2+ and cut9+ genes share an essential function to initiate anaphase. The cold-sensitive scn1 and scn2 mutations, defective in late anaphase, can suppress the ts phenotype of cut9.  相似文献   

2.
H Funabiki  K Kumada    M Yanagida 《The EMBO journal》1996,15(23):6617-6628
Fission yeast Schizosaccharomyces pombe temperature-sensitive (ts) cut1 mutants fail to separate sister chromatids in anaphase but the cells continue to divide, leading to bisection of the undivided nucleus (the cut phenotype). If cytokinesis is blocked, replication continues, forming a giant nucleus with polyploid chromosomes. We show here that the phenotype of ts cut2-364 is highly similar to that of cut1 and that the functions of the gene products of cut1+ and cut2+ are closely interrelated. The cut1+ and cut2+ genes are essential for viability and interact genetically. Cut1 protein concentrates along the short spindle in metaphase as does Cut2. Cut1 (approximately 200 kDa) and Cut2 (42 kDa) associate, as shown by immunoprecipitation, and co-sediment as large complexes (30 and 40S) in sucrose gradient centrifugation. Their behavior in the cell cycle is strikingly different, however: Cut2 is degraded in anaphase by the same proteolytic machinery used for the destruction of cyclin B, whereas Cut1 exists throughout the cell cycle. The essential function of the Cut1-Cut2 complex which ensures sister chromatid separation may be regulated by Cut2 proteolysis. The C-terminal region of Cut1 is evolutionarily conserved and similar to that of budding yeast Esp1, filamentous fungi BimB and a human protein.  相似文献   

3.
Saccharomyces cerevisiae cells containing one or more abnormal kinetochores delay anaphase entry. The delay can be produced by using centromere DNA mutations present in single-copy or kinetochore protein mutations. This observation is strikingly similar to the preanaphase delay or arrest exhibited in animal cells that experience spontaneous or induced failures in bipolar attachment of one or more chromosomes and may reveal the existence of a conserved surveillance pathway that monitors the state of chromosome attachment to the spindle before anaphase. We find that three genes (MAD2, BUB1, and BUB2) that are required for the spindle assembly checkpoint in budding yeast (defined by antimicrotubule drug-induced arrest or delay) are also required in the establishment and/or maintenance of kinetochore-induced delays. This was tested in strains in which the delays were generated by limited function of a mutant kinetochore protein (ctf13-30) or by the presence of a single-copy centromere DNA mutation (CDEII delta 31). Whereas the MAD2 and BUB1 genes were absolutely required for delay, loss of BUB2 function resulted in a partial delay defect, and we suggest that BUB2 is required for delay maintenance. The inability of mad2-1 and bub1 delta mutants to execute kinetochore-induced delay is correlated with striking increases in chromosome missegregation, indicating that the delay does indeed have a role in chromosome transmission fidelity. Our results also indicated that the yeast RAD9 gene, necessary for DNA damage-induced arrest, had no role in the kinetochore-induced delays. We conclude that abnormal kinetochore structures induce preanaphase delay by activating the same functions that have defined the spindle assembly checkpoint in budding yeast.  相似文献   

4.
BACKGROUND: Anaphase-promoting complex (APC)/cyclosome and 26S proteasome are respectively required for polyubiquitination and degradation of mitotic cyclin and anaphase inhibitor Cut2 (Pds1/securin). In fission yeast, mutant cells defective in cyclosome and proteasome fail to complete mitosis and have hypercondensed chromosomes and a short spindle. A similar phenotype is seen in a temperature-sensitive strain cut8-563 at 36 degrees C, but the molecular basis for Cut8 function is little understood. RESULTS: At high temperature, the level of Cut8 greatly increases and it becomes essential to the progression of anaphase. In cut8 mutants, chromosome mis-segregation and aberrant spindle dynamics occur, but cytokinesis takes place with normal timing, leading to the cut phenotype. This is due to the fact that destruction of mitotic cyclin and Cut2 in the nucleus is dramatically delayed, though polyubiquitination of Cdc13 occurs in cut8 mutant. Cut8 is localized chiefly to the nucleus and nuclear periphery, a distribution highly similar to that of 26S proteasome. In cut8 mutant, however, 26S proteasome becomes mostly cytoplasmic, showing that Cut8 is needed for its proper localization. CONCLUSION: Cut8 is a novel evolutionarily conserved heat-inducible regulator. It facilitates anaphase-promoting proteolysis by recruiting 26S proteasome to a functionally efficient nuclear location.  相似文献   

5.
J. H. Toyn  L. H. Johnston 《Genetics》1993,135(4):963-971
The DBF2 and DBF20 genes of the budding yeast Saccharomyces cerevisiae encode a pair of structurally similar protein kinases. Although yeast with either gene deleted is viable, deletion of both genes is lethal. Thus, the Dbf2 and Dbf20 proteins are functional alternatives for an essential activity. In contrast to deletions, four different mutant alleles of DBF2 are lethal. Thus, the presence of a nonfunctional Dbf2 protein, rather than the lack of function per se, is inhibitory. Here we present genetic evidence that nonfunctional mutant Dbf2 protein blocks the function of Dbf20 protein by sequestering a common interacting protein encoded by SPO12. Even a single extra copy of SPO12 is sufficient to suppress the dbf2 defect. Since SPO12 appears to encode a limiting factor, it may be a rate limiting cofactor that is involved in the regulation of the Dbf2 and Dbf20 protein kinases. A corollary to the finding that one extra copy of SPO12 can suppress dbf2, is that the acquisition of an extra chromosome VIII, which carries the SPO12 locus, will also suppress dbf2. Indeed, physical analysis of chromosome copy number in dbf2 revertants able to grow at 37° showed that the frequency of chromosome VIII acquisition increased when cells were incubated at the restrictive temperature, and reached a frequency of more than 100-fold the amount in wild-type yeast. This suggested that the dbf2 mutation was not only suppressed by an extra copy of chromosome VIII but also that the dbf2 mutation actually caused aberrant chromosomal segregation. Conventional assays for chromosome loss confirmed this proposal.  相似文献   

6.
We have analyzed the CTF4 (CHL15) gene, earlier identified in two screens for yeast mutants with increased rates of mitotic loss of chromosome III and artificial circular and linear chromosomes. Analysis of the segregation properties of circular minichromosomes and chromosome fragments indicated that sister chromatid loss (1:0 segregation) is the predominant mode of chromosome destabilization in ctf4 mutants, though nondisjunction events (2:0 segregation) also occur at an increased rate. Both inter- and intrachromosomal mitotic recombination levels are elevated in ctf4 mutants, whereas spontaneous mutation to canavanine resistance was not elevated. A genomic clone of CTF4 was isolated and used to map its physical and genetic positions on chromosome XVI. Nucleotide sequence analysis of CTF4 revealed a 2.8-kb open reading frame with a 105-kDa predicted protein sequence. The CTF4 DNA sequence is identical to that of POB1, characterized as a gene encoding a protein that associates in vitro with DNA polymerase alpha. At the N-terminal region of the protein sequence, zinc finger motifs which define potential DNA-binding domains were found. The C-terminal region of the predicted protein displayed similarity to sequences of regulatory proteins known as the helix-loop-helix proteins. Data on the effects of a frameshift mutation suggest that the helix-loop-helix domain is essential for CTF4 function. Analysis of sequences upstream of the CTF4 open reading frame revealed the presence of a hexamer element, ACGCGT, a sequence associated with many DNA metabolism genes in budding yeasts. Disruption of the coding sequence of CTF4 did not result in inviability, indicating that the CTF4 gene is nonessential for mitotic cell division. However, ctf4 mutants exhibit an accumulation of large budded cells with the nucleus in the neck. ctf4 rad52 double mutants grew very slowly and produced extremely high levels (50%) of inviable cell division products compared with either single mutant alone, which is consistent with a role for CTF4 in DNA metabolism.  相似文献   

7.
The spindle assembly checkpoint (SAC) prevents anaphase onset in response to chromosome attachment defects, and SAC silencing is essential for anaphase onset. Following anaphase onset, activated Cdc14 phosphatase dephosphorylates the substrates of cyclin-dependent kinase to facilitate anaphase progression and mitotic exit. In budding yeast, Cdc14 dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. We previously showed that kinetochore-localized Fin1-PP1 promotes the removal of the SAC protein Bub1 from the kinetochore during anaphase. We report here that Fin1-PP1 also promotes kinetochore removal of Bub3, the Bub1 partner, but has no effect on another SAC protein Mad1. Moreover, the kinetochore localization of Bub1-Bub3 during anaphase requires Aurora B/Ipl1 kinase activity. We further showed that Fin1-PP1 facilitates the dephosphorylation of kinetochore protein Ndc80, a known Ipl1 substrate. This dephosphorylation reduces kinetochore association of Bub1-Bub3 during anaphase. In addition, we found that untimely Ndc80 dephosphorylation causes viability loss in response to tensionless chromosome attachments. These results suggest that timely localization of Fin1-PP1 to the kinetochore controls the functional window of SAC and is therefore critical for faithful chromosome segregation.  相似文献   

8.
Fission yeast temperature-sensitive mutants cut3-477 and cut14-208 fail to condense chromosomes but small portions of the chromosomes can separate along the spindle during mitosis, producing phi-shaped chromosomes. Septation and cell division occur in the absence of normal nuclear division, causing the cut phenotype. Fluorescence in situ hybridization demonstrated that the contraction of the chromosome arm during mitosis was defective. Mutant chromosomes are apparently not rigid enough to be transported poleward by the spindle. Loss of the cut3 protein by gene disruption fails to maintain the nuclear chromatin architecture even in interphase. Both cut3 and cut14 proteins contain a putative nucleoside triphosphate (NTP)-binding domain and belong to the same ubiquitous protein family which includes the budding yeast Smc1 protein. The cut3 mutant was suppressed by an increase in the cut14+ gene dosage. The cut3 protein, having the highest similarity to the mouse protein, is localized in the nucleus throughout the cell cycle. Plasmids carrying the DNA topoisomerase I gene partly suppressed the temperature sensitive phenotype of cut3-477, suggesting that the cut3 protein might be involved in chromosome DNA topology.  相似文献   

9.
A cDNA encoding a ubiquitin-conjugating enzyme designated UbcP4 in fission yeast was isolated. Disruption of its genomic gene revealed that it was essential for cell viability. In vivo depletion of the UbcP4 protein demonstrated that it was necessary for cell cycle progression at two phases, G2/M and metaphase/anaphase transitions. The G2 arrest of UbcP4-depleted cells was dependent upon chk1, which mediates checkpoint pathway. UbcP4-depleted cells arrested at metaphase had condensed chromosomes but were defective in separation. However, septum formation and cytokinesis were not restrained during the metaphase arrest. Overexpression of UbcP4 specifically rescued the growth defect of cut9ts cells at a restrictive temperature. cut9 encodes a component of the anaphase-promoting complex (APC) which is required for chromosome segregation at anaphase and moreover is defined as cyclin-specific ubiquitin ligase. Cdc13, a mitotic cyclin in fission yeast, was accumulated in the UbcP4-depleted cells. These results strongly suggested that UbcP4 is a ubiquitin-conjugating enzyme working in conjunction with APC and mediates the ubiquitin pathway for degradation of "sister chromatid holding protein(s)" at the onset of anaphase and possibly of mitotic cyclin at the exit of mitosis.  相似文献   

10.
Jin F  Liu H  Li P  Yu HG  Wang Y 《PLoS genetics》2012,8(2):e1002492
The attachment of sister kinetochores by microtubules emanating from opposite spindle poles establishes chromosome bipolar attachment, which generates tension on chromosomes and is essential for sister-chromatid segregation. Syntelic attachment occurs when both sister kinetochores are attached by microtubules from the same spindle pole and this attachment is unable to generate tension on chromosomes, but a reliable method to induce syntelic attachments is not available in budding yeast. The spindle checkpoint can sense the lack of tension on chromosomes as well as detached kinetochores to prevent anaphase onset. In budding yeast Saccharomyces cerevisiae, tension checkpoint proteins Aurora/Ipl1 kinase and centromere-localized Sgo1 are required to sense the absence of tension but are dispensable for the checkpoint response to detached kinetochores. We have found that the loss of function of a motor protein complex Cik1/Kar3 in budding yeast leads to syntelic attachments. Inactivation of either the spindle or tension checkpoint enables premature anaphase entry in cells with dysfunctional Cik1/Kar3, resulting in co-segregation of sister chromatids. Moreover, the abolished Kar3-kinetochore interaction in cik1 mutants suggests that the Cik1/Kar3 complex mediates chromosome movement along microtubules, which could facilitate bipolar attachment. Therefore, we can induce syntelic attachments in budding yeast by inactivating the Cik1/Kar3 complex, and this approach will be very useful to study the checkpoint response to syntelic attachments.  相似文献   

11.
The fission yeast mutant dis3-54 is defective in mitosis and fails in chromosome disjunction. Its phenotype is similar to that of dis2-11, a mutant with a mutation in the type 1 protein phosphatase gene. We cloned the dis3+ gene by transformation. Nucleotide sequencing predicts a coding region of 970 amino acids interrupted by a 164-bp intron at the 65th codon. The predicted dis3+ protein shares a weak but significant similarity with the budding yeast SSD1 or SRK1 gene product, the gene for which is a suppressor for the absence of a protein phosphatase SIT4 gene or the BCY1 regulatory subunit of cyclic AMP-dependent protein kinase. Anti-dis3 antibodies recognized the 110-kDa dis3+ gene product, which is part of a 250- to 350-kDa oligomer and is enriched in the nucleus. The cellular localization of the dis3+ protein is reminiscent of that of the dis2+ protein, but these two proteins do not form a complex. A type 1 protein phosphatase activity in the dis3-54 mutant extracts is apparently not affected. The dis3+ gene is essential for growth; gene disruptant cells do not germinate and fail in cell division. Increased dis3+ gene dosage reverses the Ts+ phenotype of a cdc25 wee1 strain, as does increased type 1 protein phosphatase gene dosage. Double mutant dis3 dis2 is lethal even at the permissive temperature, suggesting that the dis2+ and dis3+ genes may be functionally overlapped. The role of the dis3+ gene product in mitosis is unknown, but this gene product may be directly or indirectly involved in the regulation of mitosis.  相似文献   

12.
The dbf3 mutation was originally obtained in a screen for DNA synthesis mutants with a cell cycle phenotype in the budding yeast Saccharomyces cerevisiae. We have now isolated the DBF3 gene and found it to be an essential gene with an ORF of 7239 nucleotides, potentially encoding a large protein of 268 kDa. We also obtained an allele-specific high copy number suppressor of the dbf3-1 allele, encoded by the known SSB1 gene, a member of the Hsp70 family of heat shock proteins. The sequence of the Dbf3 protein is 58% identical over 2300 amino acid residues to a predicted protein from Caenorhabditis elegans. Furthermore, partial sequences with 61% amino acid sequence identity were deduced from two files of human cDNA in the EST nucleotide database so that Dbf3 is a highly conserved protein. The nucleotide sequence of DBF3 turned out to be identical to the yeast gene PRP8, which encodes a U5 snRNP required for pre-mRNA splicing. This surprising result led us to further characterise the phenotype of dbf3 which confirmed its role in the cell cycle and showed it to function early, around the time of S phase. This data suggests a hitherto unexpected link between pre-mRNA splicing and the cell cycle.  相似文献   

13.
When present on a multicopy plasmid, a gene from a Saccharomyces cerevisiae genomic library suppresses the temperature-sensitive cdc7-1 mutation. The gene was identified as DBF4, which was previously isolated by complementation in dbf4-1 mutant cells and is required for the G1----S phase progression of the cell cycle. DBF4 has an open reading frame encoding 695 amino acid residues and the predicted molecular mass of the gene product is 80 kD. The suppression is allele-specific because a CDC7 deletion is not suppressed by DBF4. Suppression is mitosis-specific and the sporulation defect of cdc7 mutations is not suppressed by DBF4. Conversely, CDC7 on a multicopy plasmid suppresses the dbf4-1, -2, -3 and -4 mutations but not dbf4-5 and DBF4 deletion mutations. Furthermore, cdc7 mutations are incompatible with the temperature-sensitive dbf4 mutations. These results suggest that the CDC7 and DBF4 polypeptides interact directly or indirectly to permit initiation of yeast chromosome replication.  相似文献   

14.
Although chromosome condensation in the yeast Saccharomyces cerevisiae has been widely studied, visualization of this process in vivo has not been achieved. Using Lac operator sequences integrated at two loci on the right arm of chromosome IV and a Lac repressor-GFP fusion protein, we were able to visualize linear condensation of this chromosome arm during G2/M phase. As previously determined in fixed cells, condensation in yeast required the condensin complex. Not seen after fixation of cells, we found that topoisomerase II is required for linear condensation. Further analysis of perturbed mitoses unexpectedly revealed that condensation is a transient state that occurs before anaphase in budding yeast. Blocking anaphase progression by activation of the spindle assembly checkpoint caused a loss of condensation that was dependent on Mad2, followed by a delayed loss of cohesion between sister chromatids. Release of cells from spindle checkpoint arrest resulted in recondensation before anaphase onset. The loss of condensation in preanaphase-arrested cells was abrogated by overproduction of the aurora B kinase, Ipl1, whereas in ipl1-321 mutant cells condensation was prematurely lost in anaphase/telophase. In vivo analysis of chromosome condensation has therefore revealed unsuspected relationships between higher order chromatin structure and cell cycle control.  相似文献   

15.
Cyclin-dependent kinase (CDK) governs cell cycle progression, and its kinase activity fluctuates during the cell cycle. Mitotic exit pathways are responsible for the inactivation of CDK after chromosome segregation by promoting the release of a nucleolus-sequestered phosphatase, Cdc14, which antagonizes CDK. In the budding yeast Saccharomyces cerevisiae, mitotic exit is controlled by the FEAR (for "Cdc-fourteen early anaphase release") and mitotic exit network (MEN) pathways. In response to DNA damage, two branches of the DNA damage checkpoint, Chk1 and Rad53, are activated in budding yeast to prevent anaphase entry and mitotic exit, allowing cells more time to repair damaged DNA. Here we present evidence indicating that yeast cells negatively regulate mitotic exit through two distinct pathways in response to DNA damage. Rad53 prevents mitotic exit by inhibiting the MEN pathway, whereas the Chk1 pathway prevents FEAR pathway-dependent Cdc14 release in the presence of DNA damage. In contrast to previous data, the Rad53 pathway negatively regulates MEN independently of Cdc5, a Polo-like kinase essential for mitotic exit. Instead, a defective Rad53 pathway alleviates the inhibition of MEN by Bfa1.  相似文献   

16.
Centromere position in budding yeast: evidence for anaphase A.   总被引:8,自引:2,他引:6       下载免费PDF全文
Although general features of chromosome movement during the cell cycle are conserved among all eukaryotic cells, particular aspects vary between organisms. Understanding the basis for these variations should provide significant insight into the mechanism of chromosome movement. In this context, establishing the types of chromosome movement in the budding yeast Saccharomyces cerevisiae is important since the complexes that mediate chromosome movement (microtubule organizing centers, spindles, and kinetochores) appear much simpler in this organism than in many other eukaryotic cells. We have used fluorescence in situ hybridization to begin an analysis of chromosome movement in budding yeast. Our results demonstrate that the position of yeast centromeres changes as a function of the cell cycle in a manner similar to other eukaryotes. Centromeres are skewed to the side of the nucleus containing the spindle pole in G1; away from the poles in mid-M and clustered near the poles in anaphase and telophase. The change in position of the centromeres relative to the spindle poles supports the existence of anaphase A in budding yeast. In addition, an anaphase A-like activity independent of anaphase B was demonstrated by following the change in centromere position in telophase-arrested cells upon depolymerization and subsequent repolymerization of microtubules. The roles of anaphase A activity and G1 centromere positioning in the segregation of budding yeast chromosomes are discussed. The fluorescence in situ hybridization methodology and experimental strategies described in this study provide powerful new tools to analyze mutants defective in specific kinesin-like molecules, spindle components, and centromere factors, thereby elucidating the mechanism of chromosome movement.  相似文献   

17.
The fission yeast cdc21 protein belongs to the MCM family, implicated in the once per cell cycle regulation of chromosome replication. In budding yeast, proteins in this family are eliminated from the nucleus during S phase, which has led to the suggestion that they may serve to distinguish unreplicated from replicated DNA, as in the licensing factor model. We show here that, in contrast to the situation in budding yeast, cdc21 remains in the nucleus after S phase, as is found for related proteins in mammalian cells. We suggest that regulation of nuclear import of these proteins may not be an essential aspect of their function in chromosome replication. To determine the function of cdc21+, we have analysed the phenotype of a gene deletion. cdc21+ is required for entry into S phase and, unexpectedly, a proportion of cells depleted of the gene product are able to enter mitosis in the absence of DNA replication. These results are consistent with the view that individual proteins in the MCM family are required for all initiation events, and defective initiation may impair the coordination between mitosis and S phase.  相似文献   

18.
K Ishii  K Kumada  T Toda    M Yanagida 《The EMBO journal》1996,15(23):6629-6640
Ubiquitin-dependent proteolysis is required for the onset of anaphase. We show that protein dephosphorylation by protein phosphatase 1 (PP1) is also essential for initiating anaphase in fission yeast. PP1 may directly or indirectly regulate the 20S cyclosome/APC (anaphase-promoting complex) required for anaphase-promoting proteolysis. Using anti-phosphopeptide antibodies, PP1 is shown to be dephosphorylated at the C-terminus, upon the onset of anaphase, for reactivation. sds23+, a novel gene, is a multicopy suppressor for mutations in PP1 and the 20S cyclosome/APC, implying that the gene dosage increase can relieve the requirement for PP1 and the cyclosome/APC for the onset of anaphase. The sds23+ gene is not essential for cell viability, but a mutant with the gene deleted cannot form colonies at 22 and 36 degrees C. In the sds23 deletion mutant, the progression of anaphase and cytokinesis is retarded and cell shape is aberrant. These defects are overcome by plasmids carrying the genes encoding subunits of the 20S cyclosome/APC or PP1. These results demonstrate functions other than promoting anaphase for the components of the 20S cyclosome/APC and also a close functional relationship of Sds23 with PP1 and 20S cyclosome/APC.  相似文献   

19.
J H Toyn  H Araki  A Sugino  L H Johnston 《Gene》1991,104(1):63-70
The budding yeast cell-cycle gene, DBF2, encoding a putative protein kinase, was shown to have a homologue, designated DBF20. This gene was cloned, sequenced, and confirmed to be highly homologous to DBF2, with over 80% identity in the 490 most C-terminal amino acid residues. Either gene could be deleted by itself, but deletion of both genes simultaneously was lethal, indicating that they are redundant for at least one vital function in yeast. In contrast to the DBF2 mRNA, which is expressed under cell-cycle control at or near START [Johnston et al., Mol. Cell. Biol. 10 (1990) 1358-1366], the DBF20 mRNA is expressed at a low level and not under cell-cycle control. Assuming there is no translational control, the differential expression of the mRNAs would result in a cell-cycle fluctuation of the relative levels of the gene products, which may constitute a novel form of regulation.  相似文献   

20.
DNA anaphase bridges are a potential source of genome instability that may lead to chromosome breakage or nondisjunction during mitosis. Two classes of anaphase bridges can be distinguished: DAPI-positive chromatin bridges and DAPI-negative ultrafine DNA bridges (UFBs). Here, we establish budding yeast Saccharomyces cerevisiae and the avian DT40 cell line as model systems for studying DNA anaphase bridges and show that TopBP1/Dpb11 plays an evolutionarily conserved role in their metabolism. Together with the single-stranded DNA binding protein RPA, TopBP1/Dpb11 binds to UFBs, and depletion of TopBP1/Dpb11 led to an accumulation of chromatin bridges. Importantly, the NoCut checkpoint that delays progression from anaphase to abscission in yeast was activated by both UFBs and chromatin bridges independently of Dpb11, and disruption of the NoCut checkpoint in Dpb11-depleted cells led to genome instability. In conclusion, we propose that TopBP1/Dpb11 prevents accumulation of anaphase bridges via stimulation of the Mec1/ATR kinase and suppression of homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号