首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
The effects of extremely low-frequency (ELF) magnetic fields on sex hormones of adult female Spague-Dawley rats were investigated. Adult female rats were exposed to a 50 Hz sinusoidal magnetic field at approximately 25 microT (rms) for 18 weeks before they returned to their normal life with unexposed counterparts. Serum level of Luteinizing Hormone (LH), Follicle Stimulating Hormone (FSH), progesterone, and estrogen were measured before, after, and during the exposure. Body and uterine weights were not affected by the field. A significant reduction in absolute and relative ovarian weights in exposed rats was observed when compared with sham-exposed controls (P < 0.05). The reduction in the levels of gonadotropins (FSH and LH) was significant after six weeks of exposure (P < 0.005). FSH levels were affected only on week 6 of exposure while LH remained affected during at 12 and 18 weeks (P < 0.05). Interestingly, no significant effects were found at 6 and 12 weeks after removing the field. The level of progesterone and estrogen was significantly decreased after 12 weeks of exposure (P < 0.05), while no other effects on progesterone level was observed during exposure or after removing the exposure. The level of estrogen was also significantly reduced at 12 weeks after removing the field (P < 0.05). These results suggest possible adverse effect on mammalian fertility and reproduction. The effects of ELF-MF on sex hormones were shown to be partly reversible.  相似文献   

2.
The effect of an extremely low frequency (ELF) magnetic field on the fertility of adult male and female Swiss mice was investigated. Adult male and female mice were exposed to a 50 Hz sinusoidal magnetic field at approximately 25 microT (rms) for 90 days before they were mated with unexposed counterparts. There were no exposure related effects on the fertility of male or female mice. The number of implantation sites, viable fetuses, and the total number of resorptions were not significantly affected in females impregnated by males exposed to the 50 Hz magnetic field as compared with the control group. The number of implantation sites, viable fetuses and the total number of resorptions in exposed females were also not statistically different from the control group. There were no significant effects on the weights of the testes, seminal vesicles, preputial gland or body weights of males exposed to 50 Hz magnetic field. Furthermore, body and uterine weights were not affected in females exposed to 50 Hz field; however, ovarian weight was significantly increased in females exposed to the same field. These results suggest that exposure of male and female mice to low frequency magnetic field had no adverse effects on fertility and reproduction in mice.  相似文献   

3.
In the present study, the effects of power-frequency magnetic fields (PF-MF) on fertility and development were investigated in rats and mice. Adult Sprague-Dawley rats and C57BL/6J mice were divided into four groups: a sham exposure group and 30-µT, 100-µT and 500-µT PF-MF exposure groups. The rats were exposed for 24 weeks, and the exposure time for mice ranged from 18 d to 12 weeks, dependent on the different investigated end points. The rats and mice were exposed for 20 h/d. Plasma hormone levels in rats and mice were analyzed. Furthermore, pregnancy rates and implanted embryos were recorded in pregnant mice. Finally, the neonatal growth of mice was evaluated. The results showed that none of the three intensities affected the body weight and paired ovary weight in female rats. Meanwhile, none of the three intensities affected the body weight, weights of paired testes, weights of paired epididymis and sperm count in male rats. Similarly, no significant differences were found in plasma sex hormone levels between the different PF-MF exposure groups and the sham exposure group. In addition, the pregnancy rates and implanted embryos were not significantly different between the four groups. Moreover, PF-MF exposures had no effects on either the number of fetuses in pregnant mice or the growth and development of neonatal mice.  相似文献   

4.
To investigate the effects of an extremely low-frequency (ELF) magnetic field on their fertility, adult male and female Sprague-Dawley rats were exposed to a 50 Hz sinusoidal magnetic field of approximately 25 microT (rms) for 90 days before they were mated with unexposed counterparts. Exposure to a 50 Hz field reduced male rat fertility. The number of pregnant females was reduced when mated with exposed males, and the number of resorptions increased. The effects of magnetic field on male fertility were shown to be partly reversible, when the same exposed group of males were remated 45 and 90 days after being removed from the fields. Exposure of adult female rats to 50 Hz magnetic fields for 90 days before mating significantly reduced their fertility. The mean numbers of implantations and living fetuses per litter were statistically significantly decreased in the 50 Hz group. These results suggest that low frequency magnetic fields have some adverse effects on fertility of male and female rats.  相似文献   

5.
Adult male rats were continuously exposed or sham-exposed to a 25-Gauss, 100-Hz magnetic field for 1, 2, or 4 weeks. Hematologic, serum chemistry, pituitary, gonadal and adrenal functions were examined. No effects were observed on body and organ weights or hematologic and serum chemistry levels, except for an increase in leukocytes after 4 weeks of exposure. The pituitary levels of prolactin, adrenocorticotropin (ACTH) and total proteins showed a statistically significant increase in animals exposed for 4 weeks. The ACTH levels in serum were significantly. decreased after 4 weeks of exposure.  相似文献   

6.
Bao X  Shi Y  Huo X  Song T 《Bioelectromagnetics》2006,27(6):467-472
Most of the research concerning magnetic antinociception was focused on brief exposure less than 1 h. The main purpose of the present study was to determine the effect of extremely low frequency (ELF) magnetic field (MF) repeated exposures on rats in inducing antinociception and to find the effective analgesic "time window." Meanwhile this investigation was to examine the role of central beta-endorphin, substance P, and 5-HT in magnetic analgesia. We found tail flick latencies (TFLs) increased significantly after the rats were exposed to 55.6 Hz, 8.1 mT magnetic field for 4 days, 6 h each day. The analgesic effects seemed to decrease gradually when the rats were exposed daily for another 10 days. Their levels of TFLs decreased within 1 day when the rats were removed after a 4-day exposure. The concentrations of hypothalamus beta-endorphin, substance P, and brainstem serotonin (5-HT) were increased significantly on Day 4. However, no differences were found when rats were exposed for another 10 days, and there were no significant increases when rats were removed after the fourth day of exposure and tested for nociception on Days 5 and 7 with no changes in the biochemical markers at 7 days. These results suggest that the ELF magnetic field has analgesic effect, but only on Days 3 and 4. The effect may be associated with increases in endogenous beta-endorphin, substance P, and 5-HT stimulated by the 55.6 Hz, 8.1 mT magnetic field.  相似文献   

7.
We recently reported that continuous exposure, for 8 weeks, of extremely low frequency (ELF) magnetic field (MF) of 0.1 or 0.5 mT might induce testicular germ cell apoptosis in BALB/c mice. In that report, the ELF MF exposure did not significantly affect the body weight or testicular weight, but significantly increased the incidence of testicular germ cell death. In the present study, we aimed to further characterize the effect of a 16-week continuous exposure to ELF MF of 14 or 200 microT on testicular germ cell apoptosis in mice. There were no significant effects of MF on body weight and testosterone levels in mice. In TUNEL staining (In situ terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling), germ cells showed a significantly higher apoptotic rate in exposed mice than in sham controls (P < 0.001). TUNEL-positive cells were mainly spermatogonia. In an electron microscopic study, degenerating spermatogonia showed condensation of nuclear chromatin similar to apoptosis. These results indicate that apoptosis may be induced in spermatogenic cells in mice by continuous exposure to 60 Hz MF of 14 microT.  相似文献   

8.
This work analyzes the effects of radiofrequency-electromagnetic field (RF-EMF) exposure on the reproductive system of male rats, assessed by measuring circulating levels of FSH, LH, inhibin B, activin B, prolactin, and testosterone. Twenty adult male Sprague–Dawley rats (180?±?10 g) were exposed to 900 MHz RF-EMF in four equal separated groups. The duration of exposure was 1, 2, and 4 h/day over a period of 30 days and sham-exposed animals were kept under the same environmental conditions as the exposed group except with no RF-EMF exposure. Before the exposure, at 15 and 30 days of exposure, determination of the abovementioned hormone levels was performed using ELISA. At the end of the experiment, FSH and LH values of the long time exposure (LTE) group were significantly higher than the sham-exposed group (p?p?p?相似文献   

9.
A three-year investigation was conducted on the biological effects of high-intensity electric field exposures of rats for up to 18% of their life span. Two hundred and forty adult male rats, divided into groups of 20 animals each, were exposed at ground potential for 8 h/ day at 25-kV/m and 100-kV/m 50-Hz electric fields or were sham exposed for 280, 440, and 1240 h. The corresponding ages at sacrifice were 140, 164, and 315 days. An additional group of 40 rats was investigated under similar experimental conditions after 440 h of exposure at floating potential. Independent of exposure duration, mode of grounding, and field strength, no statistical differences in body weight, morphology, and histology of the liver, heart, mesenteric lymph nodes, and blood variables (hematology and serum chemistry) were found in comparison with sham-exposed animals. Plasma levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone (TS)at sacrifice varied widely among experimental animals in the same group but did not differ in exposed compared with sham-exposed rats. A nonsignificant tendency toward a decrease in the testes/body weight ratio was found after 1240 h of exposure. Microscopic examination of a large number of specimens showed no quantitative or qualitative statistical differences in testes alterations either among exposed animals or between exposed and their corresponding sham-exposed groups. We conclude that 50-Hz electric field exposure, even of long duration at very high field strengths, does not induce harmful effects on tissues with high cellular turnover rates and does not impair the reproductive function of rats. Moreover, after exposure, all variables investigated were well within the normal physiological range. © 1993 Wiley-Liss. Inc.  相似文献   

10.
The purpose of this study is to investigate the possible effect of an extremely low-frequency magnetic field (ELF-MF) on nitric oxide (NO) level. In this study, 27 male Sprague-Dawley rats were used. The rats were divided into three groups: two experimental and one control (sham-exposed). The first and second experimental group (n = 10) were exposed to 100 microT and 500 microT ELF-MF during 10 months, 2 h a day, respectively, and the third (n = 7) group was treated like an experimental group except for ELF-MF exposure in methacrylate boxes. After ELF-MF and sham exposure, serum nitrite levels were measured by Griess reaction. A significant reduction was observed in nitrite levels among the first and second experimental groups of rats and sham-exposed rats after exposure for 10 months, 2 h a day, to ELF-MF of 100 and 500 microT (p < 0.01). These results suggest that prolonged ELF-MF exposure at intensities of exposure limits, determined by ICNIRP for public and occupational, may reduce NO production probably affected by NO generation pathways.  相似文献   

11.
Adult male rats were exposed or sham-exposed to 60-Hz electric fields without spark discharges, ozone, or significant levels of other secondary variables. No effects were observed on body weights or plasma hormone levels after 30 days of exposure at an effective field strength of 68 kV/m. After 120 days of exposure (effective field strength = 64 kV/m), effects were inconsistent, with significant reductions in body weight and plasma levels of follicle-stimulating hormone and corticosterone occurring in one replicate experiment but not in the other. Plasma testosterone levels were significantly reduced after 120 days of exposure in one experiment, with a similar but not statistically significant reduction in a replicate experiment. Weanling rats, exposed or sham-exposed in electric fields with an effective field strength of 80 kV/m from 20 to 56 days of age, exhibited identical or closely similar growth trends in body and organ weights. Hormone levels in exposed and sham-exposed groups were also similar. However, there was an apparent phase shift between the two groups in the cyclic variations of concentrations of hormones at different stages of development, particularly with respect to follicle-stimulating hormone and corticosterone. We concluded that 60-Hz electric fields may bring about subtle changes in the endocrine system of rats, and that these changes may be related to alterations in episodic rhythms.  相似文献   

12.
An experimental model has been developed in which mice were chronically exposed to an ELF magnetic field, under controlled conditions, with the purpose of learning its effects on peripheral blood. The OF1 mice were continuously subjected for two generations to an external magnetic field of 15 μT (rms) and 50 Hz sinusoidal waves generated by a system of Helmholtz coils designed by our Institute (BIASC). The first generation of animals was exposed for a period of 17 weeks and the second generation, born in the field, was exposed for 14 weeks. The most usual hematological parameters of mothers (12 control and 12 exposed) and daughters (30 control and 30 exposed) were analyzed. A leukopenia in exposed daughters and significant variations of platelet levels between both experimental groups were noted. Besides a slight decrease in hematocrit, red blood cell levels and hemoglobin concentration have been observed in exposed mice. The greatest changes were found in animals of the second generation.  相似文献   

13.
Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na(+)/K(+) concentration and osmolality of extracellular were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

14.
Photosynthetic CO2 uptake rate and early growth parameters of radish Raphanus sativus L. seedlings exposed to an extremely low frequency magnetic field (ELF MF) were investigated. Radish seedlings were exposed to a 60 Hz, 50 microT(rms) (root mean square) sinusoidal magnetic field (MF) and a parallel 48 microT static MF for 6 or 15 d immediately after germination. Control seedlings were exposed to the ambient MF but not the ELF MF. The CO2 uptake rate of ELF MF exposed seedlings on day 5 and later was lower than that of the control seedlings. The dry weight and the cotyledon area of ELF MF exposed seedlings on day 6 and the fresh weight, the dry weight and the leaf area of ELF MF exposed seedlings on day 15 were significantly lower than those of the control seedlings, respectively. In another experiment, radish seedlings were grown without ELF MF exposure for 14 d immediately after germination, and then exposed to the ELF MF for about 2 h, and the photosynthetic CO2 uptake rate was measured during the short-term ELF MF exposure. The CO2 uptake rate of the same seedlings was subsequently measured in the ambient MF (control) without the ELF MF. There was no difference in the CO2 uptake rate of seedlings exposed to the ELF MF or the ambient MF. These results indicate that continuous exposure to 60 Hz, 50 microT(rms) sinusoidal MF with a parallel 48 microT static MF affects the early growth of radish seedlings, but the effect is not so severe that modification of photosynthetic CO2 uptake can observed during short-term MF exposure.  相似文献   

15.
We sought to determine whether a 6-week exposure to a 50-Hz rotating magnetic field influences melatonin synthesis by 11–18 week-old Wistar-King male rats. Rats were exposed continuously to a rotating magnetic field at 1, 5, 50, or 250 μT (spatial vector rms) for 6 weeks, except for twice-weekly breaks of about 2 h for cleaning of cages and feeding. The rats were housed in exposure and sham-exposure facilities, which were located in the same room, under a 12:12 light-dark photoperiod (lights on at 06:00 h). The room was constantly illuminated by 4 small, dim red lights (< 0.07 lux in dark period). Levels of plasma and pineal gland melatonin were determined by radioimmunoassay. A significant decrease of melatonin was observed between the control group and groups exposed to a magnetic field at a flux density in excess of l μT during the night time, but no statistical differences were found among the exposed groups. These results indicate that subchronic exposure of albino rats to a 50-Hz rotating magnetic field influences melatonin production and secretion by the pineal gland. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Human Mesenchymal Stem Cells (hMSCs) were exposed to a developed extremely low-frequency (ELF) magnetic fields (50?Hz ,20?mT ELF) system to evaluate whether exposure to (ELF) magnetic fields affects growth, metabolism, and differentiation of hMSCs. MTT method was used to determine the growth and metabolism of hMSCs following exposure to ELF magnetic fields. Na+/K+ concentration and osmolality of extracelluar were measured after exposured culture. Alkaline phosphatase (ALP) assay and Calcium assay, ALP staining, and Alizarin red staining were performed to evaluate the osteogenic differentiation of hMSCs under the ELF magnetic field exposure. In these experiments, the cells were exposed to ELF for up to 23 days. The results showed that exposure to ELF magnetic field could inhibit the growth and metabolism of hMSC, but have no significant effect on differentiation of hMSCs. These results suggested that ELF magnetic field may influence the early development of hMSCs related adult cells.  相似文献   

17.
We investigated the effects of an inhalatory anesthetic (ethyl ether) during the neonatal period of brain sexual differentiation on the later fertility and sexual behavior of male rats. Animals were exposed to ethyl ether immediately after birth. At adulthood, body weight, testes wet weight, and plasma testosterone levels were not affected; however, neonatal exposure to ether showed alterations on male fertility: a decrease in the number of spermatids and spermatozoa, an increase in the transit time of cauda epididymal spermatozoa and a decrease in daily sperm production. An alteration of sexual behavior was also observed: decreased male sexual behavior and appearance of homosexual behavior when the male rats were castrated and pretreated with exogenous estrogen. Probably, the ether delayed or reduced the testosterone peak of the sexual differentiation period, altering the processes of masculinization and defeminization of the hypothalamus. Our results indicate that perinatal exposure to ethyl ether during the critical period of male brain sexual differentiation, acting as endocrine disruptors, has a long-term effect on the fertility and sexual behavior of male rats, suggesting endocrine disruption through incomplete masculinization and defeminization of the central nervous system.  相似文献   

18.
Male and female F344 rats, 48 per exposure group, were sham exposed (Group A) or exposed to 0.5 (Group B) and 5 mT (Group C) magnetic fields for two years. Animals were exposed from 5–109 weeks of age in SPF conditions according to the OECD test guideline No. 451. Average exposure was 22.6 hr/day. No significant differences in body weight and food consumption were observed between the sham and exposed groups. At the end of the exposure period, survival rates of the male rats were 73, 83, and 79%, and those of the females, 77, 79, and 75% for Groups A, B, and C, respectively, with no significant differences between groups. Differential counts of leukocytes were measured at the 52nd, 78th, and 104th weeks of exposure and no significant differences were observed between the exposure groups. All survivors were euthanized on schedule, and all the organs and tissues suspected of tumoral lesions were examined histopathologically. Incidences of mononuclear cell leukemia in the male and the female rats were 5, 4, 4 and 8, 6, 7 for Groups A, B and C, respectively; incidences of malignant lymphoma in the female rats were 0, 1 and 1. Neither significant increases nor acceleration of incidence of leukemia were observed. Incidences of brain and intracranial tumors did not increase in the exposed groups. Incidences of both benign and malignant neoplasms showed no significant difference between the exposed and sham exposed groups with one exception: fibroma of the subcutis in the male rats, which was considered not to be a statistically significant when evaluated with respect to the historical control data in our laboratory. Bioelectromagnetics 18:531–540, 1997. © Wiley-Liss, Inc.  相似文献   

19.
An animal model for large granular lymphocytic (LGL) leukemia in male Fischer 344 rats was utilized to determine whether magnetic field exposure can be shown to influence the progression of leukemia. We previously reported that exposure to continuous 60 Hz, 1 mT magnetic fields did not significantly alter the clinical progression of LGL leukemia in young male rats following injection of spleen cells from donor leukemic rats. Results presented here extend those studies with the following objectives: (a) to replicate the previous study of continuous 60 Hz magnetic field exposures, but using fewer LGL cells in the inoculum, and (b) to determine if intermittent 60 Hz magnetic fields can alter the clinical progression of leukemia. Rats were randomly assigned to four treatment groups (18/group) as follows: (1) 1 mT (10 G) continuous field, (2) 1 mT intermittent field (off/on at 3 min intervals), (3) ambient controls ( < 0.1 microT), and (4) positive control (5 Gy whole body irradiation from cobalt-60 four days prior to initiation of exposure). All rats were injected intraperitoneally with 2.2 x 10(6) fresh, viable LGL leukemic spleen cells at the beginning of the study. The fields were activated for 20 h per day, 7 days per week, and all exposure conditions were superimposed over the natural ambient magnetic field. The rats were weighed and palpated for splenomegaly weekly. Splenomegaly developed 9-11 weeks after transplantation of the leukemia cells. Hematological evaluations were performed at 6, 8, 10, 12, 14, and 16 weeks of exposure. Peripheral blood hemoglobin concentration, red blood cells, and packed cell volume declined, and total white blood cells and LGL cells increased dramatically in all treatment groups after onset of leukemia. Although the positive control group showed different body weight curves and developed signs of leukemia earlier than other groups, differences were not detected between exposure groups and ambient controls. Furthermore, there were no overall effects of magnetic fields on splenomegaly or survival in exposed animals. In addition, no significant and/or consistent differences were detected in hematological parameters between the magnetic field exposed and the ambient control groups.  相似文献   

20.
A strong static-magnetic field alters operant responding by rats   总被引:1,自引:0,他引:1  
Forty male rats of the Wistar ST strain were trained and observed for Sidman avoidance (SA) for 7 weeks or for discriminative avoidance (DA) for 14 weeks to determine the effects of exposure to a strong static-magnetic field. Before avoidance conditioning was completed, rats in the SA group were exposed to the static field at 0.6 T, 16 h/day for 4 days during the fifth week, and those in the DA group were exposed for 6 h/day for 4 days during the seventh week. In the SA conditioning, frequency of lever-pressing by exposed rats gradually decreased during 1 week of exposure and stayed low for at least 2 weeks after exposure. Frequencies of electric shocks received by the rats increased dramatically during the second day of exposure and consistently stayed higher than those of control rats. In the DA condition, exposed rats responded at lower rates than did control rats throughout the observation period. They received more shocks during the 2 weeks following exposure. The data indicate that performance of avoidance responses was inhibited by a comparatively long exposure to a strong magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号