共查询到20条相似文献,搜索用时 15 毫秒
1.
P. A. Kamenski E. N. Vinogradova I. A. Krasheninnikov I. A. Tarassov 《Molecular Biology》2007,41(2):187-202
Mitochondria are multifunctional eukaryotic organelles that provide cells with energy via oxidative phosphorylation. They participate in the formation of Fe-S clusters, oxidation of fatty acids, and synthesis of certain amino acids and play an important role in apoptosis. Mitochondria have their own genome and are able to transcribe and translate it. However, most macromolecules functioning in mitochondria, such as proteins and some small RNAs, are imported from the cytoplasm. Protein import into mitochondria is a universal process, and its mechanism is very similar in all eukaryotic cells. Today this mechanism is known in detail. At the same time, the RNA import was discovered only in several eukaryotic groups. Nevertheless, it is proposed that this process is typical for most species. A set of imported RNA molecules varies in different organisms. Although the knowledge about the mechanisms of RNA import is less extensive than that of protein import, it becomes clear that these mechanisms greatly differ between different species. The review summarizes information about the import of such macromolecules into mitochondria. 相似文献
2.
The import pathways of the alternative oxidase and the FAd subunit of the ATP synthase from soybean were characterised. The FAd precursor does not require extramitochondrial ATP for import and this was shown to be a characteristic of the mature protein. The alternative oxidase and FAd precursors were shown to differ in their requirement for a membrane potential. The membrane potential was modified using malonate, a competitive inhibitor to complex II. The alternative oxidase could be imported at higher malonate concentrations compared to the FAd. This difference could not be ascribed to the number of positive charges in each presequence as would be predicted from similar studies in fungi. 相似文献
3.
Jarmuszkiewicz W Hryniewiecka L Sluse FE 《Journal of bioenergetics and biomembranes》2002,34(3):221-226
Mitochondria of Acanthamoeba castellanii possess a cyanide-resistant GMP-stimulated ubiquinol alternative oxidase in addition to the cytochrome pathway. In a previous work it has been observed that an interaction between the two ubiquinol-oxidizing pathways exists in intact A. castellanii mitochondria and that this interaction may be due to a high sensitivity of the alternative oxidase to matrix pH. In this study we have shown that the alternative oxidase activity reveals a pH-dependence with a pH optimum at 6.8 whatever the reducing substrate may be. The GMP stimulation of alternative oxidase is also strongly dependent on pH implicating probably protonation/deprotonation processes at the level of ligand and protein with an optimum pH at 6.8. The ubiquinone redox state-dependence of alternative oxidase activity is modified by pH in such a way that the highest activity for a given ubiquinone redox state is observed at pH 6.8. Thus pH, binding of GMP, and redox state of ubiquinone collaborate to set the activity of the GMP-stimulated alternative oxidase in isolated A. castellanii mitochondria. The high pH sensitivity of the alternative oxidase could link inactivation of the cytochrome pathway proton pumps to activation of the alternative oxidase with acceleration of redox free energy dissipation as a consequence. 相似文献
4.
Hanqing Feng Dongdong Guan Kun Sun Yifeng Wang Tengguo Zhang Rongfang Wang 《Acta biochimica et biophysica Sinica》2013,(12):985-994
Plants in their natural environment frequently face various abiotic stresses, such as drought, high salinity, and chilling. Plant mitochondria contain an alternative oxidase (AOX), which is encoded by a small family of nuclear genes. AOX genes have been shown to be highly responsive to abiotic stresses. Using transgenic plants with varying levels of AOX expression, it has been confirmed that AOX genes are im- portant for abiotic stress tolerance. Although the roles of AOX under abiotic stresses have been extensively studied and there are several excellent reviews on this topic, the differential expression patterns of the AOX gene family members and the signal regulation of AOX gene(s) under abiotic stresses have not been extensively summarized. Here, we review and discuss the current progress of these two important issues. 相似文献
5.
Klaas Krab 《Journal of bioenergetics and biomembranes》1995,27(4):387-396
The kinetic modelling of the respiratory network in plant mitochondria is discussed, with emphasis on the importance of the choice of boundary conditions, and of modelling of both quinol-oxidising and quinone-reducing pathways. This allows quantitative understanding of the interplay between the different pathways, and of the functioning of the plant respiratory network in terms of the kinetic properties of its component parts. The effects of activation of especially succinate dehydrogenase and the cyanide-insensitive alternative oxidase are discussed. Phenomena, such as respiratory control ratios depending on the substrate, shortcomings of the Bahr and Bonner model for electron distribution between the oxidases and reversed respiratory control, are explained. The relation to metabolic control analysis of the respiratory network is discussed in terms of top-down analysis. 相似文献
6.
Regulation of alternative oxidase gene expression in soybean 总被引:13,自引:0,他引:13
Djajanegara I Finnegan PM Mathieu C McCabe T Whelan J Day DA 《Plant molecular biology》2002,50(4-5):735-742
Soybean (Glycine max cv. Stevens) suspension cells were used to investigate the expression of the alternative oxidase (Aox) multigene family. Suspension cells displayed very high rates of cyanide-insensitive respiration, but Aox3 was the only isoform detected in untreated cells. Incubation with antimycin A, citrate, salicylic acid or at low temperature (10 °C) specifically induced the accumulation of the Aox1 isoform. Aox2 was not observed under any conditions in the cells. Increases in Aox1 protein correlated with increases in Aox1 mRNA. Treatment of soybean cotyledons with norflurazon also induced expression of Aox1. Reactive oxygen species (ROS) were detected upon incubation of cells with antimycin, salicylic acid or at low temperature, but not during incubation with citrate. Aox1 induction by citrate, but not by antimycin, was prevented by including the protein kinase inhibitor staurosporine in the medium. The results suggest that multiple pathways exist in soybean to regulate expression of Aox genes and that Aox1 specifically is induced by a variety of stress and metabolic conditions via at least two independent signal transduction pathways. 相似文献
7.
Crystal Sweetman Kathleen L. Soole Colin L.D. Jenkins David A. Day 《Plant, cell & environment》2019,42(1):71-84
Mitochondria isolated from chickpea (Cicer arietinum) possess substantial alternative oxidase (AOX) activity, even in non‐stressed plants, and one or two AOX protein bands were detected immunologically, depending on the organ. Four different AOX isoforms were identified in the chickpea genome: CaAOX1 and CaAOX2A, B and D. CaAOX2A was the most highly expressed form and was strongly expressed in photosynthetic tissues, whereas CaAOX2D was found in all organs examined. These results are very similar to those of previous studies with soybean and siratro. Searches of available databases showed that this pattern of AOX genes and their expression was common to at least 16 different legume species. The evolution of the legume AOX gene family is discussed, as is the in vivo impact of an inherently high AOX capacity in legumes on growth and responses to environmental stresses. 相似文献
8.
Unfolding of preproteins and translocation across the mitochondrial membranes requires their interaction with mt-Hsp70 and Tim44 at the inner face of the inner membrane and ATP as an energy source. We measured the temperature dependence of the rates of unfolding and import into the matrix of two folded passenger domains, the tightly folded heme-binding domain (HBD) of cytochrome b2 and the loosely folded mouse dihydrofolate reductase (DHFR). Despite the stability of the HBD, its rates of thermal breathing were fast and the preprotein was imported rapidly at all temperatures. In contrast, rates of unfolding and import of DHFR were strongly temperature dependent and import was significantly slower than unfolding. In addition, import rates of DHFR were strongly dependent on the length of the presequence. We propose that the mitochondrial import motor does not exert a constant pulling force. Rather, mt-Hsp70 appears to release a translocating polypeptide chain such that the precursor can then slide back and refold on the surface of the mitochondria. Refolding competes with translocation, and passengers may undergo several rounds of unfolding and refolding prior to their import. 相似文献
9.
Influence of ethanol on alternative oxidase in mitochondria from callus-forming potato tuber discs 总被引:1,自引:0,他引:1
Ethanol, when added to the incubation medium of callus-forming potato tuber discs, inhibits callus growth and causes an increase of the mitochondrial antimycin-A resistant respiration, expressed as a percentage of state III-respiration. This increase in resistance to antimycin-A is the result of a poor development of the cytochrome pathway in tissue discs treated with ethanol. The development of the antimycin-A resistant alternative oxidase sensitive to chelator is about the same for treated and untreated discs. The respiratory control (RC) ratio of the mitochondrial respiration increases after addition of a chelator, which inhibits the alternative pathway. The RC ratio of the uninhibited mitochondrial respiration appears to be inversely related to the capacity of the alternative pathway, when mitochondrial preparations with different capacities to transfer electrons via the alternative path are compared. From the experimentally observed relation between RC-ratio and alternative oxidase capacity, it was concluded that at least half of the capacity of the alternative path is used in uninhibited state IV respiration. 相似文献
10.
Sorting of precursor proteins between isolated spinach leaf mitochondria and chloroplasts 总被引:3,自引:0,他引:3
The precursors of the F1-ATPase -subunits fromNicotiana plumbaginifolia andNeurospora crassa were imported into isolated spinach (Spinacia oleracea L.) leaf mitochondria. Both F1 precursors were imported and processed to mature size products. No import of the mitochondrial precursor proteins into isolated intact spinach chloroplasts was seen. Moreover, the precursor of the 33 kDa protein of photosynthetic water-splitting enzyme was not imported into the leaf mitochondria. This study provides the first experimental report ofin vitro import of precursor proteins into plant mitochondria isolated from photosynthetic tissue and enables studies of protein sorting between mitochondria and chloroplasts in a system which is homologous with respect to organelles. The results suggest a high organellar specificity in the plant cell for the cytoplasmically synthesized precursor proteins. 相似文献
11.
Trevor Lithgow André Schneider 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2010,365(1541):799-817
All eukaryotes require mitochondria for survival and growth. The origin of mitochondria can be traced down to a single endosymbiotic event between two probably prokaryotic organisms. Subsequent evolution has left mitochondria a collection of heterogeneous organelle variants. Most of these variants have retained their own genome and translation system. In hydrogenosomes and mitosomes, however, the entire genome was lost. All types of mitochondria import most of their proteome from the cytosol, irrespective of whether they have a genome or not. Moreover, in most eukaryotes, a variable number of tRNAs that are required for mitochondrial translation are also imported. Thus, import of macromolecules, both proteins and tRNA, is essential for mitochondrial biogenesis. Here, we review what is known about the evolutionary history of the two processes using a recently revised eukaryotic phylogeny as a framework. We discuss how the processes of protein import and tRNA import relate to each other in an evolutionary context. 相似文献
12.
Regulation of alternative oxidase activity in higher plants 总被引:10,自引:0,他引:10
Plant mitochondria contain two terminal oxidases: cytochrome oxidase and the cyanideinsensitive alternative oxidase. Electron partioning between the two pathways is regulated by the redox poise of the ubiquinone pool and the activation state of the alternative oxidase. The alternative oxidase appears to exist as a dimer which is active in the reduced, noncovalently linked form and inactive when in the oxidized, covalently linked form. Reduction of the oxidase in isolated tobacco mitochondria occurs upon oxidation of isocitrate or malate and may be mediated by matrix NAD(P)H. The activity of the reduced oxidase is governed by certain other organic acids, notably pyruvate, which appear to interact directly with the enzyme. Pyruvate alters the interaction between the alternative oxidase and ubiquinol so that the oxidase becomes active at much lower levels of ubiquinol and competes with the cytochrome pathway for electrons. These requirements for activation of the alternative oxidase constitute a sophisticated feed-forward control mechanism which determines the extent to which electrons are directed away from the energy-conserving cytochrome pathway to the non-energy conserving alternative oxidase. Such a mechanism fits well with the proposed role of the alternative oxidase as a protective enzyme which prevents over-reduction of the cytochrome chain and fermentation of accumulated pyruvate. 相似文献
13.
Robert P. Casey Clemens Broger Marcus Thelen Angelo Azzi 《Journal of bioenergetics and biomembranes》1981,13(5-6):219-228
We report here studies which characterize further the interaction ofN,N-dicyclohexylcarbodiimide with cytochromec oxidase leading to inhibition of H+ translocation by the enzyme. Further evidence is presented to show that the inhibition results from a real interaction of DCCD with the enzyme and cannot be accounted for by uncoupling and, contrary to recent criticisms, this interaction occurs specifically with subunit III of the enzyme even at relatively high inhibitor-to-enzyme stoichiometries. Use of a spin-label analogue of DCCD has enabled us to demonstrate that the carbodiimide-binding site is highly apolar and may not lie on the pathway of electron transfer.Abbreviations DCCD
N,N-dicyclohexylcarbodiimide
- NCCD
N-(2, 2, 6, 6-tetramethylpiperidyl-1-oxyl)-N-(cyclohexyl)carbodiimide
- Hepes
2-(N-2-hydroxyethylpiperazin-N-yl) ethane sulfonate
- TMPD
N,N,N,N-tetramethylphenylenediamine 相似文献
14.
Perkins GA Renken CW van der Klei IJ Ellisman MH Neupert W Frey TG 《European journal of cell biology》2001,80(2):139-150
In a mutant form of Neurospora crassa, in which sheltered RIP (repeat induced point mutation) was used to deplete Tom19, protein transport through the TOM/TIM pathway is arrested by the addition of p-fluorophenylalanine (FPA). Using intermediate-voltage electron tomography, we have generated three-dimensional reconstructions of 28 FPA-treated mitochondria at four time points (0-32 h) after the addition of FPA. We determined that the cristae surface area and volume were lost in a roughly linear manner. A decrease in mitochondrial volume was not observed until after 16 h of FPA treatment. The inner boundary membrane did not appear to shrink or contract away from the outer membrane. Interestingly, the close apposition of these membranes remained over the entire periphery, even after all of the cristae had disappeared. The different dynamics of the shrinkage of cristae membrane and inner boundary membrane has implications for compartmentalization of electron transport proteins. Two structurally distinct types of contact sites were observed, consistent with recently published work. We determined that the cristae in the untreated (control) mitochondria are all lamellar. The cristae of FPA-treated mitochondria retain the lamellar morphology as they reduce in size and do not adopt tubular shapes. Importantly, the crista junctions exhibit tubular as well as slot-like connections to the inner boundary membrane, persisting until the cristae disappear, indicating that their stability is not dependent on continuous protein import through the complex containing Tom19. 相似文献
15.
Potato tubers ( Solanum tubersum L. cv. Grata) were stored for atleast 1 week at room temperature and then incubated with an equal amount of apples ( Malus domestica L.) for 2 days. After this treatment, intact tuber mitochondria isolated by Percoll gradient centrifugation showed a high degree of induction of the alternative oxidase, measured as cyanide-resistant, salicylhydroxamic acid-sensitive respiration. With succinate as substrate an activity of more than 130 nmol O2 (mg protein) 1 min t was obtained. An assay of the alternative oxidase using duroquinol as an electron donor was developed. To become reliable the assay required the presence of defatted bovine serum albumin (BSA) and catalase (EC 1. 11. 1. 6). Furthermore, a lowering of the assay temperature to 15°C improved the stability of the duroquinol-based activity. One remarkable finding was that with duroquinol (or external NADH) as substrate the alternative oxidase was synergistically activated by succinate (as well as by malate) even in the presence of the succinate dehydrogenase inhibitor malonate. Our interpretation is that succinate and malate (indirectly) activate the alternative oxidase and that this activation is part of a physiological mechanism for regulation of the alternative oxidase. 相似文献
16.
Two Cys residues, CysI and CysII, are present in most plant alternative oxidases (AOXs). CysI inactivates AOX by forming a disulfide bond with the corresponding CysI residue on the adjacent subunit of the AOX homodimer. When reduced, CysI associates with α-keto acids, such as pyruvate, to activate AOX, an effect mimicked by charged amino acid substitutions at the CysI site. CysII may also be a site of AOX activity regulation, through interaction with the small α-keto acid, glyoxylate. Comparison of Arabidopsis AOX1a (AtAOX1a) mutants with single or double substitutions at CysI and CysII confirmed that glyoxylate interacted with either Cys, while the effect of pyruvate (or succinate for AtAOX1a substituted with Ala at CysI) was limited to CysI. A variety of CysII substitutions constitutively activated AtAOX1a, indicating that neither the catalytic site nor, unlike at CysI, charge repulsion is involved. Independent effects at each Cys were suggested by lack of CysII substitution interference with pyruvate stimulation at CysI, and close to additive activation at the two sites. However, results obtained using diamide treatment to covalently link the AtAOX1a subunits by the disulfide bond indicated that CysI must be in the reduced state for activation at CysII to occur. 相似文献
17.
18.
Anthony L. Moore Ann L. Umbach James N. Siedow 《Journal of bioenergetics and biomembranes》1995,27(4):367-377
A major characteristic of plant mitochondria is the presence of a cyanide-insensitive alternative oxidase which catalyzes the reduction of oxygen to water. Current information on the properties of the oxidase is reviewed. Conserved amino acid motifs have been identified which suggest the presence of a hydroxo-bridged di-iron center in the active site of the alternative oxidase. On the basis of sequence comparison with other di-iron center proteins, a structural model for the active site of the alternative oxidase has been developed that has strong similarity to that of methane monoxygenase. Evidence is presented to suggest that the alternative oxidase of plant mitochondria is the newest member of the class II group of di-iron center proteins. 相似文献
19.
The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins. 相似文献
20.
Sabine Kuhn Johanna Bussemer Fatima Chigri Ute C. Vothknecht 《The Plant journal : for cell and molecular biology》2009,58(4):694-705
Many metabolic processes essential for plant viability take place in mitochondria. Therefore, mitochondrial function has to be carefully balanced in accordance with the developmental stage and metabolic requirements of the cell. One way to adapt organellar function is the alteration of protein composition. Since most mitochondrial proteins are nuclear encoded, fine-tuning of mitochondrial protein content could be achieved by the regulation of protein translocation. Here we present evidence that the import of nuclear-encoded mitochondrial proteins into plant mitochondria is influenced by calcium and calmodulin. In pea mitochondria, the calmodulin inhibitor ophiobolin A as well as the calcium ionophores A23187 and ionomycin inhibit translocation of nuclear-encoded proteins in a concentration-dependent manner, an effect that can be countered by the addition of external calmodulin or calcium, respectively. Inhibition was observed exclusively for proteins translocating into or across the inner membrane but not for proteins residing in the outer membrane or the intermembrane space. Ophiobolin A and the calcium ionophores further inhibit translocation into mitochondria with disrupted outer membranes, but their effect is not mediated via a change in the membrane potential across the inner mitochondrial membrane. Together, our results suggest that calcium/calmodulin influences the import of a subset of mitochondrial proteins at the inner membrane. Interestingly, we could not observe any influence of ophiobolin A or the calcium ionophores on protein translocation into mitochondria of yeast, indicating that the effect of calcium/calmodulin on mitochondrial protein import might be a plant-specific trait. 相似文献