首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shells of most anomalodesmatan bivalves are composed of an outer aragonitic layer of either granular or columnar prismatic microstructure, and an inner layer of nacre. The Thraciidae is one of the few anomalodesmatan families whose members lack nacreous layers. In particular, shells of members of the genus Thracia are exceptional in their possession of a very distinctive but previously unreported microstructure, which we term herein “dendritic prisms.” Dendritic prisms consist of slender fibers of aragonite which radiate perpendicular to, and which stack along, the axis of the prism. Here we used scanning and transmission electron microscopical investigation of the periostracum, mantle, and shells of three species of Thracia to reconstruct the mode of shell calcification and to unravel the crystallography of the dendritic units. The periostracum is composed of an outer dark layer and an inner translucent layer. During the free periostracum phase the dark layer grows at the expense of the translucent layer, but at the position of the shell edge, the translucent layer mineralizes with the units typical of the dendritic prismatic layer. Within each unit, the c‐axis is oriented along the prismatic axis, whereas the a‐axis of aragonite runs parallel to the long axis of the fibers. The six‐rayed alignment of the latter implies that prisms are formed by {110} polycyclically twinned crystals. We conclude that, despite its distinctive appearance, the dendritic prismatic layer of the shell of Thracia spp. is homologous to the outer granular prismatic or prismatic layer of other anomalodesmatans, while the nacreous layer present in most anomalodesmatans has been suppressed.  相似文献   

2.
Cell differentiation in the mantle edge of Notosaria, Thecidelhnaand Glottidia, representing respectively, the impunctate andpunctate calcareous articulate and chitinophosphatic inarticulatebrachiopods, is described. Comparison of electron micrographssuggests that outer epithelium which secretes periostracum andmineral shell, is separated from inner epithelium by a bandof "lobate" cells, of variable width, exuding an impersistentmucopolysaccharide film or pellicle. The lobate cells alwaysoccupy the same relative position on the inner surface of theouter mantle lobe; but the outer epithelium is commonly connectedwith the inner surface of the periostracum by papillae and protoplasmicstrands which persist during mineral deposition and ensure thatboth shell and attached mantle remain in situ relative to theoutwardly expanding inner surface of the outer mantle lobe.In the prototypic brachiopod, the lobate cells are likely atfirst to have occupied the hinge of the mantel fold but laterto have been displaced into their present position by the rigidoutward growing edge of the mineral shell.  相似文献   

3.
The brain of Helisoma duryi contains several neurodendocrinecentres. Factors) present in the cerebral ganglia are thoughtto be involved in normal shell growth while neurosecretory substancespresent in the visceral ganglion are involved in the repairof damaged shell. In Lymnaea stagnalis a growth hormone is producedby the cerebral ganglion which stimulates periostracum formationand the calcification of the inner shell layer. The second effectis thought to occur through the action of a mantle edge calciumbinding protein. In Helisoma, mantle collar is able to produce the periostracumin vitro. The presence of brain from a fast growing donor increasesthe amount of periostracum produced by a mantle collar froma slow growing animal. This effect is further enhanced by theremoval of the lateral lobes. The periostracum produced by fastgrowing animals has a higher glycine content than that producedby slow growing snails. The presence of dorsal epithelial tissueenhances the incorporation of calcium into periostracum formedin vitro. These findings suggest that a single factor is present in thebrain of fast growing Helisoma which modulates shell formationrates in vivo and periostracum formation in vitro.  相似文献   

4.
Callocardia hungerfordi (Veneridae: Pitarinae) lives in subtidalmuds (220 to 240m C.D.) and is covered by a dense mat of mudthat, effectively, camouflages the shell. The periostracum is two layered. The inner layer is thick andpleated, the outer thin and perforated. From the outer surfaceof the inner layer develop numerous, delicate (0.5 mm in diameter),calcified, periostracal needles. These penetrate the outer periostracum.Mucus produced from sub-epithelial glands in the inner surfaceof the mantle, slides over the cuticle-covered epithelium ofthe inner and outer surfaces of the inner fold and the innersurface of the middle mantle fold to coat the outer surfaceof the periostracum and its calcified needles. Increased productionat some times produces solidified strands of mucus which bindmud and detrital material into their fabric to create the shellcamouflage. Calcified periostracal needles have been identified in othervenerids, including some members of the Pitarinae, but how theyare secreted and how the covering they attract is producedand, thus, how the whole structure functions, has not been explained. (Received 7 December 1998; accepted 5 February 1999)  相似文献   

5.
The functional morphology of shell infrastructure in 2 speciesof intertidal trochid was compared with that in 2 species ofnerite. The shell of Monodonta constrictais typical of the majorityof trochids. The shell is composed of 4 layers: a distal layer(calcite), anouter prismatic layer (aragonite), a nacreous layer(aragonite), and an oblique prismatic layer (aragonite). Monodontalabio lacks a distal layer and an oblique prismatic layer. Theoblique prismatic layer is replaced by an inner prismatic layerwhich forms an apertural ridge as a result of deposition andresorption. The shells of Nerita versicolor and N. tessellataconsistof 3 layers: an outer prismatic layer (calcite), a crossedlamellar layer (aragonite), and a complex crossed lamellar layer(aragonite). The complex crossed lamellar layer is covered withinclined platelets which superficially resemble the surfaceof the ique prismatic layer of trochids. In addition, the complexcrossed lamellar layer forms an apertural ridge which is similarin appearance to that of Monodonta labio. The outer surfaceof the mantle of Nerita versicolor and N. tessellata is throwninto a series of large folds which lie in contact with the inclinedplatelets of the omplex crossed lamellar layer. The interactionof the mantle folds with the inclined platelets is thought toserve as a rachet mechanism to aid in extension of themantle;a similar function has previously been proposed for trochids.The apertural ridges of Monodonta labio and Nerita are thoughtto prevent excessive desiccation when these gastropodsare exposedat low tide. 1Contribution No. 56 of the Tallahassee, Sopchoppy & GulfCoast Marine Biological Association (Received 6 July 1979;  相似文献   

6.
Checa A 《Tissue & cell》2000,32(5):405-416
The periostracum in Unionidae consists of two layers. The outer one is secreted within the periostracal groove, while the inner layer is secreted by the epithelium of the outer mantle fold. The periostracum reaches its maximum thickness at the shell edge, where it reflects onto the shell surface. Biomineralization begins within the inner periostracum as fibrous spheruliths, which grow towards the shell interior, coalesce and compete mutually, originating the aragonitic outer prismatic shell layer. Prisms are fibrous polycrystalline aggregates. Internal growth lines indicate that their growth front is limited by the mantle surface. Transition to nacre is gradual. The first nacreous tablets grow by epitaxy onto the distal ends of prism fibres. Later growth proceeds onto previously deposited tablets. Our model involves two alternative stages. During active shell secretion, the mantle edge extends to fill the extrapallial space and the periostracal conveyor belt switches on, with the consequential secretion of periostracum and shell. During periods of inactivity, only the outer periostracum is secreted; this forms folds at the exit of the periostracal groove, leaving high-rank growth lines. Layers of inner periostracum are added occasionally to the shell interior during prolonged periods of inactivity in which the mantle is retracted.  相似文献   

7.
We investigated the spikes on the outer shell surface of the endolithic gastrochaenid bivalve genus Spengleria with a view to understand the mechanism by which they form and evaluate their homology with spikes in other heterodont and palaeoheterodont bivalves. We discovered that spike formation varied in mechanism between different parts of the valve. In the posterior region, spikes form within the translucent layer of the periostracum but separated from the calcareous part of the shell. By contrast those spikes in the anterior and ventral region, despite also forming within the translucent periostracal layer, become incorporated into the outer shell layer. Spikes in the posterior area of Spengleria mytiloides form only on the outer surface of the periostracum and are therefore, not encased in periostracal material. Despite differences in construction between these gastrochaenid spikes and those of other heterodont and palaeoheterodont bivalves, all involve calcification of the inner translucent periostracal layer which may indicate a deeper homology.  相似文献   

8.
Light microscopy, transmission electron microscopy, scanning electron microscopy, various histochemical procedures for the localization of mineral ions, and analytical electron microscopy have been used to investigate the mechanisms inherent at the mantle edge for shell formation and growth in Amblema plicata perplicata, Conrad. The multilayered periostracum, its component laminae formed from the epithelia lining either the periostracal groove or the outer mantle epithelium (of the periostracal cul de sac), appears to play the major regulatory and organizational role in the formation of the component mineralized layers of the shell. Thus, the inner layer of the periostracum traps and binds calcium and subsequently gives rise to matricial proteinaceous fibrils or lamellar extensions which serve as nucleation templates for the formation and orientation of the crystalline subunits (rhombs) in the forming nacreous layer. Simultaneously, the middle periostracal layer furnishes or provides the total ionic calcium pool and the matricial organization necessary for the production of the spherical subunits which pack the matricial ‘bags’ of the developing prismatic layer. The outer periostracal layer appears to be a supportive structure, possibly responsible for the mechanical deformations which occur in the other laminae of the periostracum. The functional differences in the various layers of the periostracum are related to peculiar morphological variables (foliations, vacuolizations, columns) inherent in the structure and course of this heterogeneous (morphologically and biochemically) unit. From this study, using the dynamic mantle edge as a morphological model system, we have been able to identify at least six interrelated events which culminate in the production of the mature mineralized shell layers (nacre, prisms) at the growing edge of this fresh-water mussel.  相似文献   

9.
Using scanning electron and histological techniques on specimensof the bivalve Corbicula fluminea a new relationship betweenmantle, shell and periostracum has been observed, apparentlyfor the first time. Here we demonstrate that several extensionsof the mantle epithelium pierce the shell to join the innerlayer of the two-layered periostracum. The mantle extensionsare confirmed as unicellular processes. We suggest that theycould serve the animal in the mobilization of calcium from theshell for buffering the extrapalhal fluid under anaerobic conditions,when organic acids accumulate or when an extra contributionof Ca2+ is required (Received 5 January 1994; accepted 30 March 1994)  相似文献   

10.
The bizarre watering pot shells of the clavagellid bivalve Brechites comprise a calcareous tube encrusted frequently with sand grains and other debris, the anterior end of which terminates in a convex perforated plate (the ‘watering pot’). It has not proved easy to understand how such extreme morphologies are produced. Previously published models have proposed that the tube and ‘watering pot’ are formed separately, outside the periostracum, and fuse later. Here we present the results of a detailed study of the structure and repair of the tubes of Brechites vaginiferus which suggest that these models are not correct. Critical observations include the fact that the external surface of the tube and ‘watering pot’ are covered by a thin organic film, on to the inner surface of which the highly organized aragonite crystals are secreted. There is no evidence of a suture between the tube and the ‘watering pot’ or that the periostracum of the juvenile shell passes through the wall of the tube. Live individuals of B. vaginiferus are able to repair substantial holes in the tube or ‘watering pot’ by laying down a new organic film followed by subsequent calcareous layers. Brechites vaginiferus displays Type C mantle fusion, with the result that the whole animal is encased by a continuous ring of mantle and periostracum, thereby making it possible to secrete a continuous ‘ring’ of shell material. On the basis of these observations we suggest that watering pot shells are not extra‐periostracal but are the product of simple modification of ‘normal’ shell‐secreting mechanisms.  相似文献   

11.
The scanning electron microscope has been used to describe the surface morphology of the mantle in mantle-shell preparations from the fresh-water mussel Amblema. In some regions (adductor muscle insertions), the mantle is firmly attached to the shell. In other areas (along the main course of the mantle), transient adhesions between the outer mantle epithelial cells and the nacre appear to temporally further compartmentalize the extrapallial fluid possibly as a prerequisite for the initial crystallization phenomenon. At the mantle edge, as well as at the isthmus, the periostracum was seen to extrude from the periostracal groove. At the siphonal edge, peculiar fingerlike processes were identified; these may represent primitive photoreceptors. The epithelial cells of the outer mantle epithelium are all microvillated whereas those of the inner mantle epithelium are both microvillated and ciliated. Specific differences in surface morphology are described for various regions of the outer mantle epithelium. These may be related to precise regionalized functional differences of this tissue. Several functions of the mantle, in addition to shell formation, and based on its various morphologies, are also discussed.  相似文献   

12.
The four folds of the mantle and the periostracal lamina of R. philippinarum were studied using light, transmission and scanning electron microscopy to determine the histochemical and ultrastructural relationship existing between the mantle and the shell edge. The different cells lining the four folds, and in particular those of the periostracal groove, are described in relation to their secretions. The initial pellicle of the periostracum arises in the intercellular space between the basal cell and the first intermediate cell. In front of the third cell of the inner surface of the outer fold, the periostracal lamina is composed of two major layers; an outer electron-dense layer or periostracum and an inner electron-lucent fibrous layer or fibrous matrix. The role and the fate of these two layers differ; the outer layer will recover the external surface of the shell and the inner layer will contribute to shell growth.  相似文献   

13.
The surface sculpture of the inoceramid bivalve Magadiceramus? rangatira rangatira consists of commarginal ribs and curious, transverse wrinkles. The wrinkles typically are at a high angle or orthogonal to the shell margin (‘antimarginal’) and thus differ from purely radial structures. They show features of distribution and morphology that reveal them to be products of margin‐parallel compression of the shell‐secreting mantle and its adjacent, flexible, uncalcified periostracum. The interaction of wrinkles with commarginal ribs indicates that the ribs also formed as folds of the mantle margin. During growth, commarginal folding caused withdrawal of the entire mantle margin towards the umbo, with a consequent reduction in perimeter length. Measurement of specimens indicates that fabrication of the commarginal ribs resulted in the magnitude of commarginal shortening that is required for the formation of transverse wrinkles. We infer that early in ontogeny, at the first development of these sculptures, the wrinkles resulted entirely from mantle contraction and resultant commarginal shortening. With subsequent growth, total wrinkling included a component of ‘pre‐wrinkling’ inherited from the preceding growth stage; the contribution of pre‐wrinkling to total wrinkling increased with shell size. The proposed mechanical model is two‐phase. First, the transversely corrugated (pre‐wrinkled) mantle and periostracum advanced and secreted a slightly concave growth increment. Secondly, the mantle subsequently contracted to create a commarginal rib and increase the number and amplitude of transverse wrinkles. This model is consistent with a homogeneous mantle lacking any differentiated and specialized rib‐constructing segments.  相似文献   

14.
The fine structure of the shell and underlying mantle in young juveniles of the articulate brachiopod Terebratalia transversa has been examined by electron microscopy. The first shell produced by the mantle consists of a nonhinged protegulum that lacks concentric growth lines. The protegulum is secreted within a day after larval metamorphosis and typically measures 140-150 micron long. A thin organic periostracum constitutes the outer layer of the protegulum, and finely granular shell material occurs beneath the periostracum. Protegula resist digestion in sodium hypochlorite and are refractory to sectioning, suggesting that the subperiostracal portion of the primordial shell is mineralized. The juvenile shell at 4 days postmetamorphosis possesses incomplete sockets and rudimentary teeth that consist of nonfibrous material. The secondary layer occuring in the inner part of the juvenile shell contains imbricated fibers, whereas the outer portion of the shell comprises a bipartite periostracum and an underlying primary layer of nonfibrous shell. Deposition of the periostracum takes place within a slot that is situated between the so-called lobate and vesicular cells of the outer mantle lobe. Vesicular cells deposit the basal layer of the periostracum, while lobate cells contribute materials to the overlying periostracal superstructure. Cells with numerous tonofibrils and hemidesmosomes differentiate in the outer mantle epithelium at sites of muscle attachments, and unbranched punctae that surround mantle caeca develop throughout the subperiostracal portion of the shell. Three weeks after metamorphosis, the juvenile shell averages about 320 micron in length and is similar in ultrastructure to the shells secreted by adult articulates.  相似文献   

15.
淡水贝类贝壳多层构造形成研究   总被引:5,自引:0,他引:5  
刘小明 《动物学报》1994,40(3):221-225
对几种淡水贝(包括蚌、螺)进行形态及组织学观察,并通过实验方法重现贝壳三种物质,即:角质、棱柱质、珍珠质的生成过程,结果表明:外套膜外表皮细胞是由相同类型细胞组成,这些相同细胞在不同的作用条件下形成贝壳多层构造。  相似文献   

16.
THE PALLIAL EYES OF CTENOIDES FLORIDANUS (BIVALVIA: LIMOIDEA)   总被引:1,自引:0,他引:1  
The structure of the pallial eye in the Limidae has neverbeen elucidated properly, largely because they are difficultto see among the mass of surrounding mantle tentacles and becausethey are few, small, and lose their pigmentation when preserved.Possibly two eye types are present, simple cup-shaped receptorsin species of Lima, like those seen in the Arcoida, and morecomplex invaginated ones in Ctenoides. The pallial eyes (;18on both lobes) of Ctenoides floridanus are formed by invaginationof the middle mantle fold at the periostracal groove, so thatall its contained structures are derived from the outer andlight is perceived through the inner epithelia of this fold.The eye comprises a simple multicellular lens and a photoreceptiveepithelium beneath it of lightly pigmented cells and alternatingvacuolated, support cells. In some species of the Arcoidea, Limopsoidea and Pterioidea, pallialeyes occur on the outer mantle fold and thus beneath the periostracum(and shell). The pallial eyes of Ctenoides floridanus and otherpterioideans, e.g. species of the Pectinidae, occur on the middlefold and may thus have improved vision. In the Cardiodea, Tridacniidaeand Laternulidae (Anomalodesmata) pallial eyes occur on theinner folds. There is thus a loose phylogenetic trend, in which Ctenoidesis a critical link, of increasing eye sophistication correlatedwith the historical age of the clades possessing them. (Received 16 November 1999; accepted 20 January 2000)  相似文献   

17.
18.
THE MANTLE AND SHELL OF SOLEMYA PARKINSONI (PROTOBRANCHIA: BIVALVIA)   总被引:1,自引:0,他引:1  
The shell of Solemya exhibits considerable flexibility which is further enhanced by the marked extension of the periostracum beyond the calcareous portions of the valves. This fcature, more than any other, has made possible the habit, unique among bivalves, of burrowing deep within the substrate without direct contact with the water above. The inner calcareous layer of tho valves is restricted to a small area near the umbones while the outer calcareous layer is thin and contains a high proportion of organic material. The shell conchiolin consists mainly of protein, varying in composition, but much of it strengthcned by quinone-tanning, and in ccrtain regions probably by the presence of appreciable quantities of chitin. The ligament, although superficially resembling an amphidetic structure, is opisthodetic, the extcnsion anterior to the umbones consisting of anterior outer layer only.
The mantle is characterized by an extension of the outer fold of the mantle margin which has effected equally both the inner and outer surfaces of this fold. The secretory epithelium and the modified pallial musculature, contraction of which results in the intucking and plaiting of the periostracum, is dcscribed. Simple tubular oil glands open at the mantlo margin and are responsible for the water-repellent nature of the periostracum.
The form of the mantlelshell and that of the enclosed body are discussed and compared with those of other bivalves in which elongation of the mantle/shell is achieved in a different way. It is concluded that the mantlelshell of Solemya is of little value in determining its relationships, and that the greatly elongatod ligament, the edentulous hinge and the flexible shell are all adaptations to a specialized mode of life.  相似文献   

19.
The structure and growth of the polyplacophoran shell, characteristically consisting of eight plates surrounded by a girdle, is examined in the light of current views on the relationships of mantle and shell in the Bivalvia. The periostracum and outer and inner calcareous layers of the shell of the latter group are homologous with the cuticle, tegmentum and articulamentum respectively of the shell of the Polyplacophora. The margin of the mantle consists of a large marginal fold, which secretes the cuticular girdle, and a small accessory fold bearing mucous cells. These are functionally comparable with all three folds of the mantle margin found in other molluscs, although anatomically the marginal fold of the chitons probably represents only the inner surface of the outer fold of the mantle margin.
The cuticle not only forms the girdle, which bears calcified spines or spicules, but also extends between the shell plates. The principal part of the cuticle consists largely of mucopolysaccharide material but there is also a thin discrete inner region which is similar chemically to the periostracum of other molluscs. The cuticle, possibly without spines, probably covered the entire dorsal surface of a primitive placophoran and beneath this, plates developed. As these grew the cuticle became worn away except marginally and between the plates. It is suggested that a covering of mucus over the visceropallium may have been the forerunner of the molluscan shell and the possible evolutionary relationships of the shell throughout the Mollusca are discussed.  相似文献   

20.
The structure and growth of the polyplacophoran shell, characteristically consisting of eight plates surrounded by a girdle, is examined in the light of current views on the relationships of mantle and shell in the Bivalvia. The periostracum and outer and inner calcareous layers of the shell of the latter group are homologous with the cuticle, tegmentum and articulamentum respectively of the shell of the Polyplacophora. The margin of the mantle consists of a large marginal fold, which secretes the cuticular girdle, and a small accessory fold bearing mucous cells. These are functionally comparable with all three folds of the mantle margin found in other molluscs, although anatomically the marginal fold of the chitons probably represents only the inner surface of the outer fold of the mantle margin.
The cuticle not only forms the girdle, which bears calcified spines or spicules, but also extends between the shell plates. The principal part of the cuticle consists largely of mucopolysaccharide material but there is also a thin discrete inner region which is similar chemically to the periostracum of other molluscs. The cuticle, possibly without spines, probably covered the entire dorsal surface of a primitive placophoran and beneath this, plates developed. As these grew the cuticle became worn away except marginally and between the plates. It is suggested that a covering of mucus over the visceropallium may have been the forerunner of the molluscan shell and the possibleevolutionary relationships of the shell throughout the Mollusca are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号