首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A single intracardiac dose of lead acetate (40 μ lead/g body weight) induced a 25-fold increase in mitosis of mouse hepatocytes 5 hr after injection, as determined by autoradiography. the prompt appearance of a mitotic wave and the relatively large number of mitoses suggest that the mitotic cells were derived from a hepatocyte sub-population arrested in the G2 phase. the injection of lead also stimulated a small increase in labeled hepatocytes within 6 hr. Analysis of grain counts gave no evidence for unscheduled DNA synthesis. the incremental labeled cells may have originated from a small fraction of the G1 population that was ready to enter the S phase without the usual pre-synthetic delay.  相似文献   

2.
The proliferation of normal non-tumourigenic mouse fibroblasts is stringently controlled by regulatory mechanisms located in the postmitotic stage of G1 (which we have designated G1 pm). Upon exposure to growth factor depletion or a lowered de novo protein synthesis, the normal cells leave the cell cycle from G1 pm and enter G0. The G1 pm phase is characterized by a remarkably constant length (the duration of which is 3 h in Swiss 3T3 cells), whereas the intercellular variability of intermitotic time is mainly ascribable to late G1 or pre S phase (G1 ps) (Zetterberg & Larsson (1985) Proc. Natl. Acad. Sci. USA 82 , 5365). As shown in the present study two tumour-transformed derivatives of mouse fibroblasts, i.e. BPA31 and SVA31, did not respond at all, or only responded partially, respectively, to serum depletion and inhibition of protein synthesis. If the tumour cells instead were subjected to 25-hydroxycholesterol (an inhibitor of 3-hydroxy-3 methyglutaryl coenzyme A reductase activity), their growth was blocked as measured by growth curves and [3H]-thymidine uptake. Time-lapse analysis revealed that the cells were blocked specifically in early G1 (3-4h after mitosis), and DNA cytometry confirmed that the arrested cells contained a G1 amount of DNA. Closer kinetic analysis revealed that the duration of the postmitotic phase containing cells responsive to 25-hydroxycholesterol was constant. These data suggest that transformed 3T3 cells also contain a ‘G1 pm program’, which has to be completed before commitment to mitosis. By repeating the experiments on a large number of tumour-transformed cells, including human carcinoma cells and glioma cells, it was demonstrated that all of them possessed a G1 pm-like stage. Our conclusion is that G1 pm is a general phenomenon in mammalian cells, independent of whether the cells are normal or neoplastic.  相似文献   

3.
Six human colon carcinoma cell lines were induced to enter stationary phase of growth by nutrient deprivation and cell crowding. Growth kinetics parameters (cell number, flow cytometric analysis of DNA distribution, and labelling and mitotic indices) were measured sequentially for all lines during the various stages of in vitro growth. Our results demonstrated that a substantial fraction of cells (9-18%) were located in G2 phase when they changed from an exponential to a stationary mode of growth. Moreover, a large number of cells in stationary phase of growth had an S-phase DNA content, as determined by flow cytometry, but failed to incorporate radioactive DNA precursors (up to 15-fold difference). To substantiate these findings, cells in stationary phase of growth were induced to enter exponential growth by re-seeding in fresh medium at a lower density. Subsequently observed changes in DNA-compartment distribution, and in labelling and mitotic indices were those expected from cells that had been arrested at different stages of the cycle during their previous stationary phase. Thus, the non-proliferating quiescent state (Q), traditionally located 'somewhere' in G1 phase, appears to be composed also of cells that can be arrested at other stages of the cycle (Qs and QG2). Although the proportion of such cells is rather small, their contribution to the growth kinetics behaviour of human in vivo tumours will become apparent following 'recruiting' or 'synchronizing' clinical manoeuvres and will prevent the formation of a clear-cut wave of synchronized cells.  相似文献   

4.
It has been postulated that mouse epidermis contains two populations of resting cells, one of which is blocked at the G1-S boundary and the other between G2 and mitosis. the ‘arrested G2 cells’ were estimated, by the labelled mitosis method, to comprise 510% of the epidermal population and presumed to function as a ‘reserve pool’ which could be activated by wounding. A comprehensive search has now been carried out for arrested G2 cells in mouse epidermis using the direct methods of single cell and flow through cytophotometry. No evidence was obtained which supports the existence of such a cell compartment. Suitable control experiments were carried out to ensure that G2 cells were not lost during the isolation of epidermal nuclei.  相似文献   

5.
The data on cell-cycle effects of two prospective antitumour agents, (+)-1,2,-bis(3,5-dioxopiperazine-l-yl)propane (soluble ICRF; NSC 169780) and 1,4-bis(2′chloroethyl)-1,4-diazabicyclo [2.2.1] heptane diperchlorate (CBH; NSC 57198) were used to determine whether a modified stathmokinetic experiment could predict the effects of continuous, long-term (0–48 hr) drug exposure in an in vitro L1210 murine leukaemia cell system. Generally, continuous drug exposure of exponentially growing cells does not provide sufficient quantitative information concerning cell-cycle-phase-specific mechanisms of drug action. Alternatively, stathmokinetic experiments, which are usually limited to some fraction of one cell doubling time, provide little information about long-term drug effects. By using mathematical models constructed for this purpose, however, stathmokinetic data can predict the overall proportion of cells affected by a drug though failing to discern between various kinds of drug action (e.g. reversible v. irreversible block, blocking v. killing action, etc.), especially when it occurs in G2 phase. In addition, it can be shown that for at least one of the drugs (soluble ICRF) the stathmokinetic experiment fails to predict ‘after-effects’ of drug treatment which extend into the following cell cycle(s). It also becomes clear that the degradation of exponential growth characteristics of quickly dividing cells during long-term, continuous drug exposure makes prediction of cell-cycle kinetic perturbations uncertain when derived from short-duration stathmokinetic experiments. However, with care, the joint application of ‘short term’ (e.g. stathmokinesis) and ‘long term’ (e.g. continuous exposure) techniques allow adequate quantitative insight into drug-perturbed cell-cycle kinetics. the applicability of modelling techniques is discussed: in the present instance it is limited to lower drug concentrations. For higher drug concentrations, effects like increased ploidy, ineffective division, etc., make it impossible in the present study to obtain a clear picture of the kinetics.  相似文献   

6.
Hairless mice were given 5 mg hydroxyurea (HU) intraperitoneally (i.p.) followed by 0.15 mg Colcemid® at various times after HU. the animals were killed at 2 and 4 hr after Colcemid, the epidermal mitotic counts in dorsal skin were determined and the mitotic rates calculated. These were compared with the normal mitotic rates, and the ratios between the results from HU-treated and -untreated animals were calculated. Hydroxyurea caused a considerable reduction in the mitotic rate with a trough at 6 hr, followed by a wave of increased mitotic rate with a peak at 14 hr, followed by a secondary drop at 20 hr, and then a return to normal. Another group of mice were given HU only, and the fraction of epidermal cells in G2 was measured by flow cytometry. From these animals, without previous injection of Colcemid, we also determined the mitotic counts and calculated the mitotic durations. Cells piled up in G2 for the first 6 hr after HU injection, then the G2 compartment was emptied. the results are discussed in relation to previous results from this department showing the effect of the same dose of HU on DNA synthesis in the same mouse strain. It is concluded that HU not only blocks or retards DNA synthesis in epidermal cells, but also affects the movement of cells through G2 and M. the cell kinetic effects of HU thus seem to be very complex.  相似文献   

7.
The proliferation rate of mammalian cells is regulated normally in the G1 phase of the cell cycle. During this phase, it is convenient to assign positive and negative roles to the molecular programs that regulate the duration of G1 and the phase transition from G1 to S phase. Density-dependent inhibition of cellular proliferation results in an increase in the duration of G1. This form of regulation is due to both secreted factors and cell—cell contact. Serum is mitogenic to a variety of mammalian cell types. Because quiescent cells enter S phase as a result of serum addition to culture media, serum is usually regarded as a source of positive regulatory growth factors. We have measured the length of the G1, S and G2+ M phases of NIH 3T3 cells during exponential growth as a function of cell density and serum concentration. The G1 length increases during exponential growth as a function of density while S and G2+ M are relatively constant. Further, this increase in G1 phase time, or density mediated negative regulation, is inhibited by increasing serum concentration. This phenotype is saturable between 10% to 20% serum. Serum concentrations above 2.5% are able to increase the rate of cell cycling (decrease the G1 phase time) by inhibiting density dependent negative regulation of NIH 3T3.  相似文献   

8.
Normal haemopoietic stem cells, defined here as spleen colony-forming units (CFUs), are slowly proliferating and are generally considered to spend most of their time in the non-proliferative G0-state. A series of experiments using various combinations of the stem cell proliferation inhibitor (NBME-IV) and stimulator (RBME-III) together with vinblastine as a mitotic blocking agent was designed to determine the location of the G0-state relative to the cell cycle of the CFUs. From a knowledge of the effects of these agents, the expected results from three different G0-cell cycle models were charted and compared with the observed proliferative behaviour of the CFUs following these treatments. It was concluded that the out-of-cycle G0-state is located at the end of the G1-phase of the cycle, so that on receiving a stimulatory signal, the CFUs can rapidly enter the DNA-synthesis phase.  相似文献   

9.
Epidermal cell flux at the G1-S, S-G2 and G2-M transition was examined during the first 4 hr after injection of epidermis extract. the flux parameters were estimated by a combination of several methods. the G1-S and S-G2 transit rates were calculated on the basis of a double labelling technique with [3H]TdR, the G2-M flux by means of colcemid and the relative proportion of cells in the S or G2 phase by means of flow cytometry. All experiments were performed both in early morning and late evening, corresponding to maximum and minimum rates of epidermal cell proliferation in the hairless mouse. the epidermis extract inhibited the S-G and G2-M transit rates to the same degree, while the inhibition of cell flux at the G1-S transit was consistently stronger. In general, the inhibition of cell flux at the different transitions was most pronounced when the rate of cell proliferation was low and vice versa.  相似文献   

10.
Conventional flow cytometric DNA measurements combined with the microscopic detection of cells in the late G2 phase of the cell cycle (characterized by the occurrence of paired kinetochores) enabled us to differentiate and to quantify early and late G2 cells 0–40 h after irradiation using a radioresistant (L929) and a radiosensitive (HL-60) cell line. This approach provided us with ( 1 ) a new kind of G2 arrest characteristic revealing changes in the G2 phase which can not be detected by flow cytometric DNA measurements, ( 2 ) cell line dependent differences in the radiation-induced transition through G2, accompanied by the occurrence of micronucleation and apoptosis, and ( 3 ) the characterization of apoptotic cells occurring probably during early G2 and bearing a rapidly reduced number of kinetochores in contrast to mitotic cells, suggesting processes different from those that operate in mitosis.  相似文献   

11.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

12.
13.
The transit time distribution at various points in the cell cycle of synchronized Chinese hamster ovary cells was determined from the mitotic index, [3H]thymidine labeling index and increase in cell number monitored at regular intervals after mitotic selection. Variation in G1 transit time compared with that for the total cell cycle indicates that variation in cell cycle transit time occurs mainly during G1 phase. the cycloheximide (5.0 μg/ml) and actinomycin D (3.0 μg/ml) restriction points occur 0.2 and 1.7 hr prior to entry into S phase, respectively. the transit time distributions are further characterized by the moments of the distributions. the variance (2nd moment about the mean) of the transit time distribution at the actinomycin D restriction point is similar to the variance of the transit time distribution at the G1/S border, thus variation in cell cycle transit time originates earlier than 1.7 hr prior to entry into S phase (i.e., the first 3/4 of G1). If G1 transit time variability and cell cycle control are related, then the results presented here indicate that the major regulatory events do not occur during late G1 phase.  相似文献   

14.
The proliferative behaviour induced in the acinar cells of the rat submaxillary gland in response to isoprenaline has been used to examine the transit time of cells from a quiescent (G0) state into the S phase. Cumulative 3H-TdR labelling index curves were constructed to determine the mean time interval (Gis time) between stimulation with isoprenaline and entry into the S phase. Data were collected for the proliferative wave induced by three sequential injections of isoprenaline, and the effects of varying the interval between the second and third injections of isoprenaline, and of changing the dose of the drug, were examined. Intervals of 28, 52 and 76 hr between isoprenaline injections resulted in mean Gis times of 16-2, 20-9 and 25-6 hr respectively. It was concluded that the Gis time depended on the recent history of cells with respect to stimulation, but not division. The results are considered in terms of two models, in one of which the time to leave G0 is variable, whilst in the other the cells leave G0 immediately the stimulus is applied.  相似文献   

15.
The model is based on the assumption that the cell cycle contains a Go-phase which cells leave randomly with a constant probability per unit time, γ. After leaving the Go-phase, the cells enter the C-phase which ends with cell division. The C-phase and its constituent phases, the‘true’G1-phase, the S-phase, the G2-phase and mitosis are assumed to have constant durations of T, T1Ts, T2 and Tm, respectively. For renewal tissue it is assumed that the probability per unit time of being lost from the population is a constant for all cells irrespective of their position in the cycle. The labelled mitosis curve and labelling index for continuous labelling are derived in terms of γ, T, and Ts. The model generates labelled mitosis curves which damp quickly and reach a constant value of twice the initial labelling index, if the mean duration of the Go-phase is sufficiently long. It is shown that the predicted labelled mitosis and continuous labelling curves agree reasonably well with the experimental curves for the hamster cheek pouch if T has a value of about 60 hr. Data are presented for the rat dorsal epidermis which support the assumption that there is a constant probability per unit time of a cell being released from the Go-phase.  相似文献   

16.
17.
Human leucocytes were cultured for 3 days at 37°C, and during this time treated with rubidomycin (also known as daunomycin) for periods up to 48 hr. The effects of this treatment were studied by examining mitotic indices, uptake of 3H-thymidine, and patterns of DNA content (measured by microdensitometry on Feulgen-stained cells). A low concentration of rubidomycin (0.1 μg/ml) caused accumulation of cells in the G2 period, which in turn resulted in a decrease in the mitotic index. A secondary effect was a slight drop in 3H-thymidine uptake after 12 hr. Higher doses (up to 10 μg rubidomycin per ml) caused an inhibition of DNA synthesis, with accumulation of unlabelled cells between G2 and G2. The probable mode of action of rubidomycin, as presented by earlier authors, is the intrusion of the drug molecule between DNA strands, forming a complex with DNA, and hindering its normal folding. This is discussed with respect to the present findings.  相似文献   

18.
The present study was undertaken to determine whether endometrial cancer cell line HEC-1-A differ from nontransformed cells, in that the cAMP and protein kinase C pathways may enhance IGF-I effects in mitogenesis by acting at the G1 phase of the cell cycle instead of G0. Immunofluorescence staining of HEC-1-A cells using the proliferating cell nuclear antigen (PCNA) monoclonal antibody and flow cytometric analysis determined that HEC-1-A cells do not enter the G0 phase of the cell cycle when incubated in a serum-free medium. Approximately 51% of the cells were in G1, 12% were in S and 37% in G2 phase of the cell cycle prior to treatment. Forskolin and phorbol-12-myristate 13-acetate (PMA) were used to stimulate cAMP production and protein kinase C activity, respectively. IGF-I, forskolin and PMA each increased (P <0.01) [3H]-thymidine incorporation in a dose and time dependent manner. The interaction of forskolin and PMA with IGF-I was then determined. Cells preincubated with forskolin or PMA followed by incubation with IFG-I incorporated significantly more (P <0.01) [3H]-thymidine into DNA than controls or any treatment alone. It is concluded that forskolin and, to a lesser extent, PMA exert their effect at the G1 phase of the cycle to enhance IGF-I effects in cell proliferation.  相似文献   

19.
The mechanism of action of the alkaloid vincristine (VCR) has been investigated in vitro on HeLa cells in culture and in vivo on jejunal crypt cells of the mouse. The in vitro experiments with HeLa cells show that VCR affects not only mitotic but also interphase cells. The VCR-affected cells first continue their passage through the cell cycle undisturbed but after reaching mitosis they are arrested in metaphase. This agrees well with the results obtained by Madoc-Jones & Mauro (1968) and Madoc-Jones (1973) on synchronized cell cultures. Until now there has been no investigation of the mechanism of action of VCR in vivo. This is due to the absence of a suitable technique for synchronization in vivo. The present study is based on a method which permits the assessment of the VCR sensitivity as a function of the cell age without synchronization in the usual sense. The jejunal crypt epithelium of the normal mouse was double labelled with 3H- and 14C-thymidine (TdR) in such a way as to produce a narrow subpopulation of crypt cells with a maximum age difference of 1 hr. On autoradiographs these cells can be distinguished by their characteristic labelling from other cells. As this ‘pseudo’-synchronized subpopulation passes through the cycle the effect of VCR can be studied, i.e. one can analyse the effect in well-defined time intervals of the cycle. The results show that the effect of VCR is the same in vivo as in vitro. The crypt cells which are affected by VCR in interphase continue their passage through the cycle, but upon entering mitosis they are arrested in metaphase. VCR has, at the concentration used in the present study, no effect on the duration of the S and G2 phases. The necrotic cells seen after VCR application are formed from arrested metaphases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号