首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We isolated an F' episome of Escherichia coli carrying the glnA+ gene from K. aerogenes and an F' episome of E. coli carrying the glnA4 allele from K. aerogenes responsible for the constitutive synthesis of glutamine synthetase. Complementation tests with these episomes showed that the glnA4 mutation (leading to the constitutive synthesis of active glutamine synthetase) was in the gene identified by mutations glnA20, glnA51, and glnA5 as the structural gene for glutamine synthetase. By using these merodiploid strains we were able to show that the glnA51 mutation lead to the synthesis of a glutamine synthetase that lacked enzymatic activity but fully retained its regulatory properties. Finally, we discuss a model that explains the several phenotypes associated with mutations such as glnA4 located within the structural gene for glutamine synthetase leading to constitutive synthesis of active glutamine synthetase.  相似文献   

2.
Genetic control of glutamine synthetase in Klebiella aerogenes.   总被引:7,自引:45,他引:7       下载免费PDF全文
Mutations at two sites, glnA and glnB, of the Klebsiella aerogenes chromosome result in the loss of glutamine synthetase. The locations of these sites on the chromosome were established by complementation by episomes of Escherichia coli and by determination of their linkage to other genetic sites by transduction with phage P1. The glnB gene is located at a position corresponding to 48 min on the Taylor map of the E. coli chromosome; it is linked to tryA, nadB, and GUA. The glnA gene is at a position corresponding to 77 min on the Taylor map and is linked to rha and metB; it is also closely linked to rbs, located in E. coli at 74 min, indicating a difference in this chromosomal region between E. coli and K. aerogenes. Mutations in the glnA site can also lead to nonrepressible synthesis of active glutamine synthetase. The examination of the fine genetic structure of glnA revealed that one such mutation is located between two mutations leading to the loss of enzymatic activity. This result, together with evidence that the structural gene for glutamine synthetase is at glnA, suggests that glutamine synthetase controls expression of its own structural gene by repression.  相似文献   

3.
4.
5.
We have isolated three strains of Klebsiella aerogenes that failed to show repression of glutamine synthetase even when grown under the most repressing conditions for the wild-type strain. These mutant strains were selected as glutamine-independent derivatives of a strain that is merodiploid for the glnA region and contains a mutated glnF allele. The mutation responsible for the Gln+ phenotype in each strain was tightly linked to glnA, the structural gene for glutamine synthetase, and was dominant to the wild-type allele. These mutations are probably lesions in the control region of the glnA gene, since each mutation was cis-dominant for constitutive expression of the enzyme in hybrid merodiploid strains. Strains harboring this class of mutations were unable to produce a high level of glutamine synthetase unless they also contained an intact glnF gene, and unless cells were grown in derepressing medium. This study supports the idea that the glnA gene is regulated both positively and negatively, and that the deoxyribonucleic acid sites critical for positive control and negative control are functionally distinct.  相似文献   

6.
The glnD mutation of Klebsiella aerogenes is cotransducible by phage P1 with pan (requirement for pantothenate) and leads to a loss of uridylytransferase and uridylyl-removing enzyme, components of the glutamine synthetase adenylylation system. This defect results in an inability to deadenylylate glutamine synthetase rapidly and in a requirement for glutamine for normal growth. Suppression of the glnD mutation are located at the glutamine synthetase structural gene glnA.  相似文献   

7.
Mutations at two sites of the Klebsiella aerogenes chromosome, unlinked by transduction with phages PW52 and P1, result in the lack of enzymatically active glutamine synthetase. A mutation in the glnB site leads to a marked decrease in the formation of an apparently normal enzyme. Some of the mutations in the glnA site lead to the production of enzymatically inactive material capable of reacting with anti-glutamine synthetase serum. The revertant of a glnA mutant was found to produce a glutamine synthetase with less activity and less stability to heat than the enzyme of the wild type. These results locate the structural gene to the production of enzymatically inactive glutamine synthetase antigen, not subject to repression by exogenously added ammonia. This observation suggests that glutamine synthetase is itself involved in the regulation of the synthesis of glutamine synthetase.  相似文献   

8.
A glutamine synthetase (GS) gene, glnA, from Bacteroides fragilis was cloned on a recombinant plasmid pJS139 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as a sole source of nitrogen. DNA homology was not detected between the B. fragilis glnA gene and the E. coli glnA gene. The cloned B fragilis glnA gene was expressed from its own promoter and was subject to nitrogen repression in E. coli, but it was not able to activate histidase activity in an E. coli glnA ntrB ntrC deletion mutant containing the Klebsiella aerogenes hut operon. The GS produced by pJS139 in E. coli was purified; it had an apparent subunit Mr of approximately 75,000, which is larger than that of any other known bacterial GS. There was very slight antigenic cross-reactivity between antibodies to the purified cloned B. fragilis GS and the GS subunit of wild-type E. coli.  相似文献   

9.
The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of 466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA^+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.  相似文献   

10.
L V Wray  S H Fisher 《Gene》1988,71(2):247-256
The Streptomyces coelicolor glutamine synthetase (GS) structural gene (glnA) was cloned by complementing the glutamine growth requirement of an Escherichia coli strain containing a deletion of its glnALG operon. Expression of the cloned S. coelicolor glnA gene in E. coli cells was found to require an E. coli plasmid promoter. The nucleotide sequence of an S. coelicolor 2280-bp DNA segment containing the glnA gene was determined and the complete glnA amino acid sequence deduced. Comparison of the derived S. coelicolor GS protein sequence with the amino acid sequences of GS from other bacteria suggests that the S. coelicolor GS protein is more similar to the GS proteins from Gram-negative bacteria than it is with the GS proteins from two Gram-positive bacteria, Bacillus subtilis and Clostridium acetobutylicum.  相似文献   

11.
The gene for glutamate dehydrogenase (gdhD) has been mapped in Klebsiella aerogenes by P1 transduction. It is linked to pyrF and trp with the order pyrF-trp-gdh. Complementation analysis using F' episomes from Escherichia coli suggests an analogous location in E. coli. Two mutants able to produce glutamate dehydrogenase in the presence of high levels of glutamine synthetase have been isolated. One, tightly linked to gdhD, shows normal repression control by glutamine synthetase but produces four times as much glutamate dehydrogenase activity as does the wild type under all conditions tested. The other revertant is not linked to gdhD or glnA.  相似文献   

12.
We have isolated the Bradyrhizobium japonicum gene encoding glutamine synthetase I (glnA) from a phage lambda library by using a fragment of the Escherichia coli glnA gene as a hybridization probe. The rhizobial glnA gene has homology to the E. coli glnA gene throughout the entire length of the gene and can complement an E. coli glnA mutant when borne on an expression plasmid in the proper orientation to be transcribed from the E. coli lac promoter. High levels of glutamine synthetase activity can be detected in cell-free extracts of the complemented E. coli. The enzyme encoded by the rhizobial gene was identified as glutamine synthetase I on the basis of its sedimentation properties and resistance to heat inactivation. DNA sequence analysis predicts a high level of amino acid sequence homology among the amino termini of B. japonicum, E. coli, and Anabaena sp. strain 7120 glutamine synthetases. S1 nuclease protection mapping indicates that the rhizobial gene is transcribed from a single promoter 131 +/- 2 base pairs upstream from the initiation codon. This glnA promoter is active when B. japonicum is grown both symbiotically and in culture with a variety of nitrogen and carbon sources. There is no detectable sequence homology between the constitutively expressed glnA promoter and the differentially regulated nif promoters of the same B. japonicum strain.  相似文献   

13.
Mutations in a site, glnF, linked by P1-mediated transduction of argG on the chromosome of Klebsiella aerogenes, result in a requirement for glutamine. Mutants in this gene have in all media a level of glutamine synthetase (GS) corresponding to the level found in the wild-type strain grown in the medium producing the strongest repression of GS. The adenylylation and deadenylylation of GS in glnF mutants is normal. The glutamine requirement of glnF mutants could be suppressed by mutations in the structural gene for GS, glnA. These mutations result in altered regulation of GS synthesis, regardless of the presence or absence of the glnF mutation (GlnR phenotype). In GlnR mutants the GS level is higher than in the wild-type strain when the cells are cultured in strongly repressing medium, but lower than in the wild-type strain when cells are cultured in a derepressing medium. Heterozygous merodiploids carrying a normal glnA gene as well as a glnA gene responsible for the GlnR phenotype behave in every respect like merodiploids carrying two normal glnA genes. These results confirm autogenous regulation of GS synthesis and indicate that GS is both a repressor and an activator of GS synthesis. The mutation in glnA responsible for the GLnR phenotype has apparently resulted in the formation of a GS that is incompetent both as repressor and as activator of GS synthesis. According to this hypothesis, the product of the glnF gene is necessary for activation of the glnA gene by GS.  相似文献   

14.
Glutamine synthetase gene of Bacillus subtilis   总被引:22,自引:0,他引:22  
The glutamine synthetase gene (glnA) of Bacillus subtilis was purified from a library of B. subtilis DNA cloned in phage lambda. By mapping the locations of previously identified mutations in the glnA locus it was possible to correlate the genetic and physical maps. Mutations known to affect expression of the glnA gene and other genes were mapped within the coding region for glutamine synthetase, as determined by measuring the sizes of truncated, immunologically cross-reacting polypeptides coded for by various sub-cloned regions of the glnA gene. When the entire B. subtilis glnA gene was present on a plasmid it was capable of directing synthesis in Escherichia coli of B. subtilis glutamine synthetase as judged by enzymatic activity, antigenicity, and ability to allow growth of a glutamine auxotroph. By use of the cloned B. subtilis glnA gene as a hybridization probe, it was shown that the known variability of glutamine synthetase specific activity during growth in various nitrogen sources is fully accounted for by changes in glnA mRNA levels.  相似文献   

15.
16.
The glutamine synthetase (GS) gene glnA of Thiobacillus ferrooxidans was cloned on recombinant plasmid pMEB100 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as the sole source of nitrogen. High levels of GS-specific activity were obtained in the E. coli glnA deletion mutants containing the T. ferrooxidans GS gene. The cloned T. ferrooxidans DNA fragment containing the glnA gene activated histidase activity in an E. coli glnA glnL glnG deletion mutant containing the Klebsiella aerogenes hut operon. Plasmid pMEB100 also enabled the E. coli glnA glnL glnG deletion mutant to utilize arginine or low levels of glutamine as the sole source of nitrogen. There was no detectable DNA homology between the T. ferrooxidans glnA gene and the E. coli glnA gene.  相似文献   

17.
18.
Glutamine synthetase could be repressed several hundredfold rather than 6- to 10-fold as previously reported. Ammonia was not the primary repression signal for glutamine synthetase. Repression appeared to be mediated by a high level of glutamine and probably by a high ratio of glutamine to alpha-ketoglutarate. Mutations in glnA (the structural gene for glutamine synthetase) were seen to fall into three phenotypic groups: glutamine auxotrophs that produced no detectable glnA product; glutamine auxotrophs that produced a glnA product lacking enzymatic activity (and hence repressibility by ammonia) but were repressible under appropriate conditions; and glutamine synthetase regulatory mutants, whose glnA product was enzymatically active and not repressible under any conditions.  相似文献   

19.
Ammonia-nitrogen-limited continuous cultures of Escherichia coli and Klebsiella aerogenes contain induced levels of glutamine synthetase that is deadenylyated (i.e., fully active). In the presence of excess ammonia or glutamate in glucose-limited cultures of E. coli, glutamine synthetase is repressed and adenylylated (inactive). The average state of adenylylation (n) is a linear function of the specific growth rate. At low specific growth rates, glutamine synthetase is adenylylated; as the specific growth rate increases, n decreases, approaching 0 to 2 at rapid growth rates. The average state of adenylylation correlates well with the intracellular concentrations and ratios of alpha-ketoglutarate and glutamine, which are key effectors in the adenylylation-deadenylylation systems. E. coli and K. aerogenes differ markedly in their growth yields, growth rates, and enzymatic composition during nitrogen limitation. The data suggest that, unlike K. aerogenes, E. coli W uses glutamate dehydrogenase to incorporate ammonia during nitrogen limitation. In E. coli, glutamate dehydrogenase is progressively induced during nitrogen limitation when mu (growth rate) approaches mumax. In contrast, in K. aerogenes glutamate dehydrogenase is repressed during nitrogen limitation, whereas glutamate synthase, an alternative supplier of glutamate to the cell, is induced. Data are presented that support the regulatory schemes proposed for the control of glutamine synthetase activity by induction-repression phenomena and adenylylation-deadenylylation reaction. We propose that the intracellular ratio of alpha-ketoglutarate to glutamine may be the most important physiological parameter in determining the activity of glutamine synthetase.  相似文献   

20.
We have determined the complete nucleotide sequence of a 2.4 kb chromosomal EcoT22I-NspV fragment, containing the Bacillus cereus glnA gene (structural gene of glutamine synthetase). The deduced amino acid sequence indicates that the glutamine synthetase subunit consists of 444 amino acid residues (50,063 Da). Comparisons are made with reported amino acid sequences of glutamine synthetases from other bacteria. Upstrem of glnA we found an open reading frame of 129 codons (ORF129) preceded by the consensus sequence for a typical promoter. Maxicell experiments showed two polypeptide bands, with molecular weights in good agreement with that of glutamine synthetase and that of ORF129, in addition to vector-coded protein. It is possible that the product of this open reading frame upstream of glnA has a regulatory role in glutamine synthetase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号