首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a patch type model for mosquitoes that have aquatic larvae inhabiting ponds. Partial differential equations (PDEs) model the larvae on each of several disconnected patches representing the ponds, with conditions varying in each patch, coupled via the adults in the air. From the PDEs a scalar delay differential equation, with multiple delays, for the total adult mosquito population is derived. The various delays represent the larval development times in the patches. The coefficients contain all the relevant information about the sizes and geometry of the individual patches inhabited by the larvae, the boundary conditions applicable to those patches and the diffusivity of the larvae in each patch. For patches of general shapes and sizes, and without the need to specify the criteria by which an adult mosquito selects an oviposition patch, the modern theory of monotone dynamical systems and persistence theory enables a complete determination of the conditions for the mosquito population to go extinct or to persist. More detailed biological insights are obtained for the case when the patches are squares of various sizes, which allows a detailed discussion of the effects of scale, and for two particular criteria by which mosquitoes might select patches for oviposition, being (i) selection based solely on patch area, and (ii) selection based both on area and expected larval survival probability for each patch. In some parameter regimes, counterintuitive phenomena are predicted.  相似文献   

2.
There are potentially many situations in which creatures will be subject to infrequent but regular culling. In terms of controlling crop pests, some farmers may only be able to afford to apply pesticides occasionally. Alternatively, pesticides may be applied only occasionally to limit their unwelcome side effects, which include pesticide resistance, chemical poisoning of agricultural workers, and environmental degradation. In terms of conservation, some species (such as the red deer in the UK) may be culled occasionally to maintain balances within their ecosystem. However, in this paper we discover, as the culmination of an exploration of adult-stage culling of a creature with juvenile and adult life stages, that, in certain circumstances, regular but infrequent culling will, perversely, increase the average population of the creature.  相似文献   

3.
Abstract 1 The interplay between pest movement and trap crop physical design is modelled in a situation where the pest moves by a random walk with spatially variable mobility. Questions addressed are: (i) how does the proportion of trap crop area of the total field area influence the equilibrium distribution of pests among the crop and the trap crop and (ii) how do crop patch size and shape influence the speed of pest redistribution from the crop to the trap crop. 2 When pest mobility in the trap crop is clearly lower than that in the crop, the pest population in the crop decreases very sharply for small trap crop proportions. When mobility in the trap crop is slightly closer to that in the crop, the pest population in the crop decreases much more gradually with increasing trap crop proportion. Thus finding a trap crop that the pest distinctly prefers over the crop appears to be crucial for developing efficient trap crop systems. 3 The rate of decay in the pest population in the crop increases with increasing perimeter to area ratio of the crop patch. Hence, designing field layouts to increase the perimeter to area ratio of crop patches may be beneficial.  相似文献   

4.
1 The spatial and temporal variations in aphidophagous syrphid abundance were recorded over two seasons in wildflower resource patches sown in a winter barley crop and associated field margins. Standard census techniques and sticky board trapping were used to assess numbers of syrphids, whilst weekly flower head counts were used to quantify the floral resources available in each of the patches. 2 The field margin supported a greater diversity and density of syrphids than the within‐crop wildflower patches, despite having a relatively lower flower head density. Presumably this was in response to other resources that field margins offer, namely additional aphid resources, shelter from predation, lekking sites and suitable flight‐paths. 3 The commonest species of syrphid, Episyrphus balteatus, demonstrated a very positive habitat association with the field margin and was rarely reported in the field patches. Therefore, it may be an unsuitable candidate for the biological control of aphids via augmentation of numbers using non‐host resources. 4 Patch size and shape had little effect on the spatial distributions of syrphids, probably because of the adult syrphids' high mobility. 5 Of greater influence was the number of flowers contained in each habitat patch. Typically, patches with higher numbers of flowers had significantly greater aggregations of hoverflies. Habitat manipulation by the provision of flowers in patches seems to increase the local density of hoverflies. Further work is necessary to establish the importance of flower density in enhancing the control of pest populations.  相似文献   

5.
Generalist natural enemies may be well adapted to annual crop systems in which pests and natural enemies re-colonize fields each year. In addition, for patchily-distributed pests, a natural enemy must disperse within a crop field to arrive at infested host patches. As they typically have longer generation times than their prey, theory suggests that generalist natural enemies need high immigration rates to and within fields to effectively suppress pest populations. The soybean aphid, Aphis glycines Matsumura, is a pest of an annual crop and is predominantly controlled by coccinellids. To test if rates of coccinellid arrival at aphid-infested patches are crucial for soybean aphid control, we experimentally varied coccinellid immigration to 1 m2 soybean patches using selective barriers and measured effects on A. glycines populations. In a year with low ambient aphid pressure, naturally-occurring levels of coccinellid immigration to host patches were sufficient to suppress aphid populations, while decreasing coccinellid immigration rates resulted in large increases in soybean aphid populations within infested patches. Activity of other predators was low in this year, suggesting that most of the differences in aphid population growth were due to changes in coccinellid immigration. Alternatively, in a year in which alate aphids continually colonized plots, aphid suppression was incomplete and increased activity of other predatory taxa contributed to adult coccinellid predation of A. glycines. Our results suggest that in a system in which natural enemy populations cannot track pest populations through reproduction, immigration of natural enemies to infested patches can compensate and result in pest control.  相似文献   

6.
Biological invasions are one of the major threats to both ecosystem and economic functioning. Their management typically involves culling of the pest or removal of its habitat. The Asiatic red-bellied beautiful squirrel Callosciurus erythraeus is the first known introduction of a squirrel into South America. It established from five releases in 1973, using exotic trees to spread through Argentinean Pampas. It now causes substantial economic damage in agricultural and urban areas across >680 km2, and its continued spread threatens indigenous species. We developed a spatially explicit model of the invasion for the likely range of life-history parameters, matched against empirical data on patch occupancy in 2004. The two best-fitting models suggest the current population to be on the cusp of an explosive expansion. These models were used to predict future trends under alternative scenarios of strategic culling or habitat removal aimed at slowing the spread. The predictions for 18 yr into the future were that 1) the present lack of systematic management will lead to a 5-fold increase in area of occupancy, 2) removal of habitat down to half carrying capacity will thin the population but accelerate its spread, 3) 10 yr of culling above the maximum sustainable yield (MSY) will precipitate declines in abundance and patch occupancy towards extinction, but with immediate recovery upon cessation of the cull. We recommend continuous culling above the MSY in priority patches, aimed at slowing arrival to valuable conservation areas. This study demonstrates the need for prompt action to terminate invasions before they establish. The squirrel invasion is now irreversible after 30 yr of slow spread across fragmented habitat. Although culling requires public awareness campaigns and sustained governmental commitment, it is now the best feasible strategy for managing this invasion.  相似文献   

7.
As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs.  相似文献   

8.
Aim The objective of conservation planning is often to prioritize patches based on their estimated contribution to metapopulation or metacommunity viability. The contribution that an individual patch makes will depend on its intrinsic characteristics, such as habitat quality, as well as its location relative to other patches, its connectivity. Here we systematically evaluate five patch value metrics to determine the importance of including an estimate of habitat quality into the metrics. Location We tested the metrics in landscapes designed to represent different degrees of variability in patch quality and different levels of patch aggregation. Methods In each landscape, we simulated population dynamics using a spatially explicit, continuous time metapopulation model linked to within patch logistic growth models. We tested five metrics that are used to estimate the contribution that a patch makes to metapopulation viability: two versions of the probability of connectivity index, two versions of patch centrality (a graph theory metric) and the metapopulation capacity metric. Results All metrics performed best in environments where patch quality was very variable and high quality patches were aggregated. Metrics that incorporated some measure of patch quality did better in all environments, but did particularly well in environments with high variance of patch quality and spatial aggregation of good quality patches. Main conclusions Including an estimate of patch quality significantly increased the ability of a given connectivity metric to rank correctly habitat patches according to their contribution to metapopulation viability. Incorporating patch quality is particularly important in landscapes where habitat quality is highly variable and good quality patches are spatially aggregated. However, caution should be used when applying patch metrics to homogeneous landscapes, even if good estimates of patch quality are available. Our results demonstrate that landscape structure and the degree of variability in patch quality need to be assessed prior to selecting a suitable method for estimating patch value.  相似文献   

9.
Although avian-mediated pest control is a significant ecosystem service with important economic implications, few experimental studies have ever documented its role in Mediterranean agroforests. Specifically, information on pest control by birds is lacking in certain permanent agroecosystems of worldwide importance such as olive groves.Here, we assess experimentally for the first time the effectiveness of insectivorous birds in controlling the two main olive-tree pests. We also explore the effects of distance to semi-natural habitat patches on avian insectivore abundance and pest control. We combined bird and pest surveys with pest damage monitoring and two field experiments (branch exclusion and plasticine models) at a regional scale.The experiments showed that birds played a negligible role as pest controllers (measured in terms of attack rates on plasticine models and controlled pest damage) in the studied olive groves; overall, pests were abundant and pest damage was high on most farms. In addition, surveys showed that insectivorous birds were more abundant and diverse in patches of semi-natural habitat, compared to the matrix of olive groves, and that proximity to semi-natural patches was not a driver of bird-driven pest control.This study experimentally demonstrates that insectivorous birds are not effective pest controllers in olive groves. The absence of patterns linking insectivorous birds’ availability and observed pest control suggests that birds are unable to exert effective control over the main olive-tree pests. This lack of biocontrol by birds is probably due to low accessibility and/or appetence for the current insectivorous groups. Habitat improvement aimed at encouraging some under-represented forager species could improve the likelihood that birds will provide this ecosystem service.  相似文献   

10.
Clonal plants that are physiologically integrated might perceive and interact with their environment at a coarser resolution than smaller, non-clonal competitors. We develop models to explore the implications of such scale asymmetries when species compete for multiple depletable resources that are heterogeneously distributed in space across two patches. Species are either 'non-integrators', whose growth in each patch depends on resource levels in that patch alone, or 'integrators', whose growth is equal between patches and depends on average resource levels across patches. Integration carried both benefits and costs. It tended to be advantageous in poorer patches, where the integrators drew resources down further than the non-integrators (more easily excluding competitors) and might persist by using resources from richer adjacent patches. Integration tended to be disadvantageous in richer patches, where integrators did not draw resources down as far (creating an opportunity for competitors) and could be excluded due to the cost of supporting growth in poorer adjacent patches. Complementarity between patches (each rich in a separate resource) favoured integrators. Integration created new opportunities for local coexistence, and for delayed susceptibility of patches to invasion, but eliminated some opportunities for regional coexistence. Implications for the interpretations of species' zero net growth isoclines and Rs are also discussed.  相似文献   

11.
  1. Drosophila suzukii (SWD) poses a threat to soft and stone fruit globally. SWD inhabits non-crop areas adjacent to farms from where it moves into crops to cause damage. Effective IPM control strategies, considering both the crop and non-crop area, are needed to control this economically important pest.
  2. We conducted a meta-analysis to quantify the impacts of different non-crop habitats around fruit farms on SWD populations, comparing abundance of SWD trapped in crop and non-crop habitats.
  3. Overall, SWD abundance was greater in non-crop habitats than in cropped areas and this difference was greatest in farms adjacent to woodland, or field margins containing known SWD host plants.
  4. The difference in SWD abundance between crop and non-crop habitats was not affected by crop type but was greatest in the winter months and in conventional compared to organic farms, indicating conventional approaches can reduce relative SWD abundance.
  5. Drosophila suzukii overwinter in non-crop habitats which provide refuge outside the cropping season. However, certain habitats support greater relative abundance of SWD than others and this is also affected by farm management. We discuss what these findings mean for effective control of SWD.
  相似文献   

12.
Spatial and temporal isolation and environmental variability are important factors explaining variation in plant species composition. The effect of fragmentation and disturbance on woody plant species composition was studied using data from 32 remnant church forest patches in northern Ethiopia. The church forests are remnants of dry Afromontane forest, embedded in a matrix of intensively used crop and grazing lands. We used canonical correspondence analysis and partial canonical correspondence analysis to analyze the effects of fragmented and isolated forest-patch identity, environmental and spatial variables on woody plant species composition in different growth stages. The dominance of late successional species was higher at the adult growth stage than seedlings and saplings growth stages. In the adult stages, late successional species like Olea europaea subsp. cuspidate had high frequency of occurrence. Forest patch identity was more important in explaining woody plant assemblages than environmental and spatial variables. For all growth stages combined, environmental variables explained more of the explained total fraction of variation in species composition than spatial variables. Topographic variables best explained variations in species composition for saplings, adults and all growth stages combined, whereas the management regime was most important for seedlings species composition. Our results show that in a matrix of cultivated and grazing land, fragmented and isolated forest patches differ in woody plant species assemblages. Some species are widely distributed and occurred in many patches while other occurred only in one or a few forest patches. Thus, our results indicate that remnant forest patches are important for preserving rare plant species and therefore management practices should focus on minimizing disturbance to the church forests and if possible increase church forest patch size.  相似文献   

13.
Resource patch size and patch nutritional quality are both important factors influencing local densities of herbivores. The responses of herbivores to resource patch size have been mostly studied in aboveground plant–insect interactions, whereas belowground organisms have received little attention. We studied responses of different root-feeding nematode species associated with marram grass (Ammophila arenaria (L.) Link) to resource patch size and quality. Different nematode species were released in experimental mesocosms filled with dune sand in which we established marram grass patches of varying sizes. Half of the patches of small, medium and large size were fertilized to test if immigration probabilities of nematodes depended on patch quality. We tested the hypotheses that (1) nematodes should aggregate on larger patches and (2) colonization of patches would also depend on patch nutritional quality, with higher nematode recapture rates expected in fertilized patches. Two species (Helicotylenchus pseudorobustus, Hemicycliophora thornei) of the five released species were recaptured in the experiment. The fraction of nematodes immigrating into the rhizosphere of a plant patch increased with patch size (i.e. root biomass), which was in line with predictions of the Resource Concentration Hypothesis. When fractions were recalculated to represent recapture rates per liter of soil, recapture rates of nematodes did not differ among patch sizes, indicating that the increase in recapture rates was directly proportional to the increase in patch size. This suggests that the process through which nematodes located patches was not distinguishable from a random process where entering patches is based on random encounters with patch boundaries. In contrast to our expectation, fertilization had a strong negative effect on patch responses of both nematode species. Our study represents an approach that may be used to explore whether belowground biota behave in similar ways as aboveground biota, in order to determine how perceived differences in environments affect ecological interactions.  相似文献   

14.
To investigate the mechanism of cortical actin patch movement in yeast, we implement a method for computer tracking the motion of the patches. Digital images from fluorescence microscope movies of living cells are fed into an image-processing program, which generates two-dimensional patch coordinates in the plane of focus for each movie frame via an algorithm based on detection of rapid intensity variations. The patch coordinates in neighboring frames are connected by a minimum-distance algorithm. The method is used to analyze control cells and cells treated with the actin-depolymerizing agent latrunculin. The motion of the patches in both cases, as analyzed by mean-square patch displacements, is found to be a random walk on average, with a much lower diffusion coefficient for the latrunculin-treated cells. The mean-squared patch travel distances for all of the latrunculin-treated cells are lower than those for all of the control cells. The patches move independently of one another. We develop a quantitative criterion for the presence of directed motion, and show that numerous patches in the control cells display directed motion to a very high degree of certainty. A small number of patches in the latrunculin-treated cells display directed motion.  相似文献   

15.
We constructed a sex allocation model for parasitic wasps to explain the wide variation in their sex ratio, considering the effects of local mate competition, partial dispersal of progeny before mating, and heterogeneity in host quality among patches. We conducted an experiment to compare with the predictions of our model. We considered the following situations. First, the hosts are distributed in discrete patches: a number of female wasps visit and oviposit in each patch. Second, all the progeny do not mate within the natal patch; some of them disperse to take part in population-wide random mating. We calculated ES sex ratios in cases where there are two kinds of patches: good ones and poor ones. We examined the dependency of ES sex ratios on several parameters, i.e., 1) the probability that a daughter mates in her natal patch, 2) the ratio of the female fitness of the good patch to that of the poor patch, 3) the proportion of poor patches, and 4) the number of foundresses in a patch. The result of our experiment showed the same tendency as the calculation in case where the LMC effect is high in each patch. We briefly discuss a possible selection pressure for dispersal of progeny, with special reference to the mating structure of parasitic wasps.  相似文献   

16.
Invasive species threaten global biodiversity, food security and ecosystem function. Such incursions present challenges to agriculture where invasive species cause significant crop damage and require major economic investment to control production losses. Pest risk analysis (PRA) is key to prioritize agricultural biosecurity efforts, but is hampered by incomplete knowledge of current crop pest and pathogen distributions. Here, we develop predictive models of current pest distributions and test these models using new observations at subnational resolution. We apply generalized linear models (GLM) to estimate presence probabilities for 1,739 crop pests in the CABI pest distribution database. We test model predictions for 100 unobserved pest occurrences in the People's Republic of China (PRC), against observations of these pests abstracted from the Chinese literature. This resource has hitherto been omitted from databases on global pest distributions. Finally, we predict occurrences of all unobserved pests globally. Presence probability increases with host presence, presence in neighbouring regions, per capita GDP and global prevalence. Presence probability decreases with mean distance from coast and known host number per pest. The models are good predictors of pest presence in provinces of the PRC, with area under the ROC curve (AUC) values of 0.75–0.76. Large numbers of currently unobserved, but probably present pests (defined here as unreported pests with a predicted presence probability >0.75), are predicted in China, India, southern Brazil and some countries of the former USSR. We show that GLMs can predict presences of pseudoabsent pests at subnational resolution. The Chinese literature has been largely inaccessible to Western academia but contains important information that can support PRA. Prior studies have often assumed that unreported pests in a global distribution database represent a true absence. Our analysis provides a method for quantifying pseudoabsences to enable improved PRA and species distribution modelling.  相似文献   

17.
The 2001 foot-and-mouth disease epidemic was controlled by culling of infectious premises and pre-emptive culling intended to limit the spread of disease. Of the control strategies adopted, routine culling of farms that were contiguous to infected premises caused the most controversy. Here we perform a retrospective analysis of the culling of contiguous premises as performed in 2001 and a simulation study of the effects of this policy on reducing the number of farms affected by disease. Our simulation results support previous studies and show that a national policy of contiguous premises (CPs) culling leads to fewer farms losing livestock. The optimal national policy for controlling the 2001 epidemic is found to be the targeting of all contiguous premises, whereas for localized outbreaks in high animal density regions, more extensive fixed radius ring culling is optimal. Analysis of the 2001 data suggests that the lowest-risk CPs were generally prioritized for culling, however, even in this case, the policy is predicted to be effective. A sensitivity analysis and the development of a spatially heterogeneous policy show that the optimal culling level depends upon the basic reproductive ratio of the infection and the width of the dispersal kernel. These analyses highlight an important and probably quite general result: optimal control is highly dependent upon the distance over which the pathogen can be transmitted, the transmission rate of infection and local demography where the disease is introduced.  相似文献   

18.
It is well established that social conditions often modify foraging behaviour, but the theoretical interpretation of the changes produced is not straightforward. Changes may be due to alterations of the foraging currency (the mathematical expression that behaviour maximizes) and/or of the available resources. An example of the latter is when both solitary and social foragers maximize rates of gain over time, but competition alters the behaviour required to achieve this, as assumed by ideal free distribution models. Here we examine this problem using captive starlings Sturnus vulgaris. Subjects had access to two depleting patches that replenished whenever the alternative patch was visited. The theoretical rate-maximizing policy was the same across all treatments, and consisted of alternating between patches following a pattern that could be predicted using the marginal value theorem (MVT). There were three treatments that differed in the contents of an aviary adjacent to one of the two patches (called the 'social' patch). In the control treatment, the aviary was empty, in the social condition it contained a group of starlings, and in a non-specific stimulus control it contained a group of zebra finches. In the control condition both patches were used equally and behaviour was well predicted by the MVT. In the social condition, starlings foraged more slowly in the social than in the solitary patch. Further, foraging in the solitary patch was faster and in the social patch slower in the social condition than in the control condition. Although these changes are incompatible with overall rate maximization (gain rate decreased by about 24% by self-imposed changes), if the self-generated gain functions were used the MVT was a good predictor of patch exploitation under all conditions. We discuss the complexities of nesting optimal foraging models in more comprehensive theoretical accounts of behaviour integrating functional and mechanistic perspectives.  相似文献   

19.
An important part of landscape ecology is determining how the arrangement (aggregation or fragmentation) of patches in space influences the population dynamics of foraging organisms. One hypothesis in agricultural ecology is that fine-grain spatial heterogeneity in cropping (many small agricultural fields) should provide better pest control than coarse-grain heterogeneity (few large agricultural fields); this hypothesis has been proposed as an explanation for the increased pest abundance associated with agricultural intensification. However, empirical studies have found mixed support for this hypothesis, and some, surprisingly, demonstrate a strong decrease in pest abundance with increased crop aggregation. We developed a spatially explicit simulation model of pest movement across an agricultural landscape to uncover basic processes that could reduce pest abundance in landscapes with fewer, larger fields. This model focuses on herbivore movement and does not include predation effects or other biological interactions. We found that field aggregation in the model led to severely reduced pest densities and further discovered that this relationship was due to an increased distance between fields and a decreased “target area” in more aggregated landscapes. The features that create a negative relationship between aggregation and pest densities rely on crop rotation and limited dispersal capabilities of the pests. These findings help to explain seemingly counter-intuitive empirical studies and provide an expectation for when field aggregation may reduce pest populations in agro-ecosystems.  相似文献   

20.
A perimeter trap crop barrier of hot cherry peppers, border-row insecticide applications, and a combination of the two management strategies were evaluated to see if they could protect a centrally located main crop of bell peppers from oviposition and infestation by the pepper maggot, Zonosemata electa (Say). In large plots, the main cash crop of bell peppers was protected from the majority of the oviposition and infestation by all three barriers. The combination sprayed/trap crop barrier provided the best protection against both oviposition and infestation and resulted in over 98% pest-free fruit at harvest. Maggots infested only 1.7% of the main crop fruit when protected by a sprayed or unsprayed trap crop barrier, compared with 15.4% in control plots. The perimeter sprayed/trap crop strategy was employed in three commercial fields in 2000 and 2001. The combination barrier resulted in superior insect control and reduced insecticide use at all commercial locations, compared with the same farms' past history or to farms using conventional and integrated pest management (IPM) methods. Economic analysis showed that the technique is more cost effective and profitable than relying on whole-field insecticide applications to control the pepper maggot. Farmer users were surveyed and found the perimeter trap crop technique simple to use, with many hard-to-measure benefits associated with worker protection issues, marketing, personnel/management relations, pest control and the environment. Use of the perimeter trap crop technique as part of an IPM or organic program can help improve crop quality and overall farm profitability, while reducing pesticide use and the possibility of secondary pest outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号