首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The protein subunits of the nucleocapsid of the parainfluenza virus simian virus 5 isolated from infected cells after dispersion with trypsin, chymotrypsin, or ficin are cleaved proteolytically. The molecular weights of the subunits which result from cleavage depend on the enzyme used, but are around 43,000, compared to the native subunit of 61,000. In most instances cleavage of the subunit appears to be due to the protease used to disperse the cell, and follows cell disruption. Nucleocapsids composed of native, uncleaved subunits can frequently be obtained from infected cells dispersed without a proteolytic enzyme; however, cleavage occasionally occurs even under those conditions, indicating that cellular proteases can at times cleave this protein. Nucleocapsids containing uncleaved subunits can be isolated from cells persistently infected with simian virus 5, indicating that persistent infection is not invariably associated with intracellular cleavage of this protein. Nucleocapsids composed of native subunits are hydrophobic, whereas those composed of the cleaved subunit can be dispersed in aqueous solution. It is suggested that the portion of the molecule removed by cleavage may be responsible for a specific interaction during virus assembly between the nucleocapsid and those areas of plasma membrane which contain the non-glycosylated viral membrane protein, which is also hydrophobic. An amino acid analysis of native and cleaved subunits has been done. The portion of the subunit removed by cleavage does not have a high proportion of hydrophobic residues, suggesting that those present are arranged together to form a hydrophobic domain.The N termini of both the native and cleaved subunits are blocked. This suggests that the portion of the molecule which is externally disposed and removed by cleavage contains the C terminus, and the cleaved subunit which reacts with the viral RNA contains the N terminus.  相似文献   

2.
We have used immunofluorescence in parallel with transmission and scanning electron microscopy to characterize the unusual cytoplasmic and nucleolar accumulation of Simian virus 40 (SV40) virion protein (C antigen) at restrictive temperatures (39 to 41 C) in monkey cells infected with a temperature-sensitive mutant of SV40 defective in virion assembly, tsB11. Cytoplasmic and nucleolar accumulation of C antigen did not occur in wild-type-infected cells at any temperature. Wild-type- and tsBll-infected cells were not distinguishable at 33 C by immunofluorescence or electron microscopy. Temperature-shift experiments using metabolic inhibitors of DNA (cytosine arabinonucleoside, 20 mug/ml), RNA (actinomycin D, 5 mug/ml), and protein synthesis (cycloheximide, 2 x 10(-4) to 10 x 10(-4) M) were used to investigate the requirements for ongoing DNA, RNA, and protein synthesis in the distribution of virion protein between the nucleus, nucleolus, and cytoplasm. The transport of C antigen from the nucleolus and cytoplasm into the nucleus was complete after a temperature shift-down (41 and 39 to 33 C). Limited virus particle formation occurred after the shift-down in the presence of actinomycin D and cycloheximide, indicating some of the 39 to 41 C synthesized virion protein could be used for capsid assembly at 33 C in the absence of further virion protein synthesis. Nucleolar and cytoplasmic accumulations of C antigen occurred in the absence of drugs after a shift-up (33 to 39 C and 41 C) indicating a continuous requirement for the tsB11 mutant function. Furthermore, the virion protein synthesized at 33 C remained confined to the nucleus when the cells were shifted to 39 and 41 C in the presence of actinomycin D or cycloheximide. In the presence of cytosine arabinonucleoside, however, the virion protein accumulated in large aggregates in the nucleus and nucleolus after the shift-up, but did not migrate into the cytoplasm as it did in drug-free tsB11-infected control cells. Colchicine (10(-3) M) had no effect on the abnormal accumulation of C antigen during shift-up or shift-down experiments suggesting that microtubular transport plays little if any role in the abnormal transport of tsB11 virion protein from cytoplasm to nucleus. Although virus particles were never observed by electron microscopy and V antigen was not detected by immunofluorescence at 39 or 41 C in tsB11-infected cells, dense amorphous accumulations were formed in the nucleoli and cytoplasm. We suggest that the tsB11 function is continuously required for the normal transport of SV40 virion protein between the cytoplasm, nucleolus, and nucleus and for the assembly of capsids and virions. Several possible mechanisms for the altered tsB11 function or protein are discussed. One of the virion proteins may also be involved in some presently undetermined nucleolar function during SV40 productive infection.  相似文献   

3.
The hemagglutinin (HA)-neuraminidase protein (HN) of paramyxoviruses carries out three discrete activities, each of which affects the ability of HN to promote viral fusion and entry: receptor binding, receptor cleaving (neuraminidase), and triggering of the fusion protein. Binding of HN to its sialic acid receptor on a target cell triggers its activation of the fusion protein (F), which then inserts into the target cell and mediates the membrane fusion that initiates infection. We provide new evidence for a fourth function of HN: stabilization of the F protein in its pretriggered state before activation. Influenza virus hemagglutinin protein (uncleaved HA) was used as a nonspecific binding protein to tether F-expressing cells to target cells, and heat was used to activate F, indicating that the prefusion state of F can be triggered to initiate structural rearrangement and fusion by temperature. HN expression along with uncleaved HA and F enhances the F activation if HN is permitted to engage the receptor. However, if HN is prevented from engaging the receptor by the use of a small compound, temperature-induced F activation is curtailed. The results indicate that HN helps stabilize the prefusion state of F, and analysis of a stalk domain mutant HN reveals that the stalk domain of HN mediates the F-stabilization effect.  相似文献   

4.
For most parainfluenza viruses, a virus type-specific interaction between the hemagglutinin-neuraminidase (HN) and fusion (F) proteins is a prerequisite for mediating virus-cell fusion and cell-cell fusion. The molecular basis of this functional interaction is still obscure partly because it is unknown which region of the F protein is responsible for the physical interaction with the HN protein. Our previous cell-cell fusion assay using the chimeric F proteins of parainfluenza virus 5 (PIV5) and simian virus 41 (SV41) indicated that replacement of two domains in the head region of the PIV5 F protein with the SV41 F counterparts bestowed on the PIV5 F protein the ability to induce cell-cell fusion on coexpression with the SV41 HN protein while retaining its ability to induce fusion with the PIV5 HN protein. In the study presented here, we furthered the chimeric analysis of the F proteins of PIV5 and SV41, finding that the PIV5 F protein could be converted to an SV41 HN-specific chimeric F protein by replacing five domains in the head region with the SV41 F counterparts. The five SV41 F-protein-derived domains of this chimera were then divided into 16 segments; 9 out of 16 proved to be not involved in determining its specificity for the SV41 HN protein. Finally, mutational analyses of a chimeric F protein, which harbored seven SV41 F-protein-derived segments, revealed that replacement of at most 21 amino acids of the PIV5 F protein with the SV41 F-protein counterparts was enough to convert its HN protein specificity.  相似文献   

5.
Interactions between viral glycoproteins, matrix protein and nucleocapsid sustain assembly of parainfluenza viruses at the plasma membrane. Although the protein interactions required for virion formation are considered to be highly specific, virions lacking envelope glycoprotein(s) can be produced, thus the molecular interactions driving viral assembly and production are still unclear. Sendai virus (SeV) and human parainfluenza virus type 1 (hPIV1) are highly similar in structure, however, the cytoplasmic tail sequences of the envelope glycoproteins (HN and F) are relatively less conserved. To unveil the specific role of the envelope glycoproteins in viral assembly, we created chimeric SeVs whose HN (rSeVhHN) or HN and F (rSeVh(HN+F)) were replaced with those of hPIV1. rSeVhHN grew as efficiently as wt SeV or hPIV1, suggesting that the sequence difference in HN does not have a significant impact on SeV replication and virion production. In sharp contrast, the growth of rSeVh(HN+F) was significantly impaired compared to rSeVhHN. rSeVh(HN+Fstail) which expresses a chimeric hPIV1 F with the SeV cytoplasmic tail sequence grew similar to wt SeV or rSeVhHN. Further analysis indicated that the F cytoplasmic tail plays a critical role in cell surface expression/accumulation of HN and F, as well as NP and M association at the plasma membrane. Trafficking of nucelocapsids in infected cells was not significantly affected by the origin of F, suggesting that F cytoplasmic tail is not involved in intracellular movement. These results demonstrate the role of the F cytoplasmic tail in accumulation of structural components at the plasma membrane assembly sites.  相似文献   

6.
7.
Previous studies have shown that truncation of the cytoplasmic-domain sequences of the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) just prior to a potential intracellular-trafficking signal of the sequence YIHF can strongly increase Env protein expression on the cell surface, Env incorporation into virions and, at least in some contexts, virion infectivity. Here, all 12 potential intracellular-trafficking motifs (YXXΦ or LL/LI/IL) in the gp41 cytoplasmic domain (gp41CD) of SIVmac239 were analyzed by systematic mutagenesis. One single and 7 sequential combination mutants in this cytoplasmic domain were characterized. Cell-surface levels of Env were not significantly affected by any of the mutations. Most combination mutations resulted in moderate 3- to 8-fold increases in Env incorporation into virions. However, mutation of all 12 potential sites actually decreased Env incorporation into virions. Variant forms with 11 or 12 mutated sites exhibited 3-fold lower levels of inherent infectivity, while none of the other single or combination mutations that were studied significantly affected the inherent infectivity of SIVmac239. These minor effects of mutations in trafficking motifs form a stark contrast to the strong increases in cell-surface expression and Env incorporation which have previously been reported for large truncations of gp41CD. Surprisingly, mutation of potential trafficking motifs in gp41CD of SIVmac316, which differs by only one residue from gp41CD of SIVmac239, effectively recapitulated the increases in Env incorporation into virions observed with gp41CD truncations. Our results indicate that increases in Env surface expression and virion incorporation associated with truncation of SIVmac239 gp41CD are not fully explained by loss of consensus trafficking motifs.  相似文献   

8.
A functional RNA replication promoter for the paramyxovirus simian virus 5 (SV5) requires two essential and discontinuous elements: 19 bases at the 3′ terminus (conserved region I) and an 18-base internal region (conserved region II [CRII]) that is contained within the coding region of the L protein gene. A reverse-genetics system was used to determine the sequence requirements for the internal CRII element to function in RNA replication. A series of copyback defective interfering (DI) RNA analogs were constructed to contain point mutations in the 18 nucleotides composing CRII, and their relative replication levels were analyzed. The results indicated that SV5 DI RNA replication was reduced by substitutions for two CG dinucleotides, which in the nucleocapsid template are in the first two positions of the first two hexamers of CRII nucleotides. Substitutions for other bases within CRII did not reduce RNA synthesis. Thus, two consecutive 5′-CGNNNN-3′ hexamers form an important sequence in the SV5 CRII promoter element. The position of the CG dinucleotide within the SV5 leader and antitrailer promoters was highly conserved among other members of the Rubulavirus genus, but this motif differed significantly in both sequence and position from that previously identified for Sendai virus. The possible roles of the CRII internal promoter element in paramyxovirus RNA replication are discussed.  相似文献   

9.
10.
Helical nucleocapsids of each of the paramyxoviruses simian virus 5 (SV5), Newcastle disease virus (NDV), and Sendai virus have been isolated in two different forms. One form contains larger protein subunits and is obtained from mature virions or infected cells dispersed by ethylenediaminetetraacetic acid. The other form possesses smaller subunits and is obtained from infected cells dispersed by trypsin. The estimated molecular weights of the larger subunits in the three viruses are similar: SV5, 61,000; Sendai virus, 60,000; NDV, 56,000. The smaller nucleocapsid subunits are also very similar: SV5, 43,000; Sendai virus, 46,000; NDV, 47,000. The helical nucleocapsid composed of the smaller subunit appears to be less flexible and more stable than that formed by the larger subunit. There is suggestive evidence that conversion of the larger subunit to the smaller by proteolytic cleavage may occur intracellularly. The possibility that such a mechanism could be involved in the accumulation of nucleocapsid in cells persistently infected with paramyxoviruses is discussed.  相似文献   

11.
12.
13.
Coronavirus membrane (M) proteins play key roles in virus assembly, through M-M, M-spike (S), and M-nucleocapsid (N) protein interactions. The M carboxy-terminal endodomain contains a conserved domain (CD) following the third transmembrane (TM) domain. The importance of the CD (SWWSFNPETNNL) in mouse hepatitis virus was investigated with a panel of mutant proteins, using genetic analysis and transient-expression assays. A charge reversal for negatively charged E121 was not tolerated. Lysine (K) and arginine (R) substitutions were replaced in recovered viruses by neutrally charged glutamine (Q) and leucine (L), respectively, after only one passage. E121Q and E121L M proteins were capable of forming virus-like particles (VLPs) when coexpressed with E, whereas E121R and E121K proteins were not. Alanine substitutions for the first four or the last four residues resulted in viruses with significantly crippled phenotypes and proteins that failed to assemble VLPs or to be rescued into the envelope. All recovered viruses with alanine substitutions in place of SWWS residues had second-site, partially compensating, changes in the first TM of M. Alanine substitution for proline had little impact on the virus. N protein coexpression with some M mutants increased VLP production. The results overall suggest that the CD is important for formation of the viral envelope by helping mediate fundamental M-M interactions and that the presence of the N protein may help stabilize M complexes during virus assembly.Coronaviruses are widespread, medically important respiratory and enteric pathogens of humans and a wide range of animals. New human coronaviruses (HCoV), including severe acute respiratory syndrome CoV (SARS-CoV), HCoV-NL63, and HCoV-HKU1, were recently identified (40, 47). The potential for emergence of other new viruses and the zoonotic nature of some coronaviruses strongly warrants understanding old and new viruses. Understanding vital interactions that take place during virus assembly and conserved domains (CDs) that mediate these interactions can provide insight toward identification of targets for development of antiviral therapeutics and vaccines.Coronaviruses are enveloped positive-stranded RNA viruses that belong to the Coronaviridae family in the Nidovirales order. The virion envelope contains at least three structural proteins, the membrane (M), spike (S), and envelope (E) proteins. The genomic RNA is encapsidated by the N phosphoprotein to form a helical nucleocapsid. The S glycoprotein is the viral attachment protein that facilitates infection through fusion of viral and cellular membranes and is the major target of neutralizing antibodies (13). The M glycoprotein is the most abundant component of the viral envelope and plays required, key roles in virus assembly (9, 20, 31, 33, 41). The E protein is a minor component of the viral envelope that plays an important, not clearly defined, role(s) during virus assembly and release (2, 5, 41).Coronavirus M proteins are divergent in their amino acid content, but all share the same overall basic structural characteristics. The proteins have three TM domains, flanked by a short amino-terminal glycosylated domain and a long carboxy-terminal tail located outside and inside the virion, respectively (14) (Fig. (Fig.11 A). M localizes in the Golgi region when expressed alone (20, 22). M molecules interact with each other and also with the spike and nucleocapsid during virus assembly (8-10, 23, 31, 33). M-M interactions constitute the overall scaffold for the viral envelope. The S protein and a small number of E molecules are interspersed in the M protein lattice in mature virions. Previous studies from a number of labs implicated multiple M domains and residues as being important for coronavirus assembly (6, 8, 9, 17, 43). Coronaviruses assemble and bud at intracellular membranes in the region of the endoplasmic reticulum (ER) Golgi intermediate compartment (ERGIC) (22, 39). Coexpression of only the M and the E proteins is sufficient for virus-like particle (VLP) assembly for most coronaviruses (2, 41).Open in a separate windowFIG. 1.M protein conserved domain and mutants. (A) A linear schematic of the M protein illustrating the relative positions of the three TM domains (black boxes) and the position of the CD in the tail. (B) Alignment of CDs from representative coronaviruses. Full-length amino acid sequences from transmissible gastroenteritis virus (TGEV), feline coronavirus (FeCoV), human coronavirus 229E, human coronavirus NL63, mouse hepatitis virus (MHV), bovine coronavirus (BCoV), human coronavirus OC43, porcine hemagglutinating encephalomyelitis virus (HEV), human coronavirus HKU1, SARS-CoV, infectious bronchitis virus (IBV), and turkey coronavirus (TCoV) were aligned by using CLUSTAL W (25). (C) Mutations introduced into the MHV CD, with + and − symbols used to indicate VLP production and virus recovery for each mutant.The long intravirion (cytoplasmic) tail of M consists of an amphipathic domain following the third TM and a short hydrophilic region at the carboxyl end of the tail (Fig. (Fig.1A).1A). The amphipathic domain appears to be closely associated with the membrane (34). At the amino terminus of the amphipathic domain, there is a highly conserved 12-amino-acid domain (SWWSFNPETNNL), consisting of residues 114 to 125 in the mouse hepatitis virus (MHV) A59 M protein (Fig. (Fig.1B)1B) (19). These residues are almost identically conserved across the entire Coronaviridae family. Because of the crucial role that M plays in virus assembly and the high conservation of this domain, we hypothesized that it is functionally important for virus assembly. To test this, a series of changes were introduced in the CD. The functional impact of the changes was studied in the context of the virus by genetic analysis and the ability of the mutant M proteins to participate in VLP assembly. The results show that the CD is functionally important for M protein to participate in virus assembly. The domain may help mediate important lateral interactions between M molecules. The results suggest that the N protein helps stabilize M complexes during virus assembly.  相似文献   

14.
副粘病毒融合蛋白活性位点中亮氨酸基因突变分析   总被引:7,自引:3,他引:7  
王志玉 《病毒学报》2000,16(1):12-16
为了确定副粘病毒融合蛋白(F)分子上活性位点中亮氨酸在F的细胞融合作用中的作用,弄清F融合细胞的分子机理,采用基因定点突变法创造一个酶切位点,用酶切反应初步筛选突变株,然后用DNA序列分析进一步确定,并在真核细胞内进行表达,Giemsa染色和指示基因法检测细胞融合功能,荧光强度分析(FACS)检测表达效率。结果表明,hPIV3等460位亮氨酸(L)和第474位异亮氨酸(I)分别突变成丙氨酸(A)(  相似文献   

15.
To determine the role of amino acid sequences of the hemagglutinin-neuraminidase (HN) cytoplasmic tail in Newcastle disease virus (NDV) replication and pathogenicity, we generated recombinant NDVs with a deletion or point mutation in the N-terminal cytoplasmic tail. The first 2-amino-acid deletion in the cytoplasmic tail did not affect the biological characteristics of NDV. However, a 4-amino-acid deletion and the substitution of alanine for serine at position 6 affected cell fusion, pathogenicity, and colocalization of the HN and M proteins of NDV, indicating that these residues of the HN cytoplasmic tail are critical for its specific incorporation into virions.Newcastle disease virus (NDV) causes a highly contagious respiratory and neurologic disease in chickens, leading to severe economic losses in the poultry industry worldwide (1). NDV is a member of the family Paramyxoviridae and has a nonsegmented, negative-sense RNA genome consisting of six genes (3′-NP-P-M-F-HN-L-5′) (7). Infection of host cells by NDV is accomplished through the interaction of two surface glycoproteins, the fusion (F) and hemagglutinin-neuraminidase (HN) proteins. The F protein directs the membrane fusion between the viral and cellular membranes, while the HN protein mediates attachment to sialic acid, has neuraminidase activity, and plays a role in fusion promotion (4).The HN protein of NDV is a type II transmembrane glycoprotein and possesses three spatially distinct domains: the ectodomain, transmembrane domain, and cytoplasmic tail. The globular ectodomain contains the sites for receptor binding and neuraminidase activity, and the transmembrane domain anchors to viral envelopes (8). The cytoplasmic tail domain contains 26 highly conserved amino acids whose functions are not well-known. In a plasmid-based expression system, truncation (23 amino acids) of the cytoplasmic tail caused improper orientation of the HN protein in the membrane insertion (13). In other paramyxoviruses, cytoplasmic tails of the HN proteins are known to play crucial roles in virus budding and assembly (10, 12). Our unsuccessful attempt to recover a recombinant NDV (rNDV) with complete deletion of the HN cytoplasmic tail also suggested that the cytoplasmic tail is required for assembly and budding of NDV. Therefore, in this study, we determined the role of amino acid sequences of the cytoplasmic tail in the NDV replication cycle. Since essential regions of the HN cytoplasmic tail for virus replication are unknown, we consecutively deleted the first 6 nucleotides (nt), 12 nt, or 18 nt of the HN cytoplasmic tail in a full-length antigenomic cDNA of NDV intermediate virulent (mesogenic) strain Beaudette C (BC) (6), thus maintaining the “rule of six” for the NDV genome (Fig. (Fig.1A).1A). rNDVs were recovered using our standard protocol (6). We recovered rNDVs containing 2-amino-acid deletion and 4-amino-acid deletion of the HN cytoplasmic tail (rBC/HNΔ2 and rBC/HNΔ4, respectively), indicating that only these 4 amino acids are dispensable in generating infectious virions. Since rNDV containing 6-amino-acid deletion of the HN cytoplasmic tail could not be recovered, we wanted to know the role of amino acids at positions 5 and 6 in NDV replications. The serine residue at position 6 is a potential phosphorylation site. Therefore, to determine whether phosphorylation at this site is crucial for recovery of NDV, we additionally generated rNDVs with substitution of alanine and glutamic acid for serine (rBC/HNS6A and rBC/HNS6E, respectively) to confirm its crucial role in the recovery of rNDV.Open in a separate windowFIG. 1.Constructs of recombinant NDVs containing a deletion or point mutation in the N-terminal cytoplasmic tail of the HN protein and replication and fusion index of recovered viruses in infected cells. (A) Consecutively, 6 nt, 12 nt, or 18 nt of mRNA of the HN cytoplasmic tail in a full-length antigenomic cDNA of NDV was deleted. Deletions in the HN cytoplasmic tails are indicated by the large boldface dashes. In addition, serine at position 6 was substituted with alanine and glutamic acid was substituted by changing guanine to cytidine and adenosine, respectively. (B) In vitro replication of the mutant viruses was determined in virus-infected DF-1 cells at an MOI of 0.01. The viral titers were determined by plaque assay. (C) The fusion index was determined in virus-infected Vero cells at an MOI of 0.1. Cells were stained with hematoxylin-eosin, and the fusion index was calculated as a mean number of nuclei per cell. The assay was performed three times.In vitro replication of recovered viruses was determined by plaque assay in virus-infected DF-1 cells at a multiplicity of infection (MOI) of 0.01 (5). All mutant viruses and the parental virus, rBC, grew to similar titers, indicating that alteration of the HN cytoplasmic tails did not affect their in vitro replication (Fig. (Fig.1B).1B). Although the rBC/HNΔ4 mutant had grown well up to 24 h postinfection, a reduction of the viral titer was detected thereafter with rapid and extensive induction of syncytia. Therefore, we determined fusion promotion activity of the mutant viruses by quantitating syncytia in virus-infected Vero cells at an MOI of 0.1 at 30 h postinfection (8) and confirmed increased fusion promotion activity of rBC/HNΔ4 followed by rBC/HNS6A compared to that of rBC (Fig. (Fig.1C).1C). Similarly, enhanced fusion activity was observed in other cytoplasmic tail-truncated paramyxoviruses, such as simian virus 5 and measles virus (2, 9). It has been postulated that interaction of matrix (M) protein with the cytoplasmic tails of the glycoproteins involves in a fusion-refractory conformation at the early stage of viral maturation (2). Therefore, these altered HN cytoplasmic tails could assist NDV in gaining its cell fusion competence by modulating this fusion-refractory conformation.In general, the levels of the HN protein contents on the surfaces of virus-infected cells and in the virus particles were more affected by point mutation of serine than by truncation of the cytoplasmic tail. We analyzed surface expression of the HN protein on virus-infected DF-1 cells at an MOI of 0.1. At 24 h postinfection, the cells were labeled with a monoclonal antibody against the NDV HN protein followed by anti-Alexa Fluor 488 conjugate, fixed with 4% paraformaldehyde, and analyzed by a fluorescence-activated cell sorter (AriaII; BD Bioscience) with Flowjo program (Tree Star, Inc.) (Fig. (Fig.2A).2A). The percentages of cells expressing the HN proteins were 89 (rBC), 78 (rBC/HNΔ2), 71 (rBC/HNΔ4), 64 (rBC/HNS6A), and 53 (rBC/HNS6E). To analyze incorporation of the HN proteins into the viral particles, the parental and mutant viruses harvested from allantoic fluid samples were purified through a 30% sucrose cushion. The viral proteins were separated on an 8% sodium dodecyl sulfate-polyacrylamide gel (Fig. (Fig.2B).2B). We first examined whether the mutant viruses incorporated the same levels of other viral proteins. This assay was performed by determining the ratios of the P protein to M protein. We found that similar levels of the P and M proteins were present among the different mutant viruses (Fig. (Fig.2B).2B). We then measured the levels of the HN proteins incorporated into the virus particles by determining the ratios of the HN protein to M protein (Fig. (Fig.2C).2C). The pattern of incorporation of the HN proteins into the virus particles was similar with their cell surface expression. The HN protein contents of rBC/HNΔ2 and rBC/HNΔ4 were not significantly different from that of the parental virus (P > 0.05), indicating that truncation of the cytoplasmic tail did not impair its incorporation into the viral particles. In contrast, substitution of glutamic acid for serine decreased incorporation of the HN protein into the viral particles, indicating that serine plays an important role in both cell surface expression of the HN protein and its incorporation into the viral particles.Open in a separate windowFIG. 2.Effect of alteration of the HN cytoplasmic tail on incorporation of the HN proteins into viral particles and their surface expression in DF-1 cells. (A) Surface expression of the NDV HN protein in DF-1 cells was analyzed by a fluorescence-activated cell sorter. At 24 h postinfection, DF-1 cells infected with each virus were stained with monoclonal antibody against the HN protein followed by anti-Alexa Fluor 488 conjugate. (B) Ultracentrifuge-purified viruses from infected allantoic fluid samples were separated by electrophoresis, and the gel was then stained with Coomassie brilliant blue. (C) Ratios of HN protein to M-protein levels from the parental virus and the HN cytoplasmic tail mutant viruses were quantified.We further determined the effect of cytoplasmic tail alteration on the pathogenicity of NDV in embryonated eggs and chicks (Table (Table1).1). The mean death time (MDT) was determined as the mean time (h) for the minimum lethal dose of virus to kill all the embryos after inoculation of 9-day-old specific-pathogen-free (SPF) embryonated chicken eggs with virus (1). The criteria for classifying the virulence of NDV strains are as follows: virulent strains take <60 h to kill embryos, intermediate virulent strains take 60 to 90 h to kill embryos, and avirulent strains take >90 h to kill embryos. Two mutant viruses (rBC/HNΔ2 and rBC/HNS6E) showed similar values of MDT compared to rBC (59 h). In contrast, the MDTs of rBC/HNΔ4 and rBC/HNS6A were 50 h and 51 h, respectively. Increased pathogenicity of these two mutants was also confirmed by an intracerebral pathogenicity index (ICPI) test in 1-day-old SPF chicks (1). The scale of the ICPI value in evaluating the virulence of NDV strains is from 0.00 (avirulent strains) to 2.00 (highly virulent NDV strains). The rBC/HNΔ4 virus had the highest ICPI value (1.61), followed by rBC/HNS6A (ICPI value of 1.58), among the parental and mutant viruses, probably due to their enhanced fusion promotion activity. In contrast, rBC/HNS6E had the lowest ICPI value (1.41), which would be associated with decreased HN protein contents detected in the viral particles and virus-infected cells. In our previous study, decreased HN protein contents in virus particles due to complete deletion of 5′ untranslated regions of the HN gene also resulted in attenuation of the virus in chickens (14). Consistently, rBC/HNΔ2 showed biological characteristics and pathogenicity similar to those of the parental virus, suggesting that aspartic acid and arginine are indispensable for the HN cytoplasmic tail of NDV.

TABLE 1.

Pathogenicity of the HN cytoplasmic tail mutant viruses in embryonated eggs and chicks
VirusMDT (h)aICPIb
rBC581.49
rBC/HNΔ2591.51
rBC/HNΔ4501.61
rBC/HNS6A511.58
rBC/HNS6E621.41
Open in a separate windowaThe mean time (in hours) for the minimum lethal dose of virus to kill all the inoculated embryos. NDV strains were classified by the following criteria: virulent strains take <60 h to kill embryos, intermediate virulent strains take 60 to 90 h to kill embryos, and avirulent strains take >90 h to kill embryos.bPathogenicity of NDV in 1-day-old SPF chicks was evaluated by the ICPI value: virulent strains had ICPI values of 1.5 to 2.0, intermediate virulent strains had ICPI values of 1.0 to 1.5, and avirulent strains had ICPI values of 0.0 to 0.5.The M protein plays a major role in virus assembly through its interaction with envelope glycoproteins and with the membranes of infected cells (11). To gain insight into the function of the amino acid sequences of the HN cytoplasmic tail in virus assembly, colocalization of the HN and M proteins was determined by confocal microscopy (LSM 510; Zeiss). Detection of the M and HN proteins was facilitated by coexpressing M protein and each altered HN protein using the pCAGGS expression system in 293T cells. In particular, the open reading frame of the M gene had been fused with an influenza virus hemagglutinin epitope tag (7 amino acid residues) followed by a stop codon and cloned into pCAGGS. After 24 h of transfection, the cells were fixed, permeabilized, stained with a monoclonal antibody against the NDV HN protein followed by anti-Alexa Fluor 488 and anti-HA Alexa Fluor 594 conjugates, and analyzed by confocal microscopy. The M and wild-type HN proteins were distributed in the nucleus and cytoplasm and in the cytoplasm, respectively, leading to their colocalization in the cytoplasm of infected cells (Fig. (Fig.3A).3A). In contrast, cytoplasmic tail-altered HN proteins (4-amino-acid deletion and substitution of alanine for serine) were dominantly found on the cell surface with their colocalization with the M protein, indicating reduction of specificity in membrane insertion of these HN proteins (Fig. 3B and C). Furthermore, no colocalization of the 6-amino-acid deletion of cytoplasmic tail-altered HN protein with the M protein was detected (Fig. (Fig.3D),3D), suggesting that this alteration had affected incorporation of the HN protein into virus particles and consequently virus recovery. Other paramyxoviruses (e.g., simian virus 5 and human respiratory syncytial virus) also showed a loss of intracellular interaction between the M protein and glycoproteins containing cytoplasmic tail-truncated domains (3, 12).Open in a separate windowFIG. 3.Localization of the NDV HN and M proteins in 293T cells. The M protein fused with an influenza virus hemagglutinin epitope tag and each HN variant containing altered cytoplasmic tails were expressed using the pCAGGS expression system in 293T cells. The cells were fixed with 4% paraformaldehyde, permeabilized with 0.2% Triton X-100, stained with a monoclonal antibody against the NDV HN protein followed by anti-Alexa Fluor 488 (green; HN) and anti-HA Alexa Fluor 594 (red; M) conjugates and analyzed by laser-scanning microscopy. (A) Wild-type HN, (B) HN Δ4, (C) HN S6A, and (D) HN Δ6.In summary, we demonstrate that the cytoplasmic tail of HN plays a crucial role in the NDV life cycle. Our data suggest that the first 2 amino acids of the cytoplasmic tail are not absolutely required for NDV replication, but amino acids at positions 4 through 6 are critical for specific insertion of the HN protein into virion particles. Furthermore, our results indicate that the cytoplasmic tail of HN protein modulates the fusion activity of NDV. It will also be necessary to determine whether alteration of the HN cytoplasmic tail can affect interaction of the HN protein with the F protein.  相似文献   

16.
Two transmembrane glycoproteins form spikes on the surface of Sendai virus, a member of the Respirovirus genus of the Paramyxovirinae subfamily of the Paramyxoviridae family: the hemagglutinin-neuraminidase (HN) and the fusion (F) proteins. HN, in contrast to F, is dispensable for viral particle production, as normal amounts of particles can be produced with highly reduced levels of HN. This HN reduction can result from mutation of an SYWST motif in its cytoplasmic tail to AFYKD. HNAFYKD accumulates at the infected cell surface but does not get incorporated into particles. In this work, we derived experimental tools to rescue HNAFYKD incorporation. We found that coexpression of a truncated HN harboring the wild-type cytoplasmic tail, the transmembrane domain, and at most 80 amino acids of the ectodomain was sufficient to complement defective HNAFYKD incorporation into particles. This relied on formation of disulfide-bound heterodimers carried out by the two cysteines present in the HN 80-amino-acid (aa) ectodomain. Finally, the replacement of the measles virus H cytoplasmic and transmembrane domains with the corresponding HN domains promoted measles virus H incorporation in Sendai virus particles.  相似文献   

17.

Background

The replication of coronaviruses takes place on cytoplasmic double membrane vesicles (DMVs) originating in the endoplasmic reticulum (ER). Three trans-membrane non-structural proteins, nsp3, nsp4 and nsp6, are understood to be membrane anchors of the coronavirus replication complex. Nsp4 is localized to the ER membrane when expressed alone but is recruited into the replication complex in infected cells. It is revealed to contain four trans-membrane regions and its N- and C-termini are exposed to the cytosol.

Methodology/Principal Findings

We have determined the crystal structures of the C-terminal hydrophilic domain of nsp4 (nsp4C) from MHV strain A59 and a C425S site-directed mutant. The highly conserved 89 amino acid region from T408 to Q496 is shown to possess a new fold. The wild-type (WT) structure features two monomers linked by a Cys425-Cys425 disulfide bond in one asymmetric unit. The monomers are arranged with their N- and C-termini in opposite orientations to form an “open” conformation. Mutation of Cys425 to Ser did not affect the monomer structure, although the mutant dimer adopts strikingly different conformations by crystal packing, with the cross-linked C-termini and parallel N-termini of two monomers forming a “closed” conformation. The WT nsp4C exists as a dimer in solution and can dissociate easily into monomers in a reducing environment.

Conclusions/Significance

As nsp4C is exposed in the reducing cytosol, the monomer of nsp4C should be physiological. This structure may serve as a basis for further functional studies of nsp4.  相似文献   

18.
Previous studies have shown that in addition to its function in specific RNA encapsidation, the human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) is required for efficient virus particle assembly. However, the mechanism by which NC facilitates the assembly process is not clearly established. Formally, NC could act by constraining the Pr55gag polyprotein into an assembly-competent conformation or by masking residues which block the assembly process. Alternatively, the capacity of NC to bind RNA or make interprotein contacts might affect particle assembly. To examine its role in the assembly process, we replaced the NC domain in Pr55gag with polypeptide domains of known function, and the chimeric proteins were analyzed for their abilities to direct the release of virus-like particles. Our results indicate that NC does not mask inhibitory domains and does not act passively, by simply providing a stable folded monomeric structure. However, replacement of NC by polypeptides which form interprotein contacts permitted efficient virus particle assembly and release, even when RNA was not detected in the particles. These results suggest that formation of interprotein contacts by NC is essential to the normal HIV-1 assembly process.Human immunodeficiency virus type 1 (HIV-1) encodes three major genes, gag, pol, and env, which are commonly found in all mammalian retroviruses. It also encodes accessory genes whose protein products are important for regulation of its life cycle (6, 30, 35). However, of all the genes encoded by HIV-1, only the protein product of the gag gene has been found to be necessary and sufficient for the assembly of virus-like particles (11, 13, 17, 22, 32, 33). The HIV-1 Gag protein initially is expressed as a 55-kDa polyprotein precursor (Pr55gag), but during or shortly after particle release, Pr55gag ordinarily is cleaved by the viral protease (PR). The products of the protease action are the four major viral proteins matrix (MA), capsid (CA), nucleocapsid (NC), and p6, and the two spacer polypeptides p2 and p1, which represent sequences between CA and NC and between NC and p6, respectively (15, 19, 23, 30).The HIV-1 nucleocapsid proteins have two Cys-X2-Cys-X4-His-X4-Cys (Cys-His) motifs, reminiscent of the zinc finger motifs found in many DNA binding proteins, and NC has been shown to facilitate the specific encapsidation of HIV-1 genomic RNAs. In addition to its encapsidation function, NC influences virus particle assembly (7, 10, 17, 21, 40). In particular, Gag proteins lacking the NC domain fail to assemble virus particles efficiently. Nevertheless, some chimeric Gag proteins which carry foreign sequences in place of NC have been shown to assemble and release virus particles at wild-type (wt) levels (2, 37, 40). Thus, it appears that in some circumstances, the role that NC plays in virus particle assembly can be replaced. To date, it is not clear how NC affects particle assembly, although several possibilities might be envisioned. One possibility is that deletion of NC unmasks inhibitory sequences in p2 or the C terminus of CA. Alternatively, NC may simply provide a stable monomeric folded structure which locks CA or other Gag domains into an assembly-competent conformation. Another possibility is that NC facilitates assembly by forming essential protein-protein contacts between neighbor Prgag molecules, as suggested in cross-linking studies (21). Finally, the assembly role of NC may stem from its RNA binding capabilities, a hypothesis supported by studies of Campbell and Vogt (5), which have shown that RNA facilitates the in vitro assembly of retroviral Gag proteins into higher-order structures.To distinguish among possible mechanisms by which NC facilitates HIV-1 assembly, we replaced NC with polypeptides having known structural characteristics and examined particle assembly directed by these chimeric proteins. Using this approach, we have found that NC does not play a passive role in HIV-1 assembly as either a mask to assembly inhibitor domains or a nonspecific, stably folded structure. Rather, sequences known to form strong interprotein contacts were observed to enhance assembly, suggesting a similar role for the NC domain itself. With several assembly-competent chimeric proteins, we detected no particle-associated RNAs. These results suggest that while RNA may be essential to virus assembly in the context of the wt Pr55gag protein, it is dispensable for formation of virus-like particles from chimeric proteins.  相似文献   

19.
Paramyxoviruses cause a wide variety of human and animal diseases. They infect host cells using the coordinated action of two surface glycoproteins, the receptor binding protein (HN, H, or G) and the fusion protein (F). HN binds sialic acid on host cells (hemagglutinin activity) and hydrolyzes these receptors during viral egress (neuraminidase activity, NA). Additionally, receptor binding is thought to induce a conformational change in HN that subsequently triggers major refolding in homotypic F, resulting in fusion of virus and target cell membranes. HN is an oligomeric type II transmembrane protein with a short cytoplasmic domain and a large ectodomain comprising a long helical stalk and large globular head domain containing the enzymatic functions (NA domain). Extensive biochemical characterization has revealed that HN-stalk residues determine F specificity and activation. However, the F/HN interaction and the mechanisms whereby receptor binding regulates F activation are poorly defined. Recently, a structure of Newcastle disease virus (NDV) HN ectodomain revealed the heads (NA domains) in a “4-heads-down” conformation whereby two of the heads form a symmetrical interaction with two sides of the stalk. The interface includes stalk residues implicated in triggering F, and the heads sterically shield these residues from interaction with F (at least on two sides). Here we report the x-ray crystal structure of parainfluenza virus 5 (PIV5) HN ectodomain in a “2-heads-up/2-heads-down” conformation where two heads (covalent dimers) are in the “down position,” forming a similar interface as observed in the NDV HN ectodomain structure, and two heads are in an “up position.” The structure supports a model in which the heads of HN transition from down to up upon receptor binding thereby releasing steric constraints and facilitating the interaction between critical HN-stalk residues and F.  相似文献   

20.
Polypeptide Synthesis in Simian Virus 5-Infected Cells   总被引:11,自引:6,他引:5       下载免费PDF全文
Polypeptide synthesis in three different cell types infected with simian virus 5 has been examined using high-resolution polyacrylamide slab gel electrophoresis, and all of the known viral polypeptides have been identified above the host cell background. The polypeptides were synthesized in infected cells in unequal proportions, which are approximately the same as they are found in virions, suggesting that their relative rates of synthesis are controlled. The nucleocapsid polypeptide (NP) was the first to be detected in infected cells, and by 12 to 14 h the other virion structural polypeptides were identified, except for the polypeptides comprising the smaller glycoprotein (F). However, a glycosylated precursor (F(0)) with a molecular weight of 66,000 was found in each cell type, and pulse-chase experiments suggested that this precursor was cleaved to yield polypeptides F(1) and F(2). No other proteolytic processing was found. In addition to the structural polypeptides, the synthesis of five other polypeptides, designated I through V, has been observed in simian virus 5-infected cells. One of these (V), with a molecular weight of 24,000, was found in all cells examined and may be a nonstructural viral polypeptide. In contrast, there are polypeptides present in uninfected cells that correspond in size to polypeptides I through IV, and similar polypeptides have also been detected in increased amounts in cells infected with Sendai virus. These findings, and the fact that the synthesis of all four of these polypeptides is not increased in every cell type, suggest that they represent host polypeptides whose synthesis may be enhanced upon infection. When a high salt concentration was used to decrease host cell protein synthesis in infected cells, polypeptides IV and (to a lesser extent) I were synthesized in relatively greater amounts than other cellular polypeptides, as were the viral polypeptides. The possibility that these polypeptides may play some role in virus replication is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号