首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Blake-Palmer KG  Su Y  Smith AN  Karet FE 《Gene》2007,393(1-2):94-100
Several of the 13 subunits comprising mammalian H(+)-ATPases have multiple alternative forms, encoded by separate genes and with differing tissue expression patterns. These may play an important role in the intracellular localization and activity of H(+)-ATPases. Here we report the cloning of a previously uncharacterized human gene, ATP6V0E2, encoding a novel H(+)-ATPase e-subunit designated e2. We demonstrate that in contrast to the ubiquitously expressed gene encoding the e1 subunit (previously called e), this novel gene is expressed in a more restricted tissue distribution, particularly kidney and brain. We show by complementation studies in a yeast strain deficient for the ortholog of this subunit, that either form of the e-subunit is essential for proper proton pump function. The identification of this novel form of the e-subunit lends further support to the hypothesis that subunit differences may play a key role in the structure, site and function of H(+)-ATPases within the cell.  相似文献   

2.
Autosomal dominant and recessive distal renal tubular acidosis (dRTA) can be caused by mutations in the anion exchanger 1 (AE1 or SLC4A1) gene, which encodes the erythroid chloride/bicarbonate anion exchanger membrane glycoprotein (eAE1) and a truncated kidney isoform (kAE1). The biosynthesis and trafficking of kAE1 containing a novel recessive missense dRTA mutation (kAE1 S773P) was studied in transiently transfected HEK-293 cells, expressing the mutant alone or in combination with wild-type kAE1 or another recessive mutant, kAE1 G701D. The kAE1 S773P mutant was expressed at a three times lower level than wild-type, had a 2-fold decrease in its half-life, and was targeted for degradation by the proteasome. It could not be detected at the plasma membrane in human embryonic kidney cells and showed predominant endoplasmic reticulum immunolocalization in both human embryonic kidney and LLC-PK1 cells. The oligosaccharide on a kAE1 S773P N-glycosylation mutant (N555) was not processed to the complex form indicating impaired exit from the endoplasmic reticulum. The kAE1 S773P mutant showed decreased binding to an inhibitor affinity resin and increased sensitivity to proteases, suggesting that it was not properly folded. The other recessive dRTA mutant, kAE1 G701D, also exhibited defective trafficking to the plasma membrane. The recessive kAE1 mutants formed dimers like wild-type AE1 and could hetero-oligomerize with wild-type kAE1 or with each other. Hetero-oligomers of wild-type kAE1 with recessive kAE1 S773P or G701D, in contrast to the dominant kAE1 R589H mutant, were delivered to the plasma membrane.  相似文献   

3.
4.
5.
Vacuolar proton-translocating ATPases (V-ATPase) are multisubunit enzyme complexes located in the membranes of eukaryotic cells regulating cytoplasmic pH. So far, nothing is known about the genomic organization and chromosomal location of the various subunit genes in higher eukaryotes. Here we describe the isolation and analysis of a cDNA coding for the 54- and 56-kDa porcine V-ATPase subunit alpha and beta isoforms. We have determined the genomic structure of the V-ATPase subunit gene spanning at least 62 kb on Chromosome (Chr) 4q14-q16. It consists of 14 exons with sizes ranging from 54 bp to 346 bp, with a non-coding first exon and an alternatively spliced seventh exon leading to two isoforms. The 5′ end of the V-ATPase cDNA was isolated by RACE-PCR. The V-ATPase alpha isoform mRNA, lacking the seventh exon, has an open reading frame of 1395 nucleotides encoding a hydrophilic protein of 465 amino acids with a calculated molecular mass of 54.2 kDa and a pI of 7.8, whereas the beta isoform has a length of 1449 nucleotides encoding a protein of 483 amino acids with a calculated molecular mass of 55.8 kDa. Amino acid and DNA sequence comparison revealed that the porcine V-ATPase subunit exhibits a significant homology to the VMA13 subunit of Saccharomyces cerevisiae V-ATPase complex and V-ATPase subunit of Caenorhabditis elegans. Received: 14 May 1998 / Accepted: 20 October 1998  相似文献   

6.
7.
To understand the molecular structure of the vacuolar H(+)-translocating ATPase from plants, cDNAs encoding the N,N'-dicyclohexylcarbodiimide-binding 16-kDa proteolipid from oat (Avena sativa L. var. Lang) have been obtained. A synthetic oligonucleotide corresponding to a region of the bovine proteolipid cDNA (Mandel, M., Moriyama, Y., Hulmes, J.D., Pan, Y.-C.E., Nelson, H., and Nelson, N. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5521-5524) was used to screen an oat cDNA library constructed in lambda gt11. The nucleotide sequences of several positive clones (VATP-P1, clones 12, 54, 93) demonstrated the presence of a small multigene family. The four clones showed extensive divergence in their codon usage and their 3'-untranslated regions; however, the deduced amino acid sequences of the proteins were 97-99% identical. These clones encoded the proteolipid subunit as one of them (clone 12) expressed a fusion protein that reacted with an antibody to the 16-kDa proteolipid. The open reading frame of one cDNA clone (VATP-P1) predicted a polypeptide of 165 amino acids with a molecular mass of 16,641. Based on hydropathy plots, a molecule with four membrane-spanning domains was predicted, in which domain IV was especially conserved among different species. This domain showed 80% identity in nucleotide or amino acid sequences between the oat and the bovine proteolipids and contained a glutamate residue that is the putative N,N'-dicyclohexylcarbodiimide-binding residue. The presence of a small multigene family of the 16-kDa proteolipid was confirmed by Southern blot analysis showing that several distinct restriction fragments of oat nuclear DNA hybridized with the VATP-P1 cDNA.  相似文献   

8.
9.
Vacuolar H(+)-ATPase (V-ATPase), an electrogenic proton pump, is highly expressed in Plasmodium falciparum, the human malaria parasite. Although V-ATPase-driven proton transport is involved in various physiological processes in the parasite, the overall features of the V-ATPase of P. falciparum, including the gene organization and biogenesis, are far less known. Here, we report cDNA cloning of proteolipid subunit c of P. falciparum, the smallest and most highly hydrophobic subunit of V-ATPase. RT-PCR analysis as well as Northern blotting indicated expression of the proteolipid gene in the parasite cells. cDNA, which encodes a complete reading frame comprising 165 amino acids, was obtained, and its deduced amino acid sequence exhibits 52 and 57% similarity to the yeast and human counterparts, respectively. Southern blot analysis suggested the presence of a single copy of the proteolipid gene, with 5 exons and 4 introns. Upon transfection of the cDNA into a yeast null mutant, the cells became able to grow at neutral pH, accompanied by vesicular accumulation of quinacrine. In contrast, a mutated proteolipid with replacement of glutamate residue 138 with glutamine did not lead to recovery of the growth ability or vesicular accumulation of quinacrine. These results indicated that the cDNA actually encodes the proteolipid of P. falciparum and that the proteolipid is functional in yeast.  相似文献   

10.
11.
Sun-Wada GH  Yoshimizu T  Imai-Senga Y  Wada Y  Futai M 《Gene》2003,302(1-2):147-153
Vacuolar-type proton-translocating ATPases (V-ATPases), multimeric proton pumps, are involved in a wide variety of physiological processes. For their diverse functions, V-ATPases utilize a specific subunit isoform(s). Here, we reported the molecular cloning and characterization of three novel subunit isoforms, C2, d2 and G3, of mouse V-ATPase. These isoforms were expressed in a tissue-specific manner, in contrast to the ubiquitously expressed C1, d1 and G1 isoforms. C2 was expressed predominantly in lung and kidney, and d2 and G3 specifically in kidney. We introduced these isoforms into yeasts lacking the corresponding genes. Although the G3 and d2 did not rescue the vmaDelta phenotype, d1 and the two C isoforms functionally complemented the Deltavma6 and Deltavma5, respectively, indicating that they are bona fide subunits of V-ATPase.  相似文献   

12.
The vacuolar protein sorting 4 (Vps4) protein is essential for the multivesicular body (MVB) pathway, virus budding process and cytokinesis. Vps4 has been identified and characterized from many species, but not from silkworm Bombyx mori. In this study, we firstly identified and cloned the silkworm homologous gene for VPS4, expressed it in Escherichia coli, purified and characterized the protein designated as BmVps4. The BmVps4 cDNA contains an open reading frame of 1,314?bp, and encodes a protein of 438 amino acid residues. BmVps4 is of high sequence-similarity to Vps4 proteins from other species. The recombinant BmVps4 shows ATPase activity, which can be stimulated by Mg2+ and inhibited by dominant mutations. Together, our data suggest BmVps4 is the genuine silkworm homologue of Vps4. To our knowledge, this is the first-time characterization of any silkworm MVB proteins. This study will facilitate further investigation of silkworm MVB pathway and its possible roles in the infection and budding of B. mori nuclear polyhedrosis virus (BmNPV), which is one of the most common and severe pathogens for silkworms. The cloned BmVps4 sequence is deposited in GenBank (Accession number GQ995504).  相似文献   

13.
Ancans J  Thody AJ 《FEBS letters》2000,478(1-2):57-60
In this study, we describe the activation of melanogenesis by selective vacuolar type H(+)-ATPase inhibitors (bafilomycin A1 and concanamycin A) in amelanotic human and mouse melanoma cells which express tyrosinase but show no melanogenesis. Addition of the inhibitors activated tyrosinase within 4 h, and by 24 h the cells contained measurable amounts of melanin. These effects were not inhibited by cycloheximide (2 microgram/ml) which is consistent with a post-translational mechanism of activation. Our findings suggest that melanosomal pH could be an important and dynamic factor in the control of melanogenesis in mammalian cells.  相似文献   

14.
15.
A series of Northern blot hybridization experiments using probes derived from the rat gastric H+,K(+)-ATPase cDNA and the human ATP1AL1 gene revealed the presence of a 4.3-kilobase mRNA in colon that seemed likely to encode the distal colon H+,K(+)-ATPase, the enzyme responsible for K+ absorption in mammalian colon. A rat colon library was then screened using a probe from the ATP1AL1 gene, and cDNAs containing the entire coding sequence of a new P-type ATPase were isolated and characterized. The deduced polypeptide is 1036 amino acids in length and has an Mr of 114,842. The protein exhibits 63% amino acid identity to the gastric H+,K(+)-ATPase alpha-subunit and 63% identity to the three Na+,K(+)-ATPase alpha-subunit isoforms, consistent with the possibility that it is a K(+)-transporting ATPase. Northern blot analyses show that the 4.3-kilobase mRNA is expressed at high levels in distal colon; at much lower levels in proximal colon, kidney, and uterus; and at trace levels in heart and forestomach. The high mRNA levels in distal colon and the similarity of the colon pump to both gastric H+,K(+)- and Na+,K(+)-ATPases suggest that it is the distal colon H+,K(+)-ATPase. Furthermore, expression of its mRNA in kidney raises the possibility that the enzyme also corresponds to the H+,K(+)-ATPase that seems to play a role in K+ absorption and H+ secretion in the distal nephron.  相似文献   

16.
17.
Reversible phosphorylation is recognized to be a major mechanism for the control of intracellular events in eukaryotic cells. From a human fetal brain cDNA library, we isolated a cDNA clone encoding a novel dual specificity protein phosphatase, which showed 88% identity with previously reported mouse LMW-DSP3 at the amino acid level. The deduced protein had a single dual-specificity phosphatase catalytic domain, and lacked a cdc25 homology domain. LMW-DSP3 was expressed in the heart, lung, liver, and pancreas, and the expression level in the pancreas was highest. The LMW-DSP3 gene was located in human chromosome 2q32, and consisted of five exons spanning 21kb of human genomic DNA. LMW-DSP3 fused to GST showed phosphatase activity towards p-nitrophenyl phosphate which was optimal at pH 7.0 and 40 degrees C, and the activity was enhanced by Ca(2+) and Mn(2+). The phosphatase activity of LMW-DSP3 was inhibited by orthovanate. LMW-DSP3 showed phosphatase activity toward oligopeptides containing pSer/Thr and pTyr, indicating that LMW-DSP3 is a protein phosphatase with dual substrate specificity.  相似文献   

18.
19.
Guo L  Ji C  Gu S  Ying K  Cheng H  Ni X  Liu J  Xie Y  Mao Y 《Journal of genetics》2003,82(1-2):27-32
We isolated a 4301-bp cDNA from a human foetal brain cDNA library by high-throughput cDNA sequencing. It encodes a protein of 341 amino acids, which shows 69% identity with the human kinase CLIK1 (AAL99353), which was suggested to be the CLP-36 interacting kinase. Bioinformatics analysis suggests that the putative kinase may interact with PDZ and LIM domain proteins. Therefore the protein and its cDNA were named ’PDLIM1 interacting kinase 1 like’ (PDIK1L; nomenclature approved by the HUGO Gene Nomenclature Committee). Ensembl Genome Browser locatedPDIK1L to human chromosome 1p35.3. It spans about 13.7 kb and consists of four exons and three introns. Multiple-tissue cDNA panel PCR revealed that the gene is expressed widely in human tissues: liver, kidney, pancreas, spleen, thymus and prostate. The protein appears to be localized to the nucleus.  相似文献   

20.
We have cloned a human counterpart to a guinea pig STE20-like kinase cDNA, designated human SLK (hSLK), from a human lung carcinomatous cell line A549 cDNA library. hSLK cDNA encodes a novel 1204 amino acid serine/threonine kinase for which the kinase domain located at the N-terminus shares considerable homology to that of the STE20-like kinase family. The C-terminal domain of hSLK includes both the coiled-coil structure and four Pro/Glu/Ser/Thr-rich (PEST) sequences, but not the GTPase-binding domain (GBD) that is characteristic of the p21-activated kinase (PAK) family, polyproline consensus binding sites, or the Leu-rich domain seen in the group I germinal center kinases (GCKs). Northern blot analysis indicated that hSLK was ubiquitously expressed. hSLK overexpressed in COS-7 cells phosphorylates itself as well as myelin basic protein used as a substrate. On the other hand, hSLK cannot activate any of the three well-characterized mitogen-activated protein kinase MAPK (ERK, JNK/SAPK and p38) pathways. Moreover, hSLK kinase activity is not upregulated by constitutive active forms of GTPases (RasV12, RacV12 and Cdc42V12). These structural and functional properties indicate that hSLK should be considered to be a new member of group II GCKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号