首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract: Tyrosine hydroxylase (TH) activity is increased two- to threefold in neuroblastoma cell line NBP2 maintained in culture for 48 h in the presence of either the inhibitor of cyclic AMP-phosphodiesterase (PDE), 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (RO 20- 1724), or the activator of adenylate cyclase, prostaglandin E1 (PGE1). Cyclic AMP levels are elevated 70–80% and 30–40% throughout the 48-h treatment with RO 20-1724 and PGE1, respectively. Carbachol does not affect either basal TH activity or cyclic AMP levels in the cells. However, the cholinergic agonist delays the induction of TH elicited by either RO 20-1724 or PGE1. This delay is prevented by atropine. The elevation in cyclic AMP levels elicited by either RO 20-1724 or PGE1 is blocked for 1 h or 15 min. respectively, after treatment with carbachol. Cyclic AMP levels then begin to rise until they reach those levels observed in the presence of RO 20-1724 or PGE1 alone by 12 h or 1 h of treatment, respectively. Time course studies demonstrate that this transient inhibition of the elevation of cyclic AMP is associated with a 48-h delay in the induction of TH elicited by either RO 20-1724 or PGE1. In contrast, the induction elicited by 8-bromo cyclic AMP is unaffected by carbachol. A depolarizing concentration (56 mM) of KCl produces a 24-h delay in the induction of TH elicited by RO 20-1724, without affecting the concomitant elevation of cyclic AMP produced by the PDE inhibitor. Furthermore, 56 mM-KCl inhibits the induction of TH elicited by 8-bromo cyclic AMP. It thus appears that carbachol delays the induction of TH by transiently inhibiting the elevation of cyclic AMP, whereas potassium depolarization delays the induction of TH by inhibiting a process with a site of action that is distal to the elevation of cyclic AMP.  相似文献   

2.
The ionophore A23187 stimulated adenylate cyclase activity in intact macrophages within 1 min. This action was blocked by pretreatment with indomethacin (25 μmol/l) suggesting the involvement of a prostaglandin (PG). PGE2 (500 nmol/l) also stimulated adenylate cyclase activity in intact cells, but this was not prevented by indomethacin pretreatment. Colchicine (100 μmol/l) potentiated the increases in macrophage cyclic AMP production seen after addition of PGE2 or A23187. The high affinity form of cyclic AMP phosphodiesterase (PDE) was activated within 1 min of the addition of A23187 to intact macrophages. The data suggest that the increase in macrophage cyclic AMP production after A23187 is a consequence of adenylate cyclase activation and not PDE inhibition. The endogenous production of a prostaglandin probably mediates this effect of A23187, emphasizing the importance of arachidonic acid metabolites in the regulation of macrophage functions.  相似文献   

3.
Agonist-specific desensitization of prostaglandin I2-stimulated (PGI2)1 adenosine 3′:5′-monophosphate (cyclic AMP) accumulation can be demonstrated in intact human foreskin fibroblasts (HFF) following a single exposure to PGE1 or a stable PGI2 analog (nitrilo-PGI2). A single PGI2-stimulation of HFF cells does not result in desensitization. Continuous re-addition of PGI2 over a 4 hr period does induce desensitization to subsequent PGI2-stimulation. HFF cells that are desensitized to PGI2 are also desensitized to PGE1 or nitrilo-PGI2 stimulation indicating that these agonists share a common adenylate cyclase complex. Desensitization to PGI2 can be measured after a 60 min, but not after a 30 min, exposure to PGE1 or nitrilo-PGI2. Once HFF cells are desensitized, a 12–24 hr period is required for the recovery of PGI2 sensitivity.The adenylate cyclase in membranes prepared from intact cells that were preincubated with PGE1 is also desensitized to subsequent PGI2-stimulation. Preincubation of cells with PGI2 does not induce desensitization of PGI2-stimulated adenylate cyclase. These data suggest that HFF cells must be constantly exposed to a biologically active prostaglandin for desensitization to occur. The intrinsic chemical lability of PGI2 may be a biochemical protection mechanism against desensitization in cells that normally respond to PGI2.  相似文献   

4.
Abstract

Prolonged (16 h) preexposure to prostaglandin E1 (PGE1) of cells from a murine virus-induced T lymphoma cell line BL/VL3 provoked, in their membranes, a dose-dependent reduction of PGE1-mediated adenylate cyclase stimulation. Smaller (but significant) decreases of helodermin- and isoproterenol-mediated stimulations were also observed. After a 16 h incubation of these cells with 1 µM PGE1, that reduced by 85%, the PGE1-mediated adenylate cyclase stimulation in membranes, 50% of the PGE1 response recovered after 2 h of PGE1 withdrawal from the incubation medium. Over the following 2 - 24 h time interval, further recovery was limited. Protein synthesis was required for this resensitization mechanism of functional PGE1 receptors coupled to adenylate cyclase, as judged by the inhibitory effects of cycloheximide.  相似文献   

5.
Prostacyclin (Prostaglandin I2) effects on the rat kidney adenylate cyclase-cyclic AMP system were examined. Prostaglandin I2 and prostaglandin E2, from 8 · 10?4 to 8 · ?7 M stimulated adenylate cyclase to a similar extent in cortex and outer medulla. In inner medulla, prostaglandin I2 was more effective than prostaglandin E2 at all concentrations tested. Both prostaglandin I2 and prostaglandin E2 were additive with antidiuretic hormone in outer and inner medulla. Prostaglandin I2 and prostaglandin E2 were not additive in any area of the kidney, indicating both were working by similar mechanisms. Prostaglandin I2 stimulation of adenylate cyclase correlated with its ability to increase renal slice cyclic AMP content. Prostaglandin I2 and prostaglandin E2 (1.5 · 10?4 M) elevated cyclic AMP content in cortex and outer medulla slices. In inner medulla, with Santoquin® (0.1 mM) present to suppress endogenous prostaglandin synthesis, prostaglandin I2 and prostaglandin E2 increased cyclic AMP content. 6-Ketoprostaglandin F, the stable metabolite of prostaglandin I2, did not increase adenylate cyclase activity or tissue cyclic AMP content. Thus, prostaglandin I2 activates renal adenylate cyclase. This suggests that the physiological actions of prostaglandin I2 may be mediated through the adenylate cyclase-cyclic AMP system.  相似文献   

6.
The decrease of PGE-stimulated cyclic AMP synthesis due to pretreatment of intact cells with PGE (hormone-specific desensitization) was shown to be a rapid process in macrophages. Desensitization was found to be extensive after 5-min treatment of macrophages with PGE2 and almost complete after 20 min. Furthermore, incubation of intact macrophages with colchicine caused a two- to sixfold increase in the rate of PGE1-stimulated cyclic AMP synthesis in intact macrophages. Colchicine alone did not alter cyclic AMP levels. The enhancing effect of colchicine is related to its ability to disrupt microtubules. Vinblastine, another microtubule-disrupting agent, caused similar enhancement of PGE-stimulated cyclic AMP synthesis; no enhancement was found when lumicolchicine was used. Hormonestimulated cyclic AMP synthesis by colchicine-treated macrophages was also measured after cell homogenization. The enhancement of hormone sensitivity by colchicine was found to be lost upon homogenization. These findings suggest that colchicine acts at the interior of the cell to reversibly affect adenylate cyclase.  相似文献   

7.
Two different independent processes are operating in cultured thyroid cells to regulate adenylate cyclase/cyclic AMP responsiveness to thyroid stimulators (thyrotropin and prostaglandin E2): firstly, refractoriness or negative regulation [preceding paper], which is specific for each thyroid stimulator, is not mediated by cyclic AMP and is not accompanied by alteration of adenylate cyclase activity; secondly, positive regulation which is characterized by an augmentation of the cyclic AMP response stimulated by thyrotropin and prostaglandin E2. This process is not specific for each thyroid stimulator and is a state of increased susceptibility of cyclic AMP synthesis to stimulation, accompanied by increased activity of the catalytic subunit of adenylate cyclase. Positive regulation is apparently mediated by increased intracellular cyclic AMP levels. It is a time-dependent and dose-dependent process. Very low concentrations (5-50 micronU/ml) of thyrotropin augmented cyclic AMP synthesis stimulated by thyrotropin and prostaglandin E2 whereas higher concentrations (above 0.1 mU/ml) augmented prostaglandin E2 stimulation but induced refractoriness to thyrotropin. Prostaglandin E2 (0.1 to 10 micronM) augmented thyrotropin stimulation and dibutyryl adenosine 3':5'-monophosphate (0.3 to 2 mM) augmented thyrotropin and prostaglandin E2 stimulation. Positive regulation is a slow process which develops within days and increases up to day 5 in culture. Experiments using inhibitors suggested that protein synthesis is required for the full expression of the increase in adenylate cyclase activity induced by the studied thyroid stimulators.  相似文献   

8.
Prostaglandins E1 or E2 (PGE1, PGE2)1 stimulated adenylate cyclase(s) from particulate fractions of whole liver homogenates 5- to 6-fold, but caused only slight (1.5- to 2-fold) stimulation of the enzyme from homogeneous hepatocytes. In contrast, glucagon stimulated enzyme from hepatocytes 12- to 15-fold and enzyme from whole liver 8- to 10-fold. Accordingly, most of the total prostaglandin-sensitive adenylate cyclase in cell suspensions was recovered in fractions containing non-parenchymal cells, and most of the total glucagon-sensitive activity was recovered with hepatocytes. PGE1 did not change adenosine-3′,5′-monophosphate (cyclic AMP) concentrations, or alter cyclic AMP increases caused by glucagon in hepatocytes. Glucagon consistently increased hepatocyte cyclic AMP concentrations and stimulated glycogenolysis by 35 to 40%. PGE1 did not affect basal or glucagon-stimulated glycogenolysis in the intact cells.  相似文献   

9.
ATP, ADP and AMP but not adenosine increased cyclic AMP in dispersed enterocytes prepared from guinea pig small intestine. This action of ATP was augmented by IBMX and was reproduced by App(NH)p or App(CH2)p. ATP also increased the formation of cyclic [14C]AMP in enterocytes that had been preincubated with [14C]adenine. Gpp(NH)p and NaF each caused persistent activation of adenylate cyclase in plasma membranes from enterocytes and ATP caused significant augmentation of this persistent activation. In addition to increasing cellular cyclic AMP and agumenting Gpp(NH)p and NaF-stimulated persistent activation of adenylate cyclase, ATP increased the Isc across mounted strips of small intestine and inhibited net absorption of fluid and electrolytes in segments of everted small intestine. These results indicate that intestinal epithelial cells possess a receptor that interacts with ATP and other adenine nucleotides and that receptor occupation by ATP causes activation of adenylate cyclase, increased cyclic AMP and changes in active ion transport across intestinal mucosa.  相似文献   

10.
Forskolin, an adenylate cyclase activator and a cyclic AMP analogue, dibutyryl cyclic AMP have been used to examine the relationship between intracellular levels of cyclic AMP and lipid synthesis inMycobacterium smegmatis. Total phospholipid content was found to be increased in forskolin grown cells as a result of increased cyclic AMP levels caused by activation of adenylate cyclase. Increased phospholipid content was supported by increased [14C] acetate incorporation as well as increased activity of glycerol-3-phosphate acyltransferase. Pretreatment of cells with dibutyryl cyclic AMP had similar effects on lipid synthesis. Taking all these observations together it is suggested that lipid synthesis is being controlled by cyclic AMP in mycobacteria.  相似文献   

11.
The effects of different neuroactive agents on cyclic AMP level of selected ganglia of Planorbis corneus were studied. Serotonin, dopamine and prostaglandin E2 were capable of increasing significantly cyclic AMP synthesis in all the preparations. When such substances were tested in pairs, supra-additive effects were always observed. In high Ca2+-high Mg2+ solutions dopamine action was blocked, meanwhile serotonin and prostaglandin E2 were still effective in stimulating cyclic AMP synthesis. In the same experimental condition the supra-additive increases of the nucleotide level by drug combinations disappeared. Serotonin, but not dopamine, significantly stimulated adenylate cyclase activity in all the preparations, while prostaglandin E2 was effective only in the Viscero-Parietal Complex. The presence of the adenylate cyclase activity in the nervous tissue of Planaorbis was substained by histochemical studies.These results demonstrating that in the nervous system of Planorbis cyclic AMP level is affected by neurotransmitters and neuromodulators, might support the idea of the crucial role of the cyclic nuclotide in the modulation of synaptic transmission.  相似文献   

12.
Adrenaline is a weak aggregating agonist for human platelets acting through G-protein-coupled α2-adrenoceptors to inhibit adenylate cyclase and thus reduce cyclic AMP levels. Studies of equine platelets have shown that adrenaline is unable to promote their aggregation. We now confirm that adrenaline is without effect on equine platelet aggregation and demonstrate that it is also without effect on equine platelet membrane adenylate cyclase activity. We have previously shown that equine platelet membranes contain conventionally regulated adenylate cyclase activity, with both stimulatory ligands (forskolin and PGE1) and inhibitory ligands (collagen and PAF) each showing substantial and dose-dependent effects. We now show, in Western blots, that equine platelet membranes contain G proteins, including Gi2 (which mediates inhibition of adenylate cyclase by adrenaline in human platelets), Gi3, Gs, and Gq. Hence, all the necessary components and responses are in place in equine platelets to provide for a conventional role for cyclic AMP and adenylate cyclase in modulating platelet aggregation. The basis for the failure of adrenaline, unlike other ligands, to deliver such a signal, appears to be a marked lack of α2-adrenoceptors. This is supported by the low receptor density we found in idazoxan binding studies.  相似文献   

13.
Choleragen increases cyclic AMP content of confluent human fibroblasts. Maximally effective concentrations of isoproterenol and prostaglandin E1 also induce large increases in cyclic AMP content of human fibroblasts and in confluent cultures the effect of prostaglandin E1 is much greater than that of isoproterenol. After incubation with choleragen, the increment in cyclic AMP produced by 2 μM isoproterenol is increased and approaches that produced by 5.6 μM prostaglandin E1. Although the concentration of isoproterenol which produces a maximal increase in cyclic AMP is similar in both control and choleragen-treated cells, lower concentrations of isoproterenol are more effective in the choleragen-treated cells. In choleragen-treated cells, although the response to 5.6 μM prostaglandin E1 is reduced by as much as 50%, the concentration of prostaglandin E1 required to induce a maximal increase in cyclic AMP is 110 that required in control cells. Thus the capacities of intact human fibroblasts to respond to isoproterenol and prostaglandin E1 can be altered independently during incubation of intact cells with choleragen. Differences in responsiveness to the two agonists were not demonstrable in adenylate cyclase preparations from control or choleragen-treated cells.In rat fat cells, the effects of choleragen on cyclic AMP content were much smaller than those in fibroblasts. In contrast to its effect on intact fibroblasts, choleragen treatment of rat fat cells did not alter the accumulation of cyclic AMP in response to a maximally effective concentration of isoproterenol. The responsiveness of adenylate cyclase preparations to isoproterenol was also not altered by exposure of fat cells to choleragen.  相似文献   

14.
Cyclic AMP levels in primary monolayer cultures of epithelial cells prepared from mid-pregnant mice are stimulated by prostaglandin E1 and E2. Prostaglandin F and F have only a slight effect upon cyclic AMP levels. In the absence of phosphodiesterase inhibitors the rise in cyclic AMP produced by PGE1 is only transient and the levels return to normal within 30 minutes. High concentrations (16 mM) of theophylline are needed to prevent this decline, suggesting that the phosphodiesterase activity of epithelial cells in culture is high. However, theophylline alone produced only a small increase in basal cyclic AMP levels even over a 2-hour period indicating that basal cyclic AMP is turned over more slowly than cyclic AMP produced in response to stimulation with PGE1.Both PGE and PGF synthesis were monitored using radioimmunoassay procedures previously reported. The observed levels were found to decrease as cell density increased and were sensitive to the addition of agents such as collagen and naproxen.  相似文献   

15.
The effects of prostaglandin (PG) E1, E2, A1, F, F or D2 on the rat renal cortical, outer medullary and inner medullary adenylate cyclase-cyclic AM systems were examined. While high concentrations (8X10−4M) of each prostaglandin stimulated adenylate cyclase activity in each area of the kidney, PGE1 was the only prostaglandin to stimulate at 10−7M. PGA's were the only prostaglandins tested besides PGE's which stimulated adenylate cyclase at less than 10−4M. This effect of PGA's was limited to the outer medulla. PGD2 was the least stimulatory. Observations with renal slices yielded qualitatively results. The PGE's were the most potent in each area with PGA's only stimulatory in the outer medulla. O2 deprivation (5% O2) lowered the slice cyclic AMP content in each area of the kidney. In the cortex and outer medulla, prostaglandin mediated increases in cyclic AMP content were either lower or absent at 5% O2 compared to 95% O2. However, in the inner medulla PGE stimulation was observed only at 5% O2 and not 95% O2. No other prostaglandins were found to increase inner medullary cyclic AMP content at 95% or 5% O2. These results illustrate that the adenylate cyclase-cyclic AMP system responds uniquely to prostaglandins in each area of the kidney. Consideration of these results along with correlative observations suggests that inner medullary produced PGE's may act as local modulators of inner medullary adenylate cyclase.  相似文献   

16.
Acetyl glyceryl ether phosphorylcholine induces human neutrophil aggregation. Incubation of neutrophils with either prostaglandin I2, or the cyclic AMP-dependent phosphodiesterase inhibitor, RO 20-1724 before the addition of PAF-acether attenuates subsequent aggregation. Paradoxically, a small elevation in cyclic AMP is observed coincident with the initiation of PAF-acether-stimulated aggregation. The elevation in cyclic AMP in response to PAF-acether is amplified by RO 20-1724, and the magnitude of the response is dependent upon the concentration of PAF-acether. The elevation in cyclic AMP is not due to prostaglandins, because indomethacin actually enhances the elevation in cyclic AMP induced by PAF-acether. The involvement of the neutrophil 5-lipoxygenase, and subsequent leukotriene B4 synthesis, is suggested by the observation that 5-lipoxygenase inhibitors limit both the elevation in cyclic AMP induced by PAF-acether, and the indomethacin enhancement. This indirect evidence is supported by the fact that leukotriene B4 itself elevates neutrophil cyclic AMP levels in intact cells, and stimulates the adenylate cyclase in broken cell preparations. Although the elevation in cyclic AMP induced by either PAF-acether or leukotriene B4 is coincident with the onset of neutrophil aggregation, it is not obligatory for aggregation. The adenylate cyclase inhibitor 2′,5′-dideoxyadenosine blocks the PAF-acether-stimulated increase in cyclic AMP, and actually enhances aggregation. It is suggested that the increase in cyclic AMP observed after the addition of PAF-acether is due to concomitant leukotriene B4 synthesis, and is not obligatory for neutrophil aggregation, but is actually part of a feed-back regulatory system through which PAF-acether and leukotriene B4 can limit their own activity in neutrophils.  相似文献   

17.
In vitro cultured bone cells were found to be responsive to hormones and physical forces. A simple device has been developed which enables the direct application of physical forces to tissue culture dishes to which cells are firmly attached. The physical forces created a deformation of the dish. It was found that prostaglandin E2 synthesis underwent a rapid increase, reaching a maximum after 20 min and then declined. Concurrent with the increase in prostaglandin E2 was an increase in cyclic AMP production, having a maximum around 15 min. The increase in cyclic AMP was blocked by indomethacin, the prostaglandin E2 synthesis inhibitor, indicating the dependence of cyclic AMP production on the de novo synthesis of prostaglandin E2. Prostaglandin E2 added to cells mimicked the effect of physical forces on the production of cyclic AMP. The increase in cyclic AMP resulted from an early rise in adenyl cyclase activity (within 5 min) and a later (10 min) increase in phosphodiesterase activity. The same physical forces also stimulatedthe incorporation of thymidine into DNA after 24 h. On addition of prostaglandin E2 the increase in DNA synthesis was also mimicked. Pretreatment of the cells with indomethacin abolished the effect of physical forces on DNA synthesis.The results suggest a stimulus receptor mechanism for physical forces which, like hormonal effectors, are mediated by prostaglandins and stimulate cyclic AMP and DNA synthesis.We believe that physical forces stimulate bone remodelling through such a stimulus receptor system, mediated by prostaglandins.  相似文献   

18.
The level of cyclic AMP in primary cultures of bovine adrenal medulla cells is elevated by prostaglandin E1. Angiotensin II is commonly reported to act on receptors linked to phosphoinositide metabolism or to inhibition of adenylate cyclase. We have investigated the effect of angiotensin II on prostaglandin E1-stimulated cyclic AMP levels in these primary cultures. Rather than reducing cyclic AMP levels, we have found that angiotensin II powerfully potentiates prostaglandin E1-stimulated cyclic AMP accumulation in intact cells, both in the presence and absence of phosphodiesterase inhibitors. The 50% maximal response was similar to that for stimulation of phosphoinositide breakdown by angiotensin II in these cultures. The potentiation of stimulated cyclic AMP levels was seen, although to a smaller maximum, with the protein kinase C (Ca2+/phospholipid-dependent enzyme) activating phorbol ester tetradecanoyl phorbolacetate and with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol; pretreatment (24 h) with active phorbol ester, which would be expected to diminish protein kinase C levels, attenuated the angiotensin II potentiation of cyclic AMP. Using digitonin-permeabilized cells we showed that adenylate cyclase activity was stimulated by prostaglandin E1 with the same dose-response relationship as was cyclic AMP accumulation in intact cells, but the permeabilized cells showed no response to angiotensin II. The results are discussed with respect to the hypothesis that the angiotensin II influence on cyclic AMP levels is mediated, in part, by diacylglycerol stimulation of protein kinase C.  相似文献   

19.
《ImmunoMethods》1993,2(3):203-210
The regulation of receptors for prostaglandin E2 (PGE2) in monocyte/macrophage-like cells, P388D1, by interleukin-1α (IL-1α) and insulin has been investigated. Many of the effects of IL-1, such as fever and other inflammatory activities, are linked to the stimulation of PGE2 synthesis. On the other hand, PGE2 exhibits suppressive effects on many steps in the immune response, including IL-1 production. The binding of PGE2 to monocytes is reported to be essential for the inhibition of IL-1 production and activity. This inhibition occurs through the stimulation of cyclic AMP synthesis by the activation of PGE2 receptor-linked adenylate cyclase. Although IL-1α stimulates PGE2 synthesis in monocytes/macrophages during immunoactivation, it inhibits the binding of PGE2 to these cells and may thereby exert a countervailing effect on the immunosuppressive action of this prostanoid. By contrast, insulin at physiological concentrations enhances the PGE2 binding to these cells. This suggests that insulin at physiological concentrations may enhance the immunosuppressive action of PGE2. Since the stimulation of cAMP synthesis in cells is regulated by PGE2 binding, it is possible that these hormonal factors may control the immune response by modulating the PGE2 receptor activity of monocytes/macrophages. This article focuses on the interactions of insulin and IL-1 with PGE2 receptors of monocytes/macrophages.  相似文献   

20.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3′:5′-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly wihtin 1 min and was maximal by 10 to 20 min with approx. 2 and 10 μM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C] adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号