首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silencing of yellow head virus replication in penaeid shrimp cells by dsRNA   总被引:8,自引:0,他引:8  
RNA interference (RNAi) has been shown to inhibit viral replication in some animals and plants. Whether the RNAi is functional in shrimp remains to be demonstrated. In vitro transcribed dsRNAs of YHV helicase, polymerase, protease, gp116, and gp64 were transfected into shrimp primary cell culture and found to inhibit YHV replication. dsRNA targeted to nonstructural genes (protease, polymerase, and helicase) effectively inhibited YHV replication. Those targeted structural genes (gp116 and gp64) were the least effective. These findings are the first evidence that RNAi-mediated gene silencing is operative in shrimp cells. This could be a powerful tool for studying gene function and to develop effective control of viral infection in shrimp.  相似文献   

2.
The cellular signal-transduction process is largely controlled by protein phosphorylation. Shrimp infected with yellow head virus show dramatic changes in their hemocyte phosphoproteomic patterns, and aberrant activation of phosphorylation-based signaling networks has been implicated in a number of diseases. In this study, we focused on phosphorylation of Penaeus monodon myosin regulatory light chain (PmMRLC) that is induced at an early hour post YHV infection and is concomitant with cellular actin remodeling. In shrimp cell cultures, this phosphorylation was inhibited by the myosin light chain kinase (MLCK) inhibitors ML-7 and ML-9, suggesting that PmMLC phosphorylation is MLCK pathway-dependent. Blocking PmMRLC phosphorylation resulted in increased replication of YHV and reduction of phagocytic activities of shrimp hemocytes called semigranular cells (SGC) and granular cells (GC). Injection of MLCK inhibitors prior to YHV challenge resulted in dose-dependent elevation in quantity of YHV-positive GC and cytoplasmic YHV protein, coincident with high shrimp mortality. Altogether, we demonstrated that PmMRLC phosphorylation increases after YHV infection in shrimp and that inhibition of the phosphorylation leads to increased YHV replication, reduced hemocyte phagocytic activity (probably through actin remodeling) and subsequent shrimp death. Thus, further studies on the MLCK activation pathway may lead to new strategies in development and implementation of therapy for YHV infections in shrimp.  相似文献   

3.
4.
Suppression of PmRab7 by dsRNA Inhibits WSSV or YHV Infection in Shrimp   总被引:1,自引:0,他引:1  
Viral entry into host cells requires endocytosis machineries of the host for viral replication. PmRab7, a Penaeus monodon small GTPase protein, was investigated for its function in vesicular transport during viral infection. The double-stranded RNA of Rab7 was injected into a juvenile shrimp before challenging with white spot syndrome virus (WSSV) or yellow head virus (YHV). PmRab7 mRNA was specifically decreased at 48 h after dsRNA-Rab7 injection. Silencing of PmRab7 dramatically inhibited WSSV-VP28 mRNA and protein expression. Unexpectedly, the silencing of PmRab7 also inhibited YHV replication in the YHV-infected shrimp. These results suggested that PmRab7 is a common cellular factor required for WSSV or YHV replication in shrimp. Because PmRab7 should function in the endosomal trafficking pathway, its silencing prevents successful viral trafficking necessary for replication. Silencing of PmRab7 could be a novel approach to prevent both DNA virus (WSSV) and RNA virus (YHV) infection of shrimp.  相似文献   

5.
To replicate its segmented, double-stranded RNA (dsRNA) genome, the rotavirus RNA-dependent RNA polymerase, VP1, must recognize viral plus-strand RNAs (+RNAs) and guide them into the catalytic center. VP1 binds to the conserved 3' end of rotavirus +RNAs via both sequence-dependent and sequence-independent contacts. Sequence-dependent contacts permit recognition of viral +RNAs and specify an autoinhibited positioning of the template within the catalytic site. However, the contributions to dsRNA synthesis of sequence-dependent and sequence-independent VP1-RNA interactions remain unclear. To analyze the importance of VP1 residues that interact with +RNA on genome replication, we engineered mutant VP1 proteins and assayed their capacity to synthesize dsRNA in vitro. Our results showed that, individually, mutation of residues that interact specifically with RNA bases did not diminish replication levels. However, simultaneous mutations led to significantly lower levels of dsRNA product, presumably due to impaired recruitment of +RNA templates. In contrast, point mutations of sequence-independent RNA contact residues led to severely diminished replication, likely as a result of improper positioning of templates at the catalytic site. A noteworthy exception was a K419A mutation that enhanced the initiation capacity and product elongation rate of VP1. The specific chemistry of Lys419 and its position at a narrow region of the template entry tunnel appear to contribute to its capacity to moderate replication. Together, our findings suggest that distinct classes of VP1 residues interact with +RNA to mediate template recognition and dsRNA synthesis yet function in concert to promote viral RNA replication at appropriate times and rates.  相似文献   

6.
The means of survival of genomic dsRNA of reoviruses from dsRNA-triggered and Dicer-initiated RNAi pathway remains to be defined.The present study aimed to investigate the effect of Grass carp reovirus...  相似文献   

7.
8.
RNA interference (RNAi) plays an important role in an antiviral defense in shrimp. RNAi technology has been extensively used for inhibition of viral replication and studying gene function. However, the mechanism of shrimp RNAi pathway is still poorly understood. In this study, we identified and characterized an additional protein in the RNAi pathway, Tudor staphylococcal nuclease from Penaeus monodon (PmTSN). The full-length cDNA of PmTSN is 2897 bp, with an open reading frame encoding a putative protein of 889 amino acids. Phylogenetic analysis and domain structure comparison revealed that PmTSN is more closely related to vertebrate TSN by sharing the amino acid sequence identity of 57% with TSN of zebrafish. This represents a new type of TSN proteins by exhibiting the four tandem repeat of staphylococcal nuclease-like domain (SN), followed by a Tudor and a partially truncated C-terminal SN domain. Knockdown of PmTSN by dsRNA targeting SN3 domain resulted in the impairment of dsRNA targeting PmRab7 gene to silence PmRab7 expression. In addition, the efficiency of dsRNA targeting YHV-protease gene inhibiting yellow head virus replication was decreased in the PmTSN-knockdown shrimps. Our results imply that PmTSN is involved in dsRNA-mediated gene silencing in shrimp and thus we identified the additional protein involved in shrimp RNAi pathway.  相似文献   

9.
10.
Mosquito-borne viruses encompass a range of virus families, comprising a number of significant human pathogens (e.g., dengue viruses, West Nile virus, Chikungunya virus). Virulent strains of these viruses are continually evolving and expanding their geographic range, thus rapid and sensitive screening assays are required to detect emerging viruses and monitor their prevalence and spread in mosquito populations. Double-stranded RNA (dsRNA) is produced during the replication of many of these viruses as either an intermediate in RNA replication (e.g., flaviviruses, togaviruses) or the double-stranded RNA genome (e.g., reoviruses). Detection and discovery of novel viruses from field and clinical samples usually relies on recognition of antigens or nucleotide sequences conserved within a virus genus or family. However, due to the wide antigenic and genetic variation within and between viral families, many novel or divergent species can be overlooked by these approaches. We have developed two monoclonal antibodies (mAbs) which show co-localised staining with proteins involved in viral RNA replication in immunofluorescence assay (IFA), suggesting specific reactivity to viral dsRNA. By assessing binding against a panel of synthetic dsRNA molecules, we have shown that these mAbs recognise dsRNA greater than 30 base pairs in length in a sequence-independent manner. IFA and enzyme-linked immunosorbent assay (ELISA) were employed to demonstrate detection of a panel of RNA viruses from several families, in a range of cell types. These mAbs, termed monoclonal antibodies to viral RNA intermediates in cells (MAVRIC), have now been incorporated into a high-throughput, economical ELISA-based screening system for the detection and discovery of viruses from mosquito populations. Our results have demonstrated that this simple system enables the efficient detection and isolation of a range of known and novel viruses in cells inoculated with field-caught mosquito samples, and represents a rapid, sequence-independent, and cost-effective approach to virus discovery.  相似文献   

11.
Spray-induced gene silencing (SIGS) is an innovative and eco-friendly technology where topical application of pathogen gene-targeting RNAs to plant material can enable disease control. SIGS applications remain limited because of the instability of RNA, which can be rapidly degraded when exposed to various environmental conditions. Inspired by the natural mechanism of cross-kingdom RNAi through extracellular vesicle trafficking, we describe herein the use of artificial nanovesicles (AVs) for RNA encapsulation and control against the fungal pathogen, Botrytis cinerea. AVs were synthesized using three different cationic lipid formulations, DOTAP + PEG, DOTAP and DODMA, and examined for their ability to protect and deliver double stranded RNA (dsRNA). All three formulations enabled dsRNA delivery and uptake by B. cinerea. Further, encapsulating dsRNA in AVs provided strong protection from nuclease degradation and from removal by leaf washing. This improved stability led to prolonged RNAi-mediated protection against B. cinerea both on pre- and post-harvest plant material using AVs. Specifically, the AVs extended the protection duration conferred by dsRNA to 10 days on tomato and grape fruits and to 21 days on grape leaves. The results of this work demonstrate how AVs can be used as a new nanocarrier to overcome RNA instability in SIGS for crop protection.  相似文献   

12.
RNA interference (RNAi) is a promising strategy to combat shrimp viral pathogens at lab-scale experiments. Development of effective orally delivered agents for double-stranded (ds)RNA is necessary for RNAi application at farm level. Since continuous shrimp cell lines have not been established, we are developing a dsRNA-delivery system in Spodoptera frugiperda (Sf9) cells for studying in vitro RNAi-mediated gene silencing of shrimp virus. Sf9 cells challenged with yellow head virus (YHV) were used for validating nanoparticles as effective dsRNA carriers. Inexpensive and biodegradable polymers, chitosan and its quarternized derivative (QCH4), were formulated with long dsRNA (>100 bp) targeting YHV. Their morphology and physicochemical properties were examined. When treated with chitosan- and QCH4-dsRNA complexes, at least 50% reduction in YHV infection in Sf9 cells relative to the untreated control was evident at 24h post infection with low cytoxicity. Inhibitory effects of chitosan- and QCH4-dsRNA complexes were comparable to that of dsRNA formulated with Cellfectin(?), a commercial lipid-based transfection reagent. The natural and quaternized chitosan prepared in this study can be used for shrimp virus-specific dsRNA delivery in insect cultures, and have potential for future development of dsRNA carriers in shrimp feed.  相似文献   

13.
Here we describe studies of double-stranded RNA (dsRNA) adenosine deaminase in Xenopus laevis, in particular during meiotic maturation, the period during which a stage VI oocyte matures to an egg. We show that dsRNA adenosine deaminase is in the nuclei of stage VI oocytes. Most importantly, we demonstrate that the cytoplasm of stage VI oocytes contains a factor that protects microinjected dsRNA from deamination when dsRNA adenosine deaminase is released from the nucleus during meiotic maturation. Our data suggest that the protection factor is a cytoplasmic dsRNA-binding protein or proteins that bind to dsRNA in a sequence-independent manner to occlude dsRNA from binding to dsRNA adenosine deaminase. The cytoplasmic double-stranded RNA-binding protein(s) does not bind to other nucleic acids and can be titrated at high concentrations of dsRNA. These studies raise the question of whether all dsRNA-binding proteins share endogenous substrates and also suggest potential means of regulating dsRNA adenosine deaminase in vivo.  相似文献   

14.
Ali S  Kukolj G 《Journal of virology》2005,79(5):3174-3178
The treatment of human embryonic kidney 293 cells harboring a hepatitis C virus (HCV) subgenomic replicon with the double-stranded RNA (dsRNA) mimic poly(I . C) inhibits HCV RNA replication through an undefined mechanism. Interferon regulatory factor 3 (IRF 3) has been widely postulated to mediate various antiviral responses, and its role in mediating the response to dsRNA in 293 cells was examined. Treating the cells with dsRNA did not induce IRF-3 activation, as measured by nuclear localization or the induction of reporter genes. Moreover, the expression of a dominant negative form of IRF-3 did not affect either colony formation upon transfection of subgenomic replicon RNA or the inhibition of the HCV replicon by dsRNA. Our results suggest that the inhibition of HCV RNA replication by poly(I . C) in 293 cells is independent of IRF-3 activation.  相似文献   

15.
16.
In mammals, double-stranded RNA (dsRNA) can mediate sequence-specific RNA interference, activate sequence-independent interferon response, or undergo RNA editing by adenosine deaminases. We showed that long hairpin dsRNA expression had negligible effects on mammalian somatic cells—expressed dsRNA was slightly edited, poorly processed into siRNAs, and it did not activate the interferon response. At the same time, we noticed reduced reporter expression in transient co-transfections, which was presumably induced by expressed dsRNA. Since transient co-transfections are frequently used for studying gene function, we systematically explored the role of expressed dsRNA in this silencing phenomenon. We demonstrate that dsRNA expressed from transiently transfected plasmids strongly inhibits the expression of co-transfected reporter plasmids but not the expression of endogenous genes or reporters stably integrated in the genome. The inhibition is concentration-dependent, it is found in different cell types, and it is independent of transfection method and dsRNA sequence. The inhibition occurs at the level of translation and involves protein kinase R, which binds the expressed dsRNA. Thus, dsRNA expression represents a hidden danger in transient transfection experiments and must be taken into account during interpretation of experimental results.  相似文献   

17.
18.
Integrin is a cell-surface protein consisting of α and β heterodimers. A predicted amino acid sequence of an integrin subunit of the diamondback moth, Plutella xylostella, was highly homologous to other lepidopteran β1 subunits and possessed essential functional domains. The β1 integrin of P. xylostella (βPx1) was expressed in all developmental stages of P. xylostella. It was also expressed in all tested tissues including hemocyte, fat body, gut, and epidermis of last instar. When βPx1 expression was suppressed by injection of dsRNA specific to βPx1 (dsRNA(βPx1)), the treated larvae exhibited significant suppression in immune response and also suffered significant larval mortality. When dsRNA(βPx1) was orally fed to young larvae, it suppressed the expression of aPx1 and resulted in a significant mortality. By contrast, a dsRNA specific to β1 subunit of Spodoptera exigua gave little adverse effects on βPx1 expression and larval development when it was treated by injection or oral administration, though these two genes showed 71% sequence homology. These results suggest a target-specific RNA interference of dsRNA(βPx1), which causes significant mortality to P. xylostella by feeding treatment.  相似文献   

19.
The crustacean hyperglycemic hormone (CHH) plays an important role in the regulation of hemolymph glucose levels, but it is also involved in other functions such as growth, molting and reproduction. In the present study we describe the first CHH family gene isolated from the Atlantic Ocean shrimp Litopenaeus schmitti. Sequence analysis of the amplified cDNA fragment revealed a high nucleotide sequence identity with other CHHs. Northern blot analysis showed that the isolated CHH mRNA from L. schmitti is present in the eyestalk but not in muscle or stomach. We also investigated the ability of dsRNA to inhibit the CHH function in shrimps in vivo. Injection of CHH dsRNA into the abdominal hemolymph sinuses resulted in undetectable CHH mRNA levels within 24 h and a corresponding decrease in hemolymph glucose levels, suggesting that functional gene silencing had occurred. These findings are the first evidence that dsRNA technique is operative in adult shrimps in vivo.  相似文献   

20.
Rotavirus nonstructural protein NSP2, a functional octamer, is critical for the formation of viroplasms, which are exclusive sites for replication and packaging of the segmented double-stranded RNA (dsRNA) rotavirus genome. As a component of replication intermediates, NSP2 is also implicated in various replication-related activities. In addition to sequence-independent single-stranded RNA-binding and helix-destabilizing activities, NSP2 exhibits monomer-associated nucleoside and 5' RNA triphosphatase (NTPase/RTPase) activities that are mediated by a conserved H225 residue within a narrow enzymatic cleft. Lack of a 5' γ-phosphate is a common feature of the negative-strand RNA [(-)RNA] of the packaged dsRNA segments in rotavirus. Strikingly, all (-)RNAs (of group A rotaviruses) have a 5' GG dinucleotide sequence. As the only rotavirus protein with 5' RTPase activity, NSP2 is implicated in the removal of the γ-phosphate from the rotavirus (-)RNA. To understand how NSP2, despite its sequence-independent RNA-binding property, recognizes (-)RNA to hydrolyze the γ-phosphate within the catalytic cleft, we determined a crystal structure of NSP2 in complex with the 5' consensus sequence of minus-strand rotavirus RNA. Our studies show that the 5' GG of the bound oligoribonucleotide interacts extensively with highly conserved residues in the NSP2 enzymatic cleft. Although these residues provide GG-specific interactions, surface plasmon resonance studies suggest that the C-terminal helix and other basic residues outside the enzymatic cleft account for sequence-independent RNA binding of NSP2. A novel observation from our studies, which may have implications in viroplasm formation, is that the C-terminal helix of NSP2 exhibits two distinct conformations and engages in domain-swapping interactions, which result in the formation of NSP2 octamer chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号