首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low concentration of LatB inhibits not only the actin polymerization, but also induces profound alteration of MT distribution in pollen tubes of Nicotiana tabacum. The short randomly oriented MTs in the apical and subapical regions, became organized as bundles forming subapical rings or basket-like structures, surrounding the apex. Moreover, the depolymerization of AFs in the cortical regions of the apex and subapical region affects the timing of entrance of the vegetative nucleus and generative cell into the pollen tube.  相似文献   

2.
D. Menzel 《Protoplasma》1986,134(1):30-42
Summary The cytoskeleton in the siphonous, marine green algaAcetabularia is visualized by immunocytochemistry using antibodies against plant alfa tubulin and animal smooth muscle actin. In the vegetative phase of the life cycle, when the cell grows a cylindrical stalk and until the reproductive cap is completed, actin forms continuous, parallel bundles that extend through the entire length of the stalk and cap rays respectively. Microtubules (MTs) cannot be detected until the primary nucleus, located in the rhizoid of the giant cell, divides to form thousands of secondary nuclei. MTs can then be seen radiating from each secondary nucleus that is encountered in the stalk on its migration upwards into the cap rays. They are oriented mostly parallel to the long axis of the cell. At arrival in the cap rays up to the white spot stage, when nuclei assume equidistant positions in the cap ray cytoplasm, a radiating system of MTs forms around each nucleus and dramatically increases until impressive radial arrays have developed. This phase coincides with a disappearance of actin bundles in the cap rays, but they are retained in the stalk cytoplasm. Shortly after that additional MTs appear around the disk like partitions of cap ray cytoplasm. Concomitantly, bundles of actin reappear colinearly with the circumferrential MTs eventually forming complete rings around each disk of cap ray cytoplasm. During this process the compartments of the future cysts are gradually bulging outwards and simultaneously the rings of actin sink inwards until domes are formed with the nuclei fixed in the top centers of the domes. At this stage the peripheral areas of the radiating MT systems around the nuclei start to break down, whereas the circumferrential MT systems remain intact. Subsequently, the rings of both actin and MTs decrease in diameter, and finally contract to a spot opposite the nucleus, while the cysts continue to develop their oval shape. After the cysts have become separated, they round up and enter several rounds of nuclear divisions. MTs form short radial arrays around each nucleus with minor changes due to a reduction of MTs during division followed by a reappearance after completion of each division. Actin is rearranged in the cysts to a cortical network of randomly oriented, short bundles, that is maintained until gamete formation sets in.These findings accentuate the involvement of Cytoskeletal elements in the key steps of morphogenesis inAcetabularia to an extent that is unknown in higher plants.  相似文献   

3.
The morphology of budding and conjugating cells and associated changes in microtubules and actin distribution were studied in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma) by phase-contrast and fluorescence microscopy. The non-budding interphase cell showed a nucleus situated in the central position and bundles of cytoplasmic microtubules either stretching parallel to the longitudinal cell axis or randomly distributed in the cell; none of these, however, had a character of astral microtubules. During mitosis, the nucleus divided in the daughter cell, cytoplasmic microtubules disappeared and were replaced by a spindle. The cytoplasmic microtubules reappeared after mitosis had finished. Actin patches were present both in the bud and the mother cell. Cells were induced to mate by transfer to ribitol- containing medium without nitrogen. Partner cells fused by conjugation projections where actin patches had been accumulated. Cell fusion resulted in a zygote that produced a basidium with parallel bundles of microtubules extended along its axis and with actin patches concentrated at the apex. The fused nucleus moved towards the tip of the basidium. During this movement, nuclear division was taking place; the nuclei were eventually distributed to basidiospores. Mitochondria appeared as vesicles of various sizes; their large amounts were found, often lying adjacent to microtubules, in the subcortical cytoplasm of both vegetative cells and zygotes.  相似文献   

4.
In the giant marine green alga Bryopsis the chloroplasts are attached with their flattened, ventral sides to the inner surface of the cortical cytoplasm. They move at speeds up to 60 microns/min in the direction of the long axis of the cell either in a coordinated fashion or independently of each other. Intracellular sedimentation of chloroplasts by centrifugation leaves an intact cell cortex in which the movement of mitochondria and nuclei--normally obscured by chloroplasts--can be observed. Mitochondria display a saltatory type of movement alongside an extensive, two-dimensional system of phase-translucent channels. Nuclei appear to be entangled in the channel system and move in an unusual, rolling fashion. With a new technique involving the microsurgical removal of the chemically fixed cytoplasm from the confinement of the cell wall, this unique cell type is made accessible to immunocytochemical procedures. Microtubules (MT) can be visualized using a variety of tubulin antibodies, while actin only reacts with one monoclonal antibody out of several antibodies tested. Microtubules form a dense, two-dimensional palisade of bundles extending longitudinally in the cortical cytoplasm. Parallel arrays of actin fibers closely, but not exclusively, colocalize with the MT bundles. Particularly strong actin staining is observed near converging MT bundles underneath the tip regions of the chloroplasts. Because of the extensive superposition of actin and MTs, both cytoskeletal elements could potentially cooperate in creating the diversity of organelle movements in this alga. The respective roles of MTs and actin in chloroplast movement are experimentally tested in the accompanying paper.  相似文献   

5.
The organization of the microtubule (MT) and actin microfilament (MF) cytoskeleton of tip-growing rhizoids and protonemata of characean green algae was examined by confocal laser scanning microscopy. This analysis included microinjection of fluorescent tubulin and phallotoxins into living cells, as well as immunofluorescence labeling of fixed material and fluorescent phallotoxin labeling of unfixed material. Although the morphologically very similar positively gravitropic (downward growing) rhizoids and negatively gravitropic (upward growing) protonemata show opposite gravitropic responses, no differences were detected in the extensive three-dimensional distribution of actin MFs and MTs in both cell types. Tubulin microinjection revealed that in contrast to internodal cells, fluorescent tubulin incorporated very slowly into the MT arrays of rhizoids, suggesting that MT dynamics are very different in tip-growing and diffusely expanding cells. Microtubules assembled from multiple sites at the plasma membrane in the basal zone, and a dense subapical array emerged from a diffuse nucleation centre on the basal side of the nuclear envelope. Immunofluorescence confirmed these distribution patterns but revealed more extensive MT arrays. In the basal zone, short branching clusters of MTs form two cortical hemicylinders. Subapical, axially oriented MTs are distributed in equal density throughout the peripheral and inner cytoplasm and are closely associated with subapical organelles. Microtubules, however, are completely absent from the apical zones of rhizoids and protonemata. Actin MFs were found in all zones of rhizoids and protonemata including the apex. Two files of axially oriented bundles of subcortical actin MFs and ring-like actin structures in the streaming endoplasm of rhizoids were detected in the basal zones by microinjection or rhodamine-phalloidin labeling. The subapical zone contains a dense array of mainly axially oriented actin MFs that co-distribute with the subapical MT array. In the apex, actin MFs form thicker bundles that converge into a remarkably distinct actin patch in the apical dome, whose position coincides with the position of the endoplasmic reticulum aggregate in the centre of the Spitzenk?rper. Actin MFs radiate from the actin patch towards the apical membrane. Together with results from previous inhibitor studies (Braun and Sievers, 1994, Eur J Cell Biol 63: 289–298), these results suggest that MTs have a stabilizing function in maintaining the polar cytoplasmic and cytoskeletal organization. The motile processes, however, are mediated by actin. In particular, the actin cytoskeleton appears to be involved in the structural and functional organization of the Spitzenk?rper and thus is responsible for controlling cell shape and growth direction. Despite the similar structural arrangements of the actin cytoskeleton, major differences in the function of actin MFs have been observed in rhizoids and protonemata. Since actin MFs are more directly involved in the gravitropic response of protonemata than of rhizoids, the opposite gravitropism in the two cell types seems to be based mainly on different properties and activities of the actin cytoskeleton. Received: 14 September 1997 / Accepted: 16 October 1997  相似文献   

6.
Abstract Anti-actin drugs, cytochalasins A and B, inhibited both normal single, and benomyl-induced multiple, germ tube outgrowth from conidia of Neurospora crassa . Actin was cytochemically found to be concentrated in each of the benomyl-induced germ tube tips. No significant quantitative changes either in total actin or its isoforms were measured in the inhibitor-treated germlings. While intact microtubules are required for normal, monopolar axiation of the germ tube, they appear not to be necessary for benomyl-induced multipolar outgrowth which, in contrast, still requires intact actin microfilaments. Microfilaments and microtubules thus play complementary roles in the normal germination of conidia.  相似文献   

7.
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.  相似文献   

8.
The germination and growth of pollen grains of Nicotiana tabacum and N. alata with the anti-microtubule drug oryzalin retarded significantly the movement of the vegetative nucleus (VN) and the generative cell (GC) from the grain to the tube apex but had no effect on pollen tube elongation. In N. tabacum, only 11% and 48% of the pollen tubes treated with oryzalin for 6 h and 12 h, respectively, had the VN and GC in the tube mainly in its middle part. In corresponding control materials, 79% and 99% of pollen tubes contained the VN and GC close to the apex. Indirect immunofluorescence microscopy and related studies of the tubes grown in the presence of oryzalin revealed complete absence of microtubules (MTs) but apparently intact microfilaments (MFs). These results suggested that the movement of VN and GC from the grain into the tube is possible when no MTs but only MFs are present, but the movement is then slow. In control tubes, the parallel orientation of MT bundles and extensions of VN were interpreted to represent the structural organization needed for the MT-dependent movement of VN.  相似文献   

9.
M. D. Lazzaro 《Protoplasma》1996,194(3-4):186-194
Summary Actin microfilaments form a dense network within pollen tubes of the gymnosperm Norway spruce (Picea abies). Microfilaments emanate from within the pollen grain and form long, branching arrays passing through the aperture and down the length of the pollen tube to the tip. Pollen tubes are densely packed with large amyloplasts, which are surrounded by branching microfilament bundles. The vegetative nucleus is suspended within the elongating pollen tube within a complex array of microfilaments oriented both parallel to and perpendicular with the growing axis. Microfilament bundles branch out along the nuclear surface, and some filaments terminate on or emanate from the surface. Microfilaments in the pollen tube tip form a 6 m thick, dense, uniform layer beneath the plasma membrane. This layer ensheathes an actin depleted core which contains cytoplasm and organelles, including small amyloplasts, and extends back 36 m from the tip. Behind the core region, the distinct actin layer is absent as microfilaments are present throughout the pollen tube. Organelle zonation is not always maintained in these conifer pollen tubes. Large amyloplasts will fill the pollen tube up to the growing tip, while the distinct layer of microfilaments and cytoplasm beneath the plasma membrane is maintained. The distinctive microfilament arrangement in the pollen tube tips of this conifer is similar to that seen in tip growth in fungi, ferns and mosses, but has not been reported previously in seed plants.  相似文献   

10.
Actin and pollen tube growth   总被引:24,自引:0,他引:24  
L. Vidali  P. K. Hepler 《Protoplasma》2001,215(1-4):64-76
Summary Actin microfilaments (MFs) are essential for the growth of the pollen tube. Although it is well known that MFs, together with myosin, deliver the vesicles required for cell elongation, it is becoming evident that the polymerization of new actin MFs, in a process that is independent of actomyosin-dependent vesicle translocation, is also necessary for cell elongation. Herein we review the recent literature that focuses on this subject, including brief discussions of the actin-binding proteins in pollen, and their possible role in regulating actin MF activity. We promote the view that polymerization of new actin MFs polarizes the cytoplasm at the apex of the tube. This process is regulated in part by the apical calcium gradient and by different actin-binding proteins. For example, profilin binds actin monomers and gives the cell control over the initiation of polymerization. A more recently discovered actin-binding protein, villin, stimulates the formation of unipolar bundles of MFs. Villin may also respond to the apical calcium gradient, fragmenting MFs, and thus locally facilitating actin remodeling. While much remains to be discovered, it is nevertheless apparent that actin MFs play a fundamental role in controlling apical cell growth in pollen tubes.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

11.
Nuclear migration was studied in germinating conidia of a temperature-sensitive mutant of the fungus Aspergillus nidulans. At the restrictive temperature motility was demonstrably impaired because significantly fewer nuclei migrated into the germ tube relative to a population of similarly sized germlings grown at the permissive temperature. Further comparison of these populations showed that the mutant was leaky in that an increasing number of nuclei migrated as the total nuclear content increased in each germling. The restrictive temperature also induced elevated mitotic asynchrony and increased numbers of nuclei per germling. Serial section-based reconstruction of the microtubules in a freeze-substituted germling showed that they were not attached to the nucleus-associated organelles, were approximately parallel to the long axis of the germ tube, and seemed to be randomly distributed between the central and peripheral cytoplasm. Five germlings from each temperature were selected for quantitative analysis of cytoplasmic microtubules. All 10 germlings had typical nuclear migration phenotypes. No significant temperature-related difference in microtubule density was found. We conclude that inhibition of nuclear migration in the mutant is the effect of some defect other than the failure of cytoplasmic microtubules to assemble to their normal population density. We also suggest that nuclear motility is not dependent on mitosis-related microtubules.  相似文献   

12.
The cortical cytoplasm of the giant cells of Bryopsis contains hundreds of interconnected microtubule (MT) bundles aligned along the cell's long axis. Actin fibers show an extensive but not exclusive superposition with these MT bundles. Chloroplasts move parallel to the bundles. Colchicine (0.5 mM), vinblastine (0.1 mM), and the herbicide ami-prophosmethyl (APM, 1-5 microM) strongly inhibit chloroplast movement and severely disrupt both the MT and the actin network. Additionally, APM leads to the appearance of large actin bundles up to 5 microns in diameter and several tens of micron in length. Erythro-9-[3-(2-hydroxynonyl)]adenine (EHNA, 1 mM) does not block chloroplast movement, but affects chloroplast behavior by causing transient aggregations. The MT network is not significantly changed by EHNA, but actin fibers converge in large, radially symmetric complexes in regions of chloroplast aggregates. Cytochalasin D (CD, 1-10 micrograms/ml) leads to a significant but transient reduction of chloroplast speed within the first 60 min, as the actin network breaks down into small foci. Within the next 1 to 3 h of treatment, these foci segregate into massive clusters where chloroplasts remain immobilized. At the same time, chloroplast movement recovers in other areas of the cell. This recovery coincides with the reappearance of actin filament bundles in these cell regions. The MT cytoskeleton is not significantly affected by CD. These data are inconsistent with a mechanism of chloroplast movement in Bryopsis based solely on either MTs or actin, but instead they suggest an intimate interaction of both cytoskeletal networks in maintaining the spatial organization of the cytoplasm and in supporting chloroplast movement.  相似文献   

13.
Summary The ultrastructure of the cytoskeleton inNicotiana alata pollen tubes grownin vitro has been examined after rapid freeze fixation and freeze substitution (RF-FS). Whereas cytoplasmic microtubules (MTs) and especially microfilaments (MFs) are infrequently observed after conventional chemical fixation, they occur in all samples prepared by RF-FS. Cortical MTs are oriented parallel to the long axis of the pollen tube and usually appear evenly spaced around the circumference of the cell. They are always observed with other components in a structural complex that includes the following: 1. a system of MFs, in which individual elements are aligned along the sides of the MTs and crossbridged to them; 2. a system of cooriented tubular endoplasmic reticulum (ER) lying beneath the MTs, and 3. the plasma membrane (PM) to which the MTs appear to be extensively linked. The cortical cytoskeleton is thus structurally complex, and contains elements such as MFs and ER that must be considered together with the MTs in any attempt to elucidate cytoskeletal function. MTs are also observed within the vegetative cytoplasm either singly or in small groups. Observations reveal that some of these may be closely associated with the envelope of the vegetative nucleus. MTs of the generative cell, in contrast to those of the vegetative cytoplasm, occur tightly clustered in bundles and show extensive cross-bridging. These bundles, especially in the distal tail of the generative cell, are markedly undulated. MFs are observed commonly in the cytoplasm of the vegetative cell. They occur in bundles oriented predominantly parallel to the pollen tube axis. Although proof is not provided, we suggest that they are composed of actin and are responsible for generating the vigorous cytoplasmic streaming characteristic of living pollen tubes.Abbreviations EGTA ethylene glycol bis-(-aminoethyl ether), N,N,N,N-tetraacetic acid - ER endoplasmic reticulum - MF microfilament - MT microtubule - PEG polyethylene glycol - PM plasma membrane - RF-FS rapid freeze fixation-freeze substitution  相似文献   

14.
The fungus Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, is an obligate biotrophic basidiomycete. Urediniospores are the most common spore type involved in the epidemiology of this disease. Tip growth of germ tubes of germinated urediniospores is a key step during infection of wheat, but few studies have investigated it so far. Recent research has found that actin is closely associated with hyphal tip growth. In this study, we have cloned and obtained the full-length actin cDNA from P. striiformis f. sp. tritici and characterized its expression. Furthermore, actin filament (F-actin) patterns were visualized microscopically during germ tube formation. The most conspicuous actin-containing structures were actin patches. They were mainly concentrated near the hyphal tip and scattered throughout the cortex. By using cytochalasin B, we observed that depolymerization of F-actin greatly reduced the germination rate of urediniospores and disrupted the transport of vesicles to the germ tube tip, indicating that F-actin played a key role in the tip growth of P. striiformis f. sp. tritici. This work helps us to understand the tip growth mechanism of P. striiformis f. sp. tritici, and may provide a theoretical framework for designing novel pesticides.  相似文献   

15.
Cytoplasmic vesicles in germinating spores ofGilbertella persicaria   总被引:1,自引:0,他引:1  
Summary Germ tube apices ofGilbertella persicaria contain cytoplasmic vesicles, similar to the secretory vesicles found at the tips of vegetative hyphae. The vesicles are present at all stages of development, from the time of germ tube initiation to the establishment of branched hyphae. In contrast to the abundant vesicles at tips of established hyphae, the germ tubes have only a few apical vesicles in a layer next to the plasma membrane. When germinated spores are treated by washing and centrifuging prior to fixation, the cytoplasm is often disrupted near the apex, and the clusters of apical vesicles disappear. The findings indicate the delicate nature of hyphal tips and the necessity of avoiding prefixation stresses in order to preserve the apical apparatus of growing hyphae.  相似文献   

16.
The Spitzenkörper (Spk) is a highly dynamic and pleomorphic complex located at the hyphal apex of filamentous fungi. Most studies revealing the structure and behavior of the Spk have been conducted on mature vegetative hyphae of filamentous fungi, including both main leading hyphae and branches. However, these reports do not address whether the observations can be extended to germ tubes. By enhanced phase-contrast video-microscopy and laser scanning confocal microscopy we have analyzed the intracellular changes prior to the appearance of a Spk in germlings of Neurospora crassa. Observations began at the early stages of spore germination and were carried out until a conspicuous Spk could be observed at the apex of germ tubes. Before a Spk could be observed, young germ tubes (<150 μm) displayed a uniform distribution of organelles such as nuclei, mitochondria, and cytoplasmic granules along the length of the cells. Once the germlings started reaching lengths of more than approximately 150 μm, visible organelles experienced a displacement towards the subapical region of the cell and a small exclusion zone free of organelles (0.6 ± 0.3 μm) formed at the apex. The position of this exclusion zone within the apex seemed to determine the germling growth direction, which was highly erratic. Few minutes after it first appeared, upon growth of the germling, the exclusion zone started to become occupied by an accumulation of material that gradually concentrated into a light gray body that we describe as an immature Spk. During this phase the presence of a Spk in the apical dome was not constant. Approximately 30 min later, the immature Spk became more robust and gradually acquired its typical phase-dark appearance, while the growth direction of the germ tube became less wavering. The formation of a mature phase-dark Spk coincided with the stabilization of the growth direction of the germling, therefore suggesting that it is at this stage when the transition from germling to vegetative hypha occurs.  相似文献   

17.
Summary In order to define cytoskeletal domains of the mammalian photoreceptor, actin and tubulin were localized in adult retinae of mouse and human. For light-microscopic localization, actin was labeled using fluorescent phalloidin or monoclonal antibodies against actin, and tubulin was labeled using monoclonal antibodies against alpha- and beta-tubulin in an immunocytochemical method. Actin and tubulin were also localized by ultrastructural immunocytochemistry in the mouse. Filamentous actin was present in the retina at the outer limiting membrane and in synaptic terminals, especially of the cones, while globular actin was observed additionally in the inner segments. Müller cell cytoplasm and apical microvilli at the outer limiting membrane were also labeled for filamentous actin. Alpha- and beta-tubulin were evident throughout the photoreceptors, including the inner segments, but not in the synaptic terminals or at the outer limiting membrane. In the early postnatal retina of mouse, actin and tubulin were present at the ventricular surface. This pattern changed as photoreceptors fully elongated and as synaptogenesis occurred in the outer plexiform layer.  相似文献   

18.
Summary— The distribution of microtubules was investigated in Nicotiana tabacum pollen tubes at different stages of tube growth by immunofluorescence microscopy. Using specific antibodies, the presence of microtubules consisting of different tubulin isoforms was tested. α-, β- and tyrosinated α-tubulin were present within the tube, whereas the acetylated form was lacking. The presence of tubulin subunits in pollen tube extracts was also investigated by immunoblotting analyses. The use of a confocal laser scanning microscope integrated with computer-assisted imaging, allowed a detailed visualization of the microtubule distribution and organization. Cytoplasmic microtubules organized as short bundles with various orientations were detected at the apex of long tubes.  相似文献   

19.
Stress fibers in situ in proximal tubules of the rat kidney   总被引:1,自引:0,他引:1  
Actin bundles in proximal tubules of the rat kidney were examined by immunofluorescence and confocal laser microscopy with special reference to their three-dimensional distribution and identification as stress fibers. Renal tubular segments were prepared from the fresh renal cortex by simple homogenization and centrifugation, and fixed in formaldehyde for staining with fluorescent dye-labeled phalloidin. Segments of the proximal tubules could be identified easily on the bases of their diameter, the height of epithelial cells and prominent brush borders. Confocal laser microscopy clearly demonstrated the overall distribution of actin bundles in the whole-mount proximal tubular segments. Actin bundles in the basal cytoplasm of epithelial cells were observed to run parallel to each other and at a right angle to the tubular axis. In the stereo views reconstructed from serial optical sections, the basal actin bundles appeared as straight rods with both ends tapered. They varied in length and width and extended rather short distances of not more than 10 microns. Often, two or more actin bundles were longitudinally aligned in tandem. Some bundles showed irregular bandings along their length. Each bundle was composed of tightly packed actin filaments which could be decorated with heavy meromyosin subfragment-1 to display a bi-directional arrangement within the bundle. Immunostaining of cryostat sections showed that actin bundles contained myosin and vinculin. Enzymatically isolated proximal tubules contracted upon addition of Mg-ATP. These observations collectively suggest that the actin bundles at the base of renal proximal tubule epithelial cells can be listed among the examples of stress fibers in situ.  相似文献   

20.
Lenartowska M  Michalska A 《Planta》2008,228(5):891-896
The actin cytoskeleton plays a crucial role in pollen tube growth. In elongating pollen tubes the organization and arrangement of actin filaments (AFs) differs between the shank and apical region. However, the orientation of AFs in pollen tubes has not yet been successfully demonstrated. In the present work we have used myosin II subfragment 1 (S1) decoration to determine the polarity of AFs in pollen tubes. Electron microscopy studies revealed that in the shank of the tube bundles of AFs exhibit uniform polarity with those close to the cell cortex having their barbed ends oriented towards the tip of the pollen tube while those in the cell center have their barbed ends oriented toward the base of the tube. At the subapex, some AFs are organized in closely packed and longitudinally oriented bundles and some form curved bundles adjacent to the cell membrane. In contrast, few AFs are dispersed with random orientation in the extreme apex of the pollen tube. Our results confirm that the direction of cytoplasmic streaming within pollen tubes is determined by the polarity of AFs in the bundles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号