首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Hazinski method is an indirect, noninvasive, and maskless CO2-response test useful in infants or during sleep. It measures the classic CO2-response slope (i.e., delta VI/delta PCO2) divided by resting ventilation Sr = (VI'--VI')/(VI'.delta PCO2) between low (')- and high (')-inspired CO2 as the fractional increase of alveolar ventilation per Torr rise of PCO2. In steady states when CO2 excretion (VCO2') = VCO2', Hazinski CO2-response slope (Sr) may be computed from the alveolar exchange equation as Sr = (PACO2'--PICO2')/(PACO2'--PICO2') where PICO2 is inspired PCO2. To avoid use of a mask or mouthpiece, the subject breathes from a hood in which CO2 is mixed with inspired air and a transcutaneous CO2 electrode is used to estimate alveolar PCO2 (PACO2). To test the validity of this method, we compared the slopes measured simultaneously by the Hazinski and standard steady-state methods using a pneumotachograph, mask, and end-tidal, arterial, and four transcutaneous PCO2 samples in 15-min steady-state challenges at PICO2 23.5 +/- 4.5 and 37 +/- 4.1 Torr. Sr was computed using PACO2 and arterial PCO2 (PaCO2) as well as with the four skin PCO2 (PSCO2) values. After correction for apparatus dead space, the standard method was normalized to resting VI = 1, and its CO2 slope was designated directly measured normalized CO2 slope (Sx), permitting error to be calculated as Sr/Sx.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The partial pressure of carbon dioxide in arterial blood is an important operator in the control of breathing, by actions on peripheral and central chemoreceptors. In experiments on man we must often assume that lung alveolar PCO2 equals arterial PCO2 and obtain estimates of the former derived from measurements in expired gas sampled at the mouth. This paper explores the potential errors of such estimates, which are magnified during exercise. We used a published model of the cardiopulmonary system to simulate various levels of exercise up to 300 W. We tested three methods of estimating mean alveolar PCO2 (PACO2) against the true value derived from a time average of the within-breath oscillation in steady-state exercise. We used both sinusoidal and square-wave ventilatory flow wave forms. Over the range 33-133 W end-tidal PCO2 (P(et)CO2) overestimated PACO2 progressively with increasing workload, by about 4 mmHg at 133 W with normal respiratory rate for that load. PCO2 by a graphical approximation technique (PgCO2; "graphical method") underestimated PACO2 by 1-2 mmHg. PCO2 from an experimentally obtained empirical equation (PnjCO2; "empirical method") overestimated PACO2 by 0.5-1.0 mmHg. Graphical and empirical methods were insensitive to alterations in cardiac output or respiratory rate. End-tidal PCO2 was markedly affected by respiratory rate during exercise, the overestimate of PACO2 increasing if respiratory rate was slowed. An increase in anatomical dead space with exercise tends to decrease the error in P(et)CO2 and increase the error in the graphical method. Changes in the proportion of each breath taken up by inspiration make no important difference, and changes in functional residual capacity, while important in principle, are too small to have any major effect on the estimates. Changes in overall alveolar ventilation which alter steady-state PACO2 over a range of 30-50 mmHg have no important effect. At heavy work loads (200-300 W), P(et)CO2 grossly overestimates by 6-9 mmHg. The graphical method progressively underestimates, by about 5 mmHg at 300 W. A simulated CO2 response (the relation between ventilation and increasing PCO2) performed at 100 W suggests that a response slope close to the true one can be obtained by using any of the three methods. The graphical method gave results closest to the true absolute values. Either graphical or empirical methods should be satisfactory for detecting experimentally produced changes in PACO2 during steady-state exercise, to make comparisons between different steady-state exercise loads, and to assess CO2 response in exercise.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
To evaluate the contribution of vagal airway receptors to ventilatory control during hypercapnia, we studied 11 normal humans. Airway receptor block was induced by inhaling an aerosol of lidocaine; a preferential upper oropharyngeal block was also induced in a subgroup by gargling a solution of the anesthetic. Inhalation of lidocaine aerosol adequate to increase cough threshold, as measured by citric acid, did not change the ventilatory response to CO2, ratio of the change in minute ventilation to change in alveolar PCO2 (delta VI/delta PACO2), compared with saline control. Breathing pattern at mean CO2-stimulated ventilation of 25 l/min showed significantly decreased respiratory frequency, increased tidal volume, and prolonged inspiratory time compared with saline. Resting breathing pattern also showed significantly increased tidal volume and inspiratory time. In nine of the same subjects gargling a lidocaine solution adequate to extinguish gag response without altering cough threshold did not change delta VI/delta PACO2 or ventilatory pattern during CO2-stimulated or resting ventilation compared with saline. These results suggest that lower but not upper oropharyngeal vagal airway receptors modulate breathing pattern during hypercapnic as well as resting ventilation but do not affect delta VI/delta PACO2.  相似文献   

4.
Effects of increased external dead space (VD) on ventilatory control in steady-state exercise were determined in three healthy adults. The subjects performed cycle ergometer exercise on six occasions, each with a different VD (range: 0.1--1.0 liter); work rate was incremented every 5 min by 15--20 W. Minute ventilation (VE), CO2 output (VCO2), and mean alveolar PCO2 (PACO2) were measured in the steady state. Without VD, the VE-VCO2 relationship was linear, having a small positive VE intercept, and PACO2 was constant, independent of VCO2. Increased VD was associated with an upward shift of the VE-VCO2 relationship, and an elevated PACO2, again independent of VCO2. At each work rate, the increases in VE accompanying increased VD were no greater than could be expected from a conventional CO2 inhalation study. It is concluded that increasing external dead space does not impair the ability of the human respiratory system to regulate PACO2 during exercise except for resetting the regulated PCO2 level.  相似文献   

5.
By measuring ventilation during isocapnic progressive hypoxia, peripheral chemoreceptor sensitivity to acute hypoxia (deltaV40) was measured in five normal young men under four sets of conditions: 1) at sea level at the subject's resting PCO2, 2) at sea level with PCO2 5 Torr above resting PCO2, 3) after 24 h at a simulated altitude of 4,267 m (PB = 447 Torr) at the subject's resting PCO2 measured during acute hyperoxia, and 4) after 24 h at high altitude, with PCO2 elevated to the subject's sea-level resting PCO2. With this experimental design, we were able to systematically vary the PCO2 and [H+] at the peripheral and central chemoreceptors of man. When mean pHa was decreased from 7.424 to 7.377 without significant change in PACO2, the mean deltaV40 increased from 18.0 to 55.9 1/min. Conversely, when mean PACO2 was altered between 33.8 and 41.6 Torr with pHa held relatively constant, the mean deltaV40 did not change. This suggests that it is the H+ and not CO2 which interacts with hypoxia in stimulating the ventilation of man. An additional finding was that the intrinsic sensitivity of the peripheral chemoreceptors to acute hypoxia did not change during 24 h of acclimatization to high altitude.  相似文献   

6.
The effect of decreased lung volume on ventilatory responses to arteriovenous fistula-induced increased cardiac output was studied in four chronic awake dogs. Lung volume decreases were imposed by application of continuous negative-pressure breathing of -10 cmH2O to the trachea. The animals were surgically prepared with chronic tracheostomy, indwelling carotid artery catheter, and bilateral arteriovenous femoral shunts. Control arteriovenous blood flow was 0.5 l/min, and test flow level was 2.0 l/min. Arterial blood CO2 tension (PaCO2) was continuously monitored using an indwelling Teflon membrane mass spectrometer catheter, and inhaled CO2 was given to maintain isocapnia throughout. Increased fistula flow alone led to a mean 52% increase in cardiac output (CO), whereas mean systemic arterial blood pressure (Psa) fell 4% (P less than 0.01). Negative-pressure breathing alone raised Psa by 3% (P less than 0.005) without a significant change in CO. Expired minute ventilation (VE) increased by 27% (P less than 0.005) from control in both of these conditions separately. Combined increased flow and negative pressure led to a 50% increase in CO and 56% increase in VE (P less than 0.0025) without any significant change in Psa. Effects of decreased lung volume and increased CO appeared to be additive with respect to ventilation and to occur under conditions of constant PaCO2 and Psa. Because both decreased lung volume and increased CO occur during normal exercise, these results suggest that mechanisms other than chemical regulation may play an important role in the control of breathing and contribute new insights into the isocapnic exercise hyperpnea phenomenon.  相似文献   

7.
The factors responsible for the apnea observed during high-frequency ventilation (HFV) were evaluated in 14 pentobarbital sodium-anesthetized cats. A multiple logistic regression analysis provided an estimate of the probability of apnea during HFV as a function of four respiratory variables: mean airway pressure (Paw), tidal volume (VT), frequency, and arterial PCO2 (PaCO2). When mean Paw was 2 cmH2O, PaCO2, VT, and their interaction contributed significantly to the probability of apnea during HFV. At a low value of PaCO2 (25 Torr), the probability of apnea had a minimum value of 0.19 and gradually increased toward 1.0 as VT increased from 0.5 to 7 ml/kg. At higher levels of PaCO2 (30 and 35 Torr) the probability of apnea was zero in the low range of VT but sharply approached 1.0 above a VT of approximately 2.0 ml/kg. However, when Paw was increased to 6 cmH2O, only PaCO2 was an important determinant of apnea. In this case, the probability of apnea was 0.51 when PaCO2 was 25 Torr but decreased to 0.22 when PaCO2 was raised to 25 Torr. At neither Paw was the probability of apnea dependent on frequency. These results suggest that chemoreceptor inputs, in addition to both static and dynamic lung mechanoreceptor afferents, are responsible for determining the output of the central respiratory centers during HFV.  相似文献   

8.
We determined the effects of denervating the hilar branches (HND) of the vagus nerves on breathing and arterial PCO2 (PaCO2) in awake ponies during eupnea and when inspired PCO2 (PICO2) was increased to 14, 28, and 42 Torr. In five carotid chemoreceptor-intact ponies, breathing frequency (f) was less, whereas tidal volume (VT), inspiratory time (TI), and ratio of TI to total cycle time (TT) were greater 2-4 wk after HND than before HND. HND per se did not significantly affect PaCO2 at any level of PICO2, and the minute ventilation (VE)-PaCO2 response curve was not significantly altered by HND. Finally, the attenuation of a thermal tachypnea by elevated PICO2 was not altered by HND. Accordingly, in carotid chemoreceptor-intact ponies, the only HND effect on breathing was the change in pattern classically observed with attenuated lung volume feedback. There was no evidence suggestive of a PCO2-H+ sensory mechanism influencing VE, f, VT, or PaCO2. In ponies that had the carotid chemoreceptors denervated (CBD) 3 yr earlier, HND also decreased f, increased VT, TI, and TT, but did not alter the slope of the VE-PaCO2 response curve. However, at all levels of elevated PICO2, the arterial hypercapnia that had persistently been attenuated, since CBD was restored to normal by HND. The data suggest that during CO2 inhalation in CBD ponies a hilar-innervated mechanism influences PaCO2 by reducing physiological dead space to increase alveolar ventilation.  相似文献   

9.
Four different measures (PETCO2, PACO2, PADCO2, and PJCO2) for indirectly estimating arterial PCO2 (PaCO2) from respired gas at the mouth have been investigated. PETCO2 was the end-tidal PCO2. PACO2 was calculated using a reconstruction of the alveolar oscillation of PCO2 obtained from the end-tidal "plateau" in PCO2. PADCO2 was calculated as for PACO2 except that the effects of dead space were incorporated. PJCO2 was calculated from an empirical relationship involving PETCO2 and tidal volume. Six subjects were studied at rest and during cycle ergometry at 50 and 100 W while breathing a variety of gas mixtures. Arterial samples were drawn for determination of true PaCO2. The differences for each method between estimated and true PaCO2 at rest and at 50 and 100 W were as follows: PETCO2, -1.35 +/- 2.64, 1.67 +/- 2.31, and 2.67 +/- 2.02 (SD) Torr; PaCO2, -2.15 +/- 2.73, -0.80 +/- 2.18, and -0.35 +/- 2.31 (SD) Torr; PADCO2, -1.55 +/- 2.54, 0.25 +/- 2.16, and 0.63 +/- 2.26 (SD) Torr; and PJCO2, -1.41 +/- 2.30, 0.12 +/- 1.79, and 0.08 +/- 1.96 (SD) Torr. It is concluded that, at rest, all methods significantly underestimate true PaCO2 and during exercise PETCO2 significantly overestimates PaCO2, but no bias was detected for any of the other methods.  相似文献   

10.
To assess respiratory neuromuscular function and load compensating ability in patients with chronic airway obstruction (CAO), we studied eight stable patients with irreversible airway obstruction during hyperoxic CO2 rebreathing with and without a 17 cmH2O X l-1 X s flow-resistive inspiratory load (IRL). Minute ventilation (VE), transdiaphragmatic pressure (Pdi), and diaphragmatic electromyogram (EMGdi) were monitored. Pdi and EMGdi were obtained via a single gastroesophageal catheter with EMGdi being quantitated as the average rate of rise of inspiratory (moving average) activity. Based on the effects of IRL on the Pdi response to CO2 [delta Pdi/delta arterial CO2 tension (PaCO2)] and the change in Pdi for a given change in EMGdi (delta Pdi/delta EMGdi) during rebreathing, two groups could be clearly identified. Four patients (group A) were able to increase delta Pdi/delta PaCO2 and delta Pdi/delta EMGdi, whereas in the other four (group B) the IRL responses decreased. All group B patients were hyperinflated having significantly greater functional residual capacity (FRC) and residual volume than group A. In addition the IRL induced percent change in delta Pdi/delta PaCO2, and delta VE/delta PaCO2 was negatively correlated with lung volume so that in the hyperinflated group B the higher the FRC the greater was the decrease in Pdi response due to IRL. In both groups the greater the FRC the greater was the decrease in the ventilatory response to loading. Patients with CAO, even with severe airways obstruction, can effect load compensation by increasing diaphragmatic force output, but the presence of increased lung volume with the associated shortened diaphragm prevents such load compensation.  相似文献   

11.
Ventilation serves the exchange of gases between the organism and the environment. Oxygen uptake and CO2 elimination are controlled by feedback loops, that keep fluctuations in arterial CO2 pressure (PaCO2) within narrow limits Disorders in the central regulation of breathing, or impairment of the respiratory apparatus, may result in a mismatch between metabolic CO2 production and ventilatory CO2, elimination and thus in fluctuations in the PaCO2: inappropriately increased ventilation (hyperventilation) causes hypocapnia, and reduced ventilation (hypoventilation) causes hypercapnia. In order to detect such disorders during sleep, PCO2 measurement is of great importance, but direct and continuous measurement of the PaCO2 is invasive and thus unsuitable in the clinical setting. An alternative is capnography, the continuous measurement of PCO2 in inhaled and exhaled air on the basis of ultrared light absorption. This paper reviews the method, its features and limitations, and the possibilities of improving capnography to better detect sleep-related breathing disorders. In addition, data obtained from 57 patients with predominantly normal lung function, but suspected sleep disordered breathing are presented. Simultaneous measurements of capnography PETCO2) and capillary PaCO2 revealed a PETCO2 difference of +0.63 +/- 3.3 (SD) Torr. PaCO2 (38.8 +/- 4.1 Torr) and PETCO2 (38.1 +/- 4.3 Torr) were not significantly different with a correlation coefficient of r = 0.68 (p < 0.001). Thus 46% of the variation in PETCO2 was explained by changes in PaCO2. Currently the literature contains few further data on capnography during sleep. It is concluded that, provided the limitations of the method are respected and comparison with the PETCO2 is made, capnography may be a useful, noninvasive and continuous measuring method for assessing ventilation during sleep in patients with suspected sleep related breathing disorders.  相似文献   

12.
In humans, arterial PCO2 (PaCO2) has been demonstrated to be regulated at or near resting levels in the steady state of moderate exercise (i.e., for work rates not associated with a sustained lactic acidosis). To determine how PaCO2 might be expected to behave under the nonsteady-state conditions of incremental exercise testing, the influence of the dynamic characteristics of the primary variables that determine PaCO2 was explored by means of computer modeling. We constructed a dynamic model that utilized previously reported experimental estimates for the kinetic response parameters of ventilation (VE) and CO2 output (VCO2). In response to incremental work rate forcings, the model yielded an increase in PaCO2, which reflected the disparity between the VE and VCO2 time constants; this hypercapnic condition was maintained despite VE and VCO2 both increasing linearly with respect to the input work rate profile. The degree of hypercapnia increased with the rate of the incremental forcing, reaching 9 Torr for a 50-W/min forcing. In conclusion, therefore, sustained increases in PaCO2 during nonsteady-state incremental exercise should be interpreted with caution, because this is the predicted response even in subjects with normal ventilatory control and lung function.  相似文献   

13.
In 10 anesthetized, paralyzed, supine dogs, arterial blood gases and CO2 production (VCO2) were measured after 10-min runs of high-frequency ventilation (HFV) at three levels of mean airway pressure (Paw) (0, 5, and 10 cmH2O). HFV was delivered at frequencies (f) of 3, 6, and 9 Hz with a ventilator that generated known tidal volumes (VT) independent of respiratory system impedance. At each f, VT was adjusted at Paw of 0 cmH2O to obtain a eucapnia. As Paw was increased to 5 and 10 cmH2O, arterial PCO2 (PaCO2) increased and arterial PO2 (PaO2) decreased monotonically and significantly. The effect of Paw on PaCO2 and PaO2 was the same at 3, 6, and 9 Hz. Alveolar ventilation (VA), calculated from VCO2 and PaCO2, significantly decreased by 22.7 +/- 2.6 and 40.1 +/- 2.6% after Paw was increased to 5 and 10 cmH2O, respectively. By taking into account the changes in anatomic dead space (VD) with lung volume, VA at different levels of Paw fits the gas transport relationship for HFV derived previously: VA = 0.13 (VT/VD)1.2 VTf (J. Appl. Physiol. 60: 1025-1030, 1986). We conclude that increasing Paw and lung volume significantly decreases gas transport during HFV and that this effect is due to the concomitant increase of the volume of conducting airways.  相似文献   

14.
During the first day of hatching, the developing chicken embryo internally pips the air cell and relies on both the lungs and chorioallantoic membrane (CAM) for gas exchange. Our objective in this study was to examine respiratory and cardiovascular responses to acute changes in oxygen at the air cell or the rest of the egg during internal pipping. We measured lung (VO2(lung)) and CAM (VO2(CAM)) oxygen consumption independently before and after 60 min exposure to combinations of hypoxia, hyperoxia, and normoxia to the air cell and the remaining egg. Significant changes in VO2(total) were only observed with combined egg and air cell hypoxia (decreased VO2(total)) or egg hyperoxia and air cell hypoxia (increased VO2(total)). In response to the different O2 treatments, a change in VO2(lung) was compensated by an inverse change in VO2(CAM) of similar magnitude. To test for the underlying mechanism, we focused on ventilation and cardiovascular responses during hypoxic and hyperoxic air cell exposure. Ventilation frequency and minute ventilation (V(E)) were unaffected by changes in air cell O2, but tidal volume (V(T)) increased during hypoxia. Both V(T) and V(E) decreased significantly in response to decreased P(CO2). The right-to-left shunt of blood away from the lungs increased significantly during hypoxic air cell exposure and decreased significantly during hyperoxic exposure. These results demonstrate the internally pipped embryo's ability to control the site of gas exchange by means of altering blood flow between the lungs and CAM.  相似文献   

15.
Theory predicts that the rate of rise of the oscillation in arterial CO2 partial pressure (PaCO2) is linearly dependent on CO2 flux from venous blood to alveolar gas. We have measured, in the anesthetized cat, CO2 output (VCO2) and oscillations in arterial pH. The pH signal was differentiated to give the maximum rate of fall of pH on the downstroke of the oscillation (dpH/dt decreases max). Since oscillations in pH are due to oscillations in arterial PCO2, dpH/dt decreases max was considered to be equivalent to the maximum rate of rise of the PCO2 oscillation. VCO2 was increased by ventilating the intestines with CO2 and by the intra-arterial infusion of 2,4-dinitrophenol. VCO2 was decreased by filling the intestines with isotonic tris(hydroxymethyl)methylamine buffer. The maximum range of VCO2 covered was 7.8-51 ml/min, and the mean range was from 13.6 +/- 1.3 to 29.7 +/- 1.6 (SE) ml/min. Although CO2 loading produced a small rise and CO2 unloading a small fall in mean PaCO2, the changes were not statistically significant, so that overall the response was close to isocapnia. Over the limited range of VCO2 studied there was a highly significant linear association between dpH/dt decreases max and VCO2 which supports the contention that the slope of the upstroke of the PaCO2 oscillation is determined by the CO2 flux from mixed venous blood to alveolar gas. As such this slope is a potential chemical signal linking ventilation to CO2 production.  相似文献   

16.
Control of exercise hyperpnea during hypercapnia in humans   总被引:1,自引:0,他引:1  
Previous studies have yielded conflicting results on the ventilatory response to CO2 during muscular exercise. To obviate possible experimental errors contributing to such variability, we have examined the CO2-exercise interaction in terms of the ventilatory response to exercise under conditions of controlled hypercapnia. Eight healthy male volunteers underwent a sequence of 5-min incremental treadmill exercise runs from rest up to a maximum CO2 output (VCO2) of approximately 1.5 l . min-1 in four successive steps. The arterial PCO2 (PaCO2) at rest was stabilized at the control level or up to 14 Torr above control by adding 0-6% CO2 to the inspired air. Arterial isocapnia (SD = 1.2 Torr) throughout each exercise run was maintained by continual adjustment of the inspired PCO2. At all PaCO2 levels the response in total ventilation (VE) was linearly related to exercise VCO2. Hypercapnia resulted in corresponding increases in both the slope (S) and zero intercept (V0) of the VE-VCO2 curve; these being directly proportional to the rise in PaCO2 (means +/- SE: delta S/ delta PaCO2, 2.73 +/- 0.28 Torr-1; delta V0/ delta PaCO2, 1.67 +/- 0.18 l . min-1 . Torr-1). Thus the ventilatory response to concomitant hypercapnia and exercise was characterized by a synergistic (additive plus multiplicative) effect, suggesting a positive interaction between these stimuli. The increased exercise sensitivity in hypercapnia is qualitatively consistent with the hypothesis that VE is controlled to minimize the conflicting challenges due to chemical drive and the mechanical work of breathing (Poon, C. S. In: Modelling and Control of Breathing, New York: Elsevier, 1983, p. 189-196).  相似文献   

17.
Ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were measured in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions in several phases of Predictive Studies III-1971 and Predictive Studies IV-1975. Inspired O2 was at or near natural O2 levels during compressions and at stable high pressures; it was 0.5 ATA during decompressions. Rapid compressions to high pressures did not impair respiratory homeostasis. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5,000 feet of seawater was not observed to progressively decrease resting V, or to progressively increase resting PACO2. Rather, a complex pattern of change in PACO2 was seen. As both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is suggested that this pattern of PACO2 change results from interaction on ventilation of 1) increase in pulmonary resistance due to elevation of gas density with 2) increase in respiratory drive postulated as due to generalized CNS excitation associated with exposure to high hydrostatic pressure. There may be a similar interaction between increased gas flow resistance and increase in respiratory drive related to nitrogen partial pressure and the narcosis resulting therefrom.  相似文献   

18.
Eight healthy volunteers performed gradational tests to exhaustion on a mechanically braked cycle ergometer, with and without the addition of an inspiratory resistive load. Mean slopes for linear ventilatory responses during loaded and unloaded exercise [change in minute ventilation per change in CO2 output (delta VE/delta VCO2)] measured below the anaerobic threshold were 24.1 +/- 1.3 (SE) = l/l of CO2 and 26.2 +/- 1.0 l/l of CO2, respectively (P greater than 0.10). During loaded exercise, decrements in VE, tidal volume, respiratory frequency, arterial O2 saturation, and increases in end-tidal CO2 tension were observed only when work loads exceeded 65% of the unloaded maximum. There was a significant correlation between the resting ventilatory response to hypercapnia delta VE/delta PCO2 and the ventilatory response to VCO2 during exercise (delta VE/delta VCO2; r = 0.88; P less than 0.05). The maximal inspiratory pressure generated during loading correlated with CO2 sensitivity at rest (r = 0.91; P less than 0.05) and with exercise ventilation (delta VE/delta VCO2; r = 0.83; P less than 0.05). Although resistive loading did not alter O2 uptake (VO2) or heart rate (HR) as a function of work load, maximal VO2, HR, and exercise tolerance were decreased to 90% of control values. We conclude that a modest inspiratory resistive load reduces maximum exercise capacity and that CO2 responsiveness may play a role in the control of breathing during exercise when airway resistance is artificially increased.  相似文献   

19.
Carotid body-denervated (CBD) ponies have a less than normal increase in arterial PCO2 (PaCO2) when inspired CO2 (PICO2) is increased, even when pulmonary ventilation (VE) and breathing frequency (f) are normal. We studied six tracheostomized ponies to determine whether this change 1) might be due to increased alveolar ventilation (VA) secondary to a reduction in upper airway dead space (VD) or 2) is dependent on an upper airway sensory mechanism. Three normal and three chronic CBD ponies were studied while they were breathing room air and at 14, 28, and 42 Torr PICO2. While the ponies were breathing room air, physiological VD was 483 and 255 ml during nares breathing (NBr) and tracheostomy breathing (TBr), respectively. However, at elevated PICO2, mixed expired PCO2 often exceeded PaCO2; thus we were unable to calculate physiological VD using the Bohr equation. At all PICO2 in normal ponies, PaCO2 was approximately 0.3 Torr greater during NBr than during TBr (P less than 0.05). In CBD ponies this NBr-TBr difference was only evident while breathing room air and at 28 Torr PICO2. At each elevated PICO2 during both NBr and TBr, the increase in PaCO2 above control was always less in CBD ponies than in normal ponies (P less than 0.01). The VE-PaCO2, f-PaCO2, and tidal volume-PaCO2 relationships did not differ between NBr and TBr (P greater than 0.10) nor did they differ between normal and CBD ponies (P greater than 0.10). We conclude that the attenuated increase in PaCO2 during CO2 inhalation after CBD is not due to a relative increase in VA secondary to reducing upper airway VD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Seven human spinal cord-lesioned subjects (SPL) underwent electrically induced muscle contractions (EMC) of the quadriceps and hamstring muscles for 10 min: 5 min control, 2 min with venous return from the legs occluded, and 3 min postocclusion. Group mean changes in CO2 output compared with rest were +107 +/- 30.6, +21 +/- 25.7, and +192 +/- 37.0 (SE) ml/min during preocclusion, occlusion, and postocclusion EMC, respectively. Mean arterial CO2 partial pressure (PaCO2) obtained from catheterized radial arteries at 15- to 30-s intervals showed a significant (P less than 0.05) hypocapnia (36.2 Torr) during occlusion and a significant (P less than 0.05) hypercapnia (38.1 Torr) postocclusion relative to a group mean preocclusion EMC PaCO2 of 37.5 Torr. Relative to preocclusion EMC, expired ventilation (VE) decreased during occlusion and increased after release of occlusion. However, changes in VE always occurred after changes in end-tidal PCO2 (mean 41 s after occlusion and 10 s after release of occlusion). In the two subjects investigated during hyperoxia, the VE and PaCO2 responses to occlusion and release did not differ from normoxia. We conclude that the data do not support mediation of the EMC hyperpnea in SPL by humoral mechanisms that others have proposed for mediation of the exercise hyperpnea in spinal cord-intact humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号