首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lingual artery of the bullfrog was perfused with artificial solution and the effects of Ca2+, Ca-channel blockers (MnCl2 and verapamil), cGMP, and cAMP added to the perfusing solution of the gustatory nerve responses were examined. The responses to chemical stimuli of group 1 (CaCl2, NaCl, distilled water, D-galactose, and L- threonine) applied to the tongue surface were greatly decreased by a decrease in Ca2+ concentration in the perfusing solution, suppressed by the Ca-channel blockers, enhanced by cGMP, and suppressed by cAMP. The responses to chemical stimuli of group 2 (quinine hydrochloride, theophylline, ethanol, and HCl) were practically not affected by a decrease in Ca2+ concentration, the Ca-channel blockers, cGMP, and cAMP. The responses to the stimuli of group 1 seem to be induced by Ca influx into a taste cell that is triggered by depolarization and modulated by the cyclic nucleotides in a taste cell. The responses to group 2 seem to be induced without accompanying Ca influx.  相似文献   

2.
K Morimoto  M Sato 《Life sciences》1977,21(11):1685-1695
By artificially perfusing the frog tongue with serotonin (5HT) and its antagonists, the possibility of 5HT as a chemical transmitter from taste cells to nerve terminals in frog taste organ was examined. Although serotonin creatinine sulfate, when perfused through the lingual artery, produced impulse discharges in the glossopharyngeal nerve, creatinine sulfate elicited a similar response. Neural responses to taste stimuli were depressed by perfusion with 5HT. Among many antiserotonergic drugs perfused through the lingual artery, LSD was the only one which modified responses to taste stimuli. LSD suppressed taste responses to NaCl, CaCl2 and water, while LSD at a high concentration (10?5 g/ml) enhanced responses to guinine and HCl. When PCPA (DL-p-chlorophenylalanine) was injected intraperitoneally in conbination with reserpine, the agent did not significantly change taste responses. The above results possibly suggest that 5HT would not be a chemical mediator from taste cells to nerve terminals.  相似文献   

3.
An increase in Ca concentration in a frog taste cell by application of respiratory inhibitors and ionophore A23187 to Ringer solution perfusing the lingual artery led to a large suppression of the taste nerve responses to quinine, ethanol and acids. The responses to CaCl2, L-threonine, D-galactose and distilled water were unchanged or increased.  相似文献   

4.
Enhancement of taste responses to acids by calcium ions   总被引:1,自引:0,他引:1  
The frog taste nerve responses to HCl and acetic acids were greatly enhanced by increasing calcium concentration in a solution to which the tongue had adapted when the lingual artery was perfused with Ringer solution. Enhancement was not seen in the responses to other taste stimuli.  相似文献   

5.
The role of Ca2+ in the adrenergic stimulation of pinealocyte cAMP and cGMP was investigated. In this tissue alpha 1-adrenoceptor activation, which by itself is without effect, potentiates beta 1-adrenergic stimulation of cAMP and cGMP 30- to 100-fold. The present results indicate that chelation of extracellular Ca2+ with EGTA or inhibition of Ca2+ influx with inorganic Ca2+ channel blockers (La3+, Co2+, Mn2+) markedly reduces the cyclic nucleotide response to norepinephrine, a mixed alpha 1- and beta-adrenergic agonist, but not to isoproterenol, a beta-adrenergic agonist. In addition, the potentiating effects of alpha 1-adrenergic agonists were mimicked by agents which elevate cytosolic Ca2+, including K+ (EC50 = 2 X 10(-2) M), ouabain (EC50 = 2 X 10(-6) M), ionomycin (EC50 = 3 X 10(-6) M), and A23187 (EC50 = 2 X 10(-6) M); each potentiated the effects of beta-adrenergic stimulation but had no effect alone. Together these results indicate that an alpha 1-adrenoceptor-stimulated Ca2+ influx is essential for norepinephrine to increase pinealocyte cAMP and cGMP.  相似文献   

6.
We studied the anatomical properties of parasympathetic postganglionic neurons in the frog tongue and their modulatory effects on taste cell responses. Most of the parasympathetic ganglion cell bodies in the tongue were found in extremely small nerve bundles running near the fungiform papillae, which originate from the lingual branches of the glossopharyngeal (GP) nerve. The density of parasympathetic postganglionic neurons in the tongue was 8000-11,000/mm(3) of the extremely small nerve bundle. The mean major axis of parasympathetic ganglion cell bodies was 21 microm, and the mean length of parasympathetic postganglionic neurons was 1.45 mm. Electrical stimulation at 30 Hz of either the GP nerve or the papillary nerve produced slow hyperpolarizing potentials (HPs) in taste cells. After nicotinic acetyl choline receptors on the parasympathetic ganglion cells in the tongue had been blocked by intravenous (i.v.) injection of D-tubocurarine (1 mg/kg), stimulation of the GP nerve did not induce any slow HPs in taste cells but that of the papillary nerve did. A further i.v. injection of a substance P NK-1 antagonist, L-703,606, blocked the slow HPs induced by the papillary nerve stimulation. This suggests that the parasympathetic postganglionic efferent fibers innervate taste cells and are related to a generation of the slow HPs and that substance P is released from the parasympathetic postganglionic axon terminals. When the resting membrane potential of a taste cell was hyperpolarized by a prolonged slow HP, the gustatory receptor potentials for NaCl and sugar stimuli were enhanced in amplitude, but those for quinine-HCl and acetic acid stimuli remained unchanged. It is concluded that frog taste cell responses are modulated by activities of parasympathetic postganglionic efferent fibers innervating these cells.  相似文献   

7.
Responses in the frog glossopharyngeal nerve induced by electrical stimulation of the tongue were compared with those induced by chemical stimuli under various conditions. (a) Anodal stimulation induced much larger responses than cathodal stimulation, and anodal stimulation of the tongue adapted to 5 mM MgCl2 produced much larger responses than stimulation with the tongue adapted to 10 mM NaCl at equal current intensities, as chemical stimulation with MgCl2 produced much larger responses than stimulation with NaCl at equal concentration. (b) The enhansive and suppressive effects of 8-anilino-1-naphthalenesulfonate, NiCl2, and uranyl acetate on the responses to anodal current were similar to those on the responses to chemical stimulation. (c) Anodal stimulation of the tongue adapted to 50 mM CaCl2 resulted in a large response, whereas application of 1 M CaCl2 to the tongue adapted to 50 mM CaCl2 produced only a small response. This, together with theoretical considerations, suggested that the accumulation of salts on the tongue surface is not the cause of the generation of the response to anodal current. (d) Cathodal current suppressed the responses induced by 1 mM CaCl2, 0.3 M ethanol, and distilled water. (e) The addition of EGTA or Ca-channel blockers (CdCl2 and verapamil) to the perfusing solution of the lingual artery reversibly suppressed both the responses to chemical stimulus (NaCl) and to anodal current with 10 mM NaCl. (f) We assume from the results obtained that electrical current from the microvillus membrane of a taste cell to the synaptic area supplied by anodal stimulation or induced by chemical stimulation activates the voltage-dependent Ca channel at the synaptic area.  相似文献   

8.
1. The effect of aldosterone on frog gustatory response was investigated by recording integrated responses of the whole glossopharyngeal nerve elicited by taste stimuli. 2. After aldosterone (1 microM) was perfused to the basolateral side of taste cells through the lingual artery, the gustatory neural response for a NaCl stimulus was greatly enhanced, but the gustatory responses for CaCl2, hydrochloric acid, quinine hydrochloride and galactose were not affected. 3. At 3 and 6 hr after the onset of aldosterone perfusion, the magnitudes of the responses for NaCl increased to 2.0 and 3.6 times the control, respectively. 4. These results suggest that aldosterone may regulate the gustatory responses for monovalent salts alone.  相似文献   

9.
Ionic basis of salt-induced receptor potential in frog taste cells   总被引:1,自引:0,他引:1  
1. The ionic basis of the receptor potential elicited by salt stimuli in a frog taste cell was studied with intracellular microelectrodes and lingual artery perfusion. 2. The amplitudes of the receptor potentials induced by salts were decreased by 32-60% when interstitial Na+ and Ca2+ were replaced with choline+, tetramethylammonium+ and tetraethyl-ammonium+. 3. After removal of Na+ and Ca2+ from both interstitial and superficial fluids, the reversal potentials of NaCl induced receptor potentials changed depending upon the stimulus concentrations. 4. These results indicate that the direct influx of Na+ across the receptor membrane, as well as the influx of interstitial Na+ across the basolateral membrane, occurs during NaCl stimulation.  相似文献   

10.
The frog tongue was perfused through its artery with a Ringer solution using a peristaltic pump, and a method was developed to record stable intracellular receptor potentials of taste cells. Perfusing at 0.05 ml/min with a Ringer solution containing 5% dextran did not cause tongue edema, but perfusing at the same rate with Ringer without dextran caused edema. After perfusion at 0.05 ml/min with 100 mM K Ringer, the membrane potential of taste cells gradually decreased and reached a constant level in about 30 min, indicating that the intercellular fluid of the tongue could be replaced within this time period. While the artery of the frog tongue was perfused at 0.05 ml/min with Ringer containing 5% dextran, intracellular receptor potentials of taste cells elicited by four basic taste stimuli (1 M NaCl, 10 mM quinine-HCl (Q-HCl), 1 mM acetic acid and 1 M galactose) were similar to those obtained from the control taste cells under normal blood flow.  相似文献   

11.
Summary Antidromic electrical stimulation of the lingual branch of the glossopharyngeal (IX) nerve of the frog was carried out while recording intracellular potentials of taste disc cells.Antidromic activation of sensory fibers resulted in depolarization of cells of the upper layer of the disc and most commonly in hyperpolarization of the cells in the lower layer. These changes in potential exhibited latencies greater than 1 s (Fig. 3), and thus cannot be due to electrotonic effects of action potentials in terminals of IX nerve fibers, which have much shorter conduction times. These cell potentials also showed summation, adaptation and post-stimulus rebound (Figs. 3, 4).Depending upon the chemical stimulus used, antidromic activity produced either depression or enhancement of gustatory fiber discharge in response to taste stimuli (Fig. 5).Alteration of the resting membrane potential by current injection did not significantly modify the antidromically evoked potentials (Fig. 8), whereas chemical stimulation of the tongue did (Fig. 7), indicating that these potential changes are not the result of passive electrical processes.These experimental results indicate that the membrane potential of taste disc cells can be modified by antidromic activity in their afferent nerves. This mechanism may be responsible for peripheral interactions among gustatory units of the frog tongue.The research was supported in part by NIH grant NS-09168.  相似文献   

12.
1. The effect of arginine vasopressin (AVP) on frog gustatory responses was investigated by recording integrated responses of the whole glossopharyngeal nerve by stimulation of the tongue with tastants. 2. After AVP (100 mUnits/ml) was perfused to the basolateral side of taste cells through the lingual artery, gustatory neural responses for NaCl and hydrochloric acid (HCl) stimuli were greatly enhanced, but the responses for CaCl2, quinine hydrochloride (Q-HCl) and galactose were not affected. 3. Three hours after the onset of AVP perfusion, the responses for NaCl and HCl increased to 260% and 270% of the respective controls. 4. The NaCl response which was insensitive to amiloride during normal saline perfusion became sensitive to amiloride during AVP perfusion. 5. When membrane-permeable 8-bromo-cyclic AMP (8-Br-cAMP, 0.1 mM) was perfused to the basolateral side of taste cells, the responses for NaCl and HCl decreased to 41 and 63% of the respective controls. 6. These results suggest that AVP may regulate the gustatory responses for monovalent salts and acids by a mechanism which is not necessary to activate adenylate cyclase.  相似文献   

13.
Previous studies suggest that the chorda tympani nerve (CT) is important in transmitting fat taste information to the central nervous system. However, the contribution of the CT in this process may depend upon the presence of other taste stimuli and/or differ in males and females. Accordingly, the present study investigated the role of the CT in free fatty acid taste processing by examining electrophysiological activity of the CT in response to the free fatty acid linoleic acid (LA), as well as by measuring behavioral responses to LA-taste mixtures. We recorded whole nerve responses from the CT in response to lingual application of LA with or without monosodium glutamate (MSG) in anesthetized male and female rats. In addition, we examined preferences for MSG + LA taste mixtures in behavioral tests. Although lingual application of LA alone did not produce CT whole nerve responses, coapplication of LA and MSG elicited greater CT responses than did MSG alone. These findings were paralleled by greater preferences for MSG + LA taste mixtures than for MSG alone. In both cases, the effect was particularly pronounced in male rats. Thus LA enhances CT activity and behavioral responses to LA + MSG taste mixtures, although there are sex differences in the effects. These results suggest that CT input is important in mediating behavioral responses to fat taste, but the effects depend upon other taste stimuli and differ in males and females.  相似文献   

14.
When the glossopharyngeal nerve (GP) in the frog was strongly stimulated electrically, slow potentials were elicited from the tongue surface and taste cells in the fungiform papillae. Injection of atropine completely blocked these slow potentials. The present and previous data indicate that the slow potentials induced in the tongue surface and taste cells are due to a liquid junction potential between saliva secreted from the lingual glands due to parasympathetic fiber activity and an adapting solution on the tongue surface. Intracellularly recorded depolarizing receptor potentials in taste cells induced by 0.5 M NaCl and 3 mM acetic acid were enhanced by depolarizing slow potentials induced by GP nerve stimulation, but were depressed by the hyperpolarizing slow potentials. On average, the receptor potential of taste cells for 0.5 M NaCl was increased by 25% by the GP nerve-induced slow potential, but the receptor potential of taste cells for 3 mM acetic acid was decreased by 1% by the slow potential. These transformations of receptor potentials in frog taste cells were not due to a synaptic event initiated between taste cells and the efferent nerve fiber, but due to a non-synaptic event, a lingual junction potential generated in the dorsal lingual epithelium by GP nerve stimulation.  相似文献   

15.
In the isolated perfused rat heart, the dose-related cardiostimulation produced by norepinephrine (NE) or calcium chloride (Ca2+) was followed by a corresponding increase in coronary flow (CF) and in the cardiac level of adenosine 3',5'-cyclic phosphate (cAMP). Prolonged prostaglandin E2 (pge2) infusion did not change the basic force of contraction, CF, or cAMP level but when NE or Ca2+ were administered, only the responses of the CF and the cAMP were diminished. A phosphodiesterase inhibitor, diazoxide (Dx), caused insignificant increase in the basal cAMP, without affecting the force of contraction or CF. With NE or Ca2+, during Dx both the changes in CF and cAMP were augmented compared to the nontreated hearts. The inhibitory effects of NE or Ca2+ remained unchanged. Propranolol abolished the NE but not the Ca2+ effects. It is suggested that PGE2 modulates the cardiac cAMP level and that the latter plays an important role in the adaptive regulation of the CF. It is also postulated that changes in cAMP levels may be brought about by the hyperactivity per se produced by a variety of cardiostimulating agents.  相似文献   

16.
1. The lingual treatment of 1% procaine for 10 min selectively suppressed responses of the rat chorda tympani nerve to anodal current applied to the tongue with NaCl in the bathing medium to about 50% of control but the drug produced no significant suppression in responses to chemical taste stimuli. 2. The magnitude of suppression of response to anodal current varied with concentration of procaine and kind of bathing medium for the current stimulation (larger in the order of NaCl greater than KCl greater than CaCl2 greater than HCl). 3. Such ion specificity in procaine suppression suggests that responses of the chorda tympani nerve to anodal current are provoked through the taste cell (not direct action on the taste nerve), and that the receptor mechanisms for anodal current are at least partly different from that for chemical taste stimuli.  相似文献   

17.
The Ca2+ content of glial tumor (C6) cells was reduced approximately 5-fold by repeated treatment with media containing ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid (EGTA) without loss of cellular viability. The ability of the cells to accumulate cAMP in response to beta-adrenergic agonists was reduced 60 to 70% following Ca2+ depletion. Ca2+ did not affect the apparent KACT for norepinephrine, nor did it change the concentration of propranolol required to produce 50% inhibition of the maximal norepinephrine response. Phentolamine did not alter the Ca2+ dependence of the response. The binding of dihydroalprenolol by intact C6 cells was not influenced by Ca2+. Furthermore, pretreatment with norepinephrine did not affect the Ca2+ dependence of cAMP accumulation. The effects of Ca2+, therefore, appeared to be exerted on components of the adenylate cyclase system other than the catecholamine receptor. Micromolar free Ca2+ concentration in the extracellular medium were sufficient to restore a maximal norepinephrine response to Ca2+-depeleted cells. The effect of Ca2+ on cAMP accumulation in response to hormone was immediate and was rapidly reversible upon the addition of EGTA in excess of the cation. Cells in media containing Ca2+ exhibited a characteristic biphasic time course of cAMP accumulation; with Ca2+-depleted cells cAMP was accumulated more slowly and the subsequent decline in cAMP content was also reduced. Verapamil, an inhibitor of plasmalemmal Ca2+ influx, decreased the Ca2+-dependent component of the cAMP accumulation when added prior to the cation. The effect of Ca2+ on cAMP accumulation was reduced more extensively by pretreatment of cells at 45 degrees C under Ca2+-depleted (80% loss) than under Ca2+-restored (30% loss) conditions. Trifluoperazine at micromolar concentrations decreased the Ca2+-dependent increment in accumulation of cAMP in Ca2+-restored cells. This inhibition was not overcome by increasing concentrations of norepinephrine or of extracellular Ca2+.  相似文献   

18.
Regulation of cyclic GMP levels in nerve tissue   总被引:2,自引:0,他引:2  
In rat superior cervical ganglia the regulation of cyclic GMP (cGMP) formation does not involve muscarinic or adrenergic transmitters or receptors. Marked increases in cGMP content during preganglionic axonal stimulation by electric currents, elevated K+, or drugs that cause transmitter release are unaffected by muscarinic and adrenergic receptor blockade. However, the cGMP response does require Ca2+ and intact preganglionic axonal terminals. Two possibilities exist: either cGMP accumulates in the preganglionic nerves or a noncholinergic, nonadrenergic transmitter activates guanylate cyclase in postsynaptic structures. Sodium azide and nitroprusside cause cGMP accumulation in denervated ganglia, which indicates that postsynaptic structures are capable of forming cGMP. In pineal glands elevated [K+]o releases [3H]norepinephrine and causes cGMP accumulation, which suggests a relationship between the two responses and the possibility that cGMP accumulation is involved in autoinhibition of transmitter release. The finding that phentolamine, alpha-adrenergic receptor antagonists, prevent the cGMP response to K+ is compatible with this review. However, clonidine, an alpha-receptor agonist, depresses norepinephrine release but has no effect on pineal gland cGMP. Conversely, large increases in pineal gland cGMP produced by nitroprusside do not affect K+-evoked norepinephrine release. For these reasons it is not possible to relate cGMP to the auto-inhibition of [3H]norepinephrine release that is mediated by prejunctional alpha-adrenergic receptors.  相似文献   

19.
Agonists elevate the cytosolic calcium concentration in human platelets via a receptor-operated mechanism, involving both Ca(2+) release from intracellular stores and subsequent Ca(2+) entry, which can be inhibited by platelet inhibitors, such as prostaglandin E(1) and nitroprusside which elevate cAMP and cGMP, respectively. In the present study we investigated the mechanisms by which cAMP and cGMP modulate store-mediated Ca(2+) entry. Both prostaglandin E(1) and sodium nitroprusside inhibited thapsigargin-evoked store-mediated Ca(2+) entry and actin polymerization. However, addition of these agents after induction of store-mediated Ca(2+) entry did not affect either Ca(2+) entry or actin polymerization. Furthermore, prostaglandin E(1) and sodium nitroprusside dramatically inhibited the tyrosine phosphorylation induced by depletion of the internal Ca(2+) stores or agonist stimulation without affecting the activation of Ras or the Ras-activated phosphatidylinositol 3-kinase or extracellular signal-related kinase (ERK) pathways. Inhibition of cyclic nucleotide-dependent protein kinases prevented inhibition of agonist-evoked Ca(2+) release but it did not have any effect on the inhibition of Ca(2+) entry or actin polymerization. Phenylarsine oxide and vanadate, inhibitors of protein-tyrosine phosphatases prevented the inhibitory effects of the cGMP and cAMP elevating agents on Ca(2+) entry and actin polymerization. These results suggest that Ca(2+) entry in human platelets is directly down-regulated by cGMP and cAMP by a mechanism involving the inhibition of cytoskeletal reorganization via the activation of protein tyrosine phosphatases.  相似文献   

20.
Integrated taste recordings of the glossopharyngeal (IX) nerve innervating the tongue of the southern leopard frog were studied in response to various amino acids and quinine hydrochloride. Amino acids and quinine hydrochloride elicited primarily phasic taste responses. Acidic (L-aspartic and L-glutamic) and basic (L-lysine and L-arginine) amino acids, adjusted to pH8, were effective taste stimuli. All glossopharyngeal nerve twigs that responded to amino acid stimuli also responded to quinine; however, not all quinine-sensitive IX nerve bundles were responsive to amino acids. Electrophysiological thresholds for amino acids were estimated to be 2.5-10 mM, whereas threshold for quinine hydrochloride averaged approximately 10 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号