首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Growing clinical evidence suggests that metabolic behavior and atherogenic potential vary within lipoprotein subclasses that can be defined by apolipoprotein variation. Variant constituency of apolipoproteins B and E (apoB and apoE) may be particularly important because of the central roles of these apolipoproteins in the endogeneous lipid delivery cascade. ApoB is the sole protein of low-density lipoprotein (LDL), and like LDL cholesterol, the plasma apoB level has been positively correlated with risk for atherosclerotic disease. ApoE is a major functional lipoprotein in the triglyceride-rich lipoproteins, and may be crucial in the conversion of very low density lipoprotein (VLDL) to LDL. Based on work by others that enabled the quantititation of apoB-containing particles by content of up to two other types of apolipoprotein, we have developed a method for determining the amount of apoE in apoB-containing lipoproteins (Lp B:E) and the amount of apoB in apoE-containing lipoproteins (Lp E:B). From the Lp B:E and Lp E:B concentrations, the molar ratio of apoE to apoB in lipoproteins containing apoB and/or apoE in plasma can be determined. The methodology is fast, specific, and sensitive and should prove extremely useful in further categorizing lipoproteins and characterizing their behavior. In applying this method to clinical groupings of normo- and hyperlipidemia, we found that the plasma triglyceride level correlated with the apoE and Lp B:E concentrations in plasma, while the total cholesterol level correlated with the apoB and Lp E:B levels.  相似文献   

2.
Sixteen patients differing widely in plasma triglyceride content were divided into three groups by their apolipoprotein E (apoE) phenotype—E33 homozygotes, E23, and E34 heterozygotes. The plasma lipid and apoE distribution between individual lipoproteins was followed by capillary isotachophoresis (CITP) of plasma samples pre-stained with lipid fluorescent probe NBD-C6-ceramide and by fluorescein-labeled apoE, respectively. Among 12 peaks visualized by ceramide staining, an individual peak with very low density lipoproteins (VLDL) was identified. The VLDL cholesterol and apoE content determined by CITP directly in whole plasma were significantly related to their content as determined by conventional analysis with isolated VLDL. The ceramide distribution among lipoprotein pools was insensitive to apoE phenotype (49–53 : 7–11 : 39–43% for HDL, VLDL, and IDL/LDL, respectively) while the preferential binding of apoE to VLDL was observed in E34 patients compared to E33 (62 : 19 : 20 vs. 70 : 9 : 22%). In a study of apoE/F displacement from lipoproteins at plasma titration by apoC-III in vitro, apoE was found to bind more tightly to VLDL from E34 compared to E33 patients as evidenced by both the increased non-displaceable apoE pool, the increased VLDL sorbtion capacity for apoE, and the decreased displacement parameter in a “container” model of lipoprotein binding. Two different types of apoE package in a whole lipoprotein profile were observed. ApoE structure in a particular lipoprotein may underlie the phenotype-sensitive apoE distribution and apoC-III interference in hypertriglyceridemia.  相似文献   

3.
Previous studies suggest that during nerve regeneration apoE acts as a lipid transport protein that assists in the rapid initial extension of axons and then in their myelination. To determine whether apoE and/or apoE-containing lipoproteins can modulate axon growth, we assessed their effect on the out-growth of neurites from neurons in mixed cultures of fetal rabbit dorsal root ganglion cells in vitro. Incubation with beta-very low density lipoprotein (beta-VLDL) particles, which are rich in apoE and cholesterol, increased neurite outgrowth and branching. Unesterified cholesterol added to the cultures had a similar, but less pronounced, effect. These data suggest that cholesterol might be the component responsible for the enhanced neurite growth. In contrast, purified, lipid-free apoE added to the cultures reduced neurite branching. Neurite branching was also reduced when purified apoE was added along with beta-VLDL or cholesterol; however, the striking finding was that under these conditions the neurites extended farther from the neuronal cell body. Dorsal root ganglion cells were examined for the presence of receptors for native and apoE-enriched beta-VLDL. Immunocytochemistry, ligand blots, 45Ca2+ blots, and studies of the interaction of the cells with fluorescent lipoproteins provided evidence of two types of receptors for apoE-containing lipoproteins on neurons: the low density lipoprotein (LDL) receptor, which binds native beta-VLDL, and the LDL receptor-related protein, which binds apoE-enriched beta-VLDL. These findings indicate that apoE may play two complementary roles in neurite outgrowth. When complexed with lipoproteins, apoE stimulates neurite growth by the receptor-mediated delivery of cholesterol and perhaps other components necessary for neurite outgrowth. When apoE as a free protein is added together with apoE-containing lipoproteins, apoE decreases neurite branching and promotes neurite extension away from the cell body. These actions, which would be complementary in promoting target-directed nerve growth in vivo, provide the first direct evidence that apoE and apoE-containing lipoproteins can modulate the outgrowth of neuronal processes.  相似文献   

4.
Nascent Astrocyte Particles Differ from Lipoproteins in CSF   总被引:12,自引:4,他引:8  
Abstract: Little is known about lipid transport and metabolism in the brain. As a further step toward understanding the origin and function of CNS lipoproteins, we have characterized by size and density fractionation lipoprotein particles from human CSF and primary cultures of rat astrocytes. The fractions were analyzed for esterified and free cholesterol, triglyceride, phospholipid, albumin, and apolipoproteins (apo) E, AI, AII, and J. As determined by lipid and apolipoprotein profiles, gel electrophoresis, and electron microscopy, nascent astrocyte particles contain little core lipid, are primarily discoidal in shape, and contain apoE and apoJ. In contrast, CSF lipoproteins are the size and density of plasma high-density lipoprotein, contain the core lipid, esterified cholesterol, and are spherical. CSF lipoproteins were heterogeneous in apolipoprotein content with apoE, the most abundant apolipoprotein, localized to the largest particles, apoAI and apoAII localized to progressively smaller particles, and apoJ distributed relatively evenly across particle size. There was substantial loss of protein from both CSF and astrocyte particles after density centrifugation compared with gel-filtration chromatography. The differences between lipoproteins secreted by astrocytes and present in CSF suggest that in addition to delivery of their constituents to cells, lipoprotein particles secreted within the brain by astrocytes may have the potential to participate in cholesterol clearance, developing a core of esterified cholesterol before reaching the CSF. Study of the functional properties of both astrocyte-secreted and CSF lipoproteins isolated by techniques that preserve native particle structure may also provide insight into the function of apoE in the pathophysiology of specific neurological diseases such as Alzheimer's disease.  相似文献   

5.
Mice that lack apolipoprotein E (apoE) display a severe hypercholesterolemia, caused by the accumulation of apolipoprotein B-48 (apoB-48)-carrying remnants of chylomicrons and very-low-density lipoproteins in the plasma. Statins are potent inhibitors of cholesterol synthesis that, when administered to mice lacking apoE, cause paradoxical further increases in plasma cholesterol levels. In the present study, we examined the mechanisms responsible for this phenomenon. ApoE-deficient mice fed a chow diet containing simvastatin developed, as anticipated, an enhanced increase in plasma cholesterol and a decrease in plasma triglycerides. Fractionation of the plasma lipoproteins by FPLC revealed that the lipid changes were confined to the lipoprotein remnants. Western blot analysis of the remnants from the untreated and simvastatin-treated mice showed no differences in their apoB-48 content, indicating that both groups of animals accumulated similar numbers of remnant particles in the plasma. Following the injection of Triton WR-1339, the simvastatin-treated mice accumulated in the plasma significantly more cholesterol and significantly less triglycerides than the untreated animals. These results indicate that the enhanced hypercholesterolemia observed in apoE-deficient mice treated with simvastatin is not the result of an increased number of remnant particles in circulation but is caused by synthesis and secretion into the plasma of lipoproteins that are enriched in cholesterol and depleted of triglycerides.  相似文献   

6.
Composition of central nervous system lipoproteins affects the metabolism of lipoprotein constituents within the brain. The epsilon4 allele of apolipoprotein E (apoE) is a risk factor for Alzheimer's disease via an unknown mechanism(s). As glia are the primary central nervous system cell type that synthesize apoE, we characterized lipoproteins secreted by astrocytes from wild type (WT), apoE (-/-), and apoE transgenic mice expressing human apoE3 or apoE4 in a mouse apoE (-/-) background. Nondenaturing size exclusion chromatography demonstrates that WT, apoE3, and apoE4 astrocytes secrete particles the size of plasma high density lipoprotein (HDL) composed of phospholipid, free cholesterol, and protein, primarily apoE and apoJ. However, the lipid:apoE ratio of particles containing human apoE is significantly lower than WT. ApoE localizes across HDL-like particle sizes. ApoJ localizes to the smallest HDL-like particles. ApoE (-/-) astrocytes secrete little phospholipid or free cholesterol despite comparable apoJ expression, suggesting that apoE is required for normal secretion of astrocyte lipoproteins. Further, particles were not detected in apoE (-/-) samples by electron microscopy. Nondenaturing immunoprecipitation experiments indicate that apoE and apoJ reside predominantly on distinct particles. These studies suggest that apoE expression influences the unique structure of astrocyte lipoproteins, a process further modified by apoE species.  相似文献   

7.
Oxidative damage to proteins such as apolipoprotein B-100 increases the atherogenicity of low-density lipoproteins (LDL). However, little is known about the potential oxidative damage to apolipoprotein E (apoE), an exchangeable antiatherogenic apolipoprotein. ApoE plays an integral role in lipoprotein metabolism by regulating the plasma cholesterol and triglyceride levels. Hepatic uptake of lipoproteins is facilitated by apoE's ability to bind with cell surface heparan sulfate proteoglycans and to lipoprotein receptors via basic residues in its 22 kDa N-terminal domain (NT). We investigated the effect of acrolein, an aldehydic product of endogenous lipid peroxidation and a tobacco smoke component, on the conformation and function of recombinant human apoE3-NT. Acrolein caused oxidative modification of apoE3-NT as detected by Western blot with acrolein-lysine-specific antibodies, and tertiary conformational alterations. Acrolein modification impairs the ability of apoE3-NT to interact with heparin and the LDL receptor. Furthermore, acrolein-modified apoE3-NT displayed a 5-fold decrease in its ability to interact with lipid surfaces. Our data indicate that acrolein disrupts the functional integrity of apoE3, which likely interferes with its role in regulating plasma cholesterol homeostasis. These observations have implications regarding the role of apoE in the pathogenesis of smoking- and oxidative stress-mediated cardiovascular and cerebrovascular diseases.  相似文献   

8.
Turks have strikingly low levels of high density lipoprotein cholesterol (HDL-C) (10-15 mg/dL lower than those of Americans or Western Europeans) associated with elevated hepatic lipase mass and activity. Here we report that Turks have low levels of high density lipoprotein subclass 2 (HDL(2)), apoA-I-containing lipoproteins (LpA-I), and pre-beta-1 HDL and increased levels of HDL(3) and LpA-I/A-II particles (potentially an atherogenic lipid profile). The frequency distributions of HDL-C and LpA-I levels were skewed toward bimodality in Turkish women but were unimodal in Turkish men. The apoE genotype affected HDL-C and LpA-I levels in women only. In women, but not men, the varepsilon2 allele was strikingly more prevalent in those with the highest levels of HDL-C and LpA-I than in those with the lowest levels. The higher prevalence of the epsilon2 allele in these subgroups of women was not explained by plasma triglyceride levels, total cholesterol levels, age, or body mass index. The modulating effects of apoE isoforms on lipolytic hydrolysis of HDL by hepatic lipase (apoE2 preventing efficient hydrolysis) or on lipoprotein receptor binding (apoE2 interacting poorly with the low density lipoprotein receptors) may account for differences in HDL-C levels in Turkish women (the epsilon2 allele being associated with higher HDL levels). In Turkish men, who have substantially higher levels of hepatic lipase activity than women, the modulating effect of apoE may be overwhelmed. The gender-specific impact of the apoE genotype on HDL-C and LpA-I levels in association with elevated levels of hepatic lipase provides new insights into the metabolism of HDL.  相似文献   

9.
Dietary sphingomyelin (SM) is hydrolyzed by intestinal alkaline sphingomyelinase and neutral ceramidase to sphingosine, which is absorbed and converted to palmitic acid and acylated into chylomicron triglycerides (TGs). SM digestion is slow and is affected by luminal factors such as bile salt, cholesterol, and other lipids. In the gut, SM and its metabolites may influence TG hydrolysis, cholesterol absorption, lipoprotein formation, and mucosal growth. SM accounts for approximately 20% of the phospholipids in human plasma lipoproteins, of which two-thirds are in LDL and VLDL. It is secreted in chylomicrons and VLDL and transferred into HDL via the ABCA1 transporter. Plasma SM increases after periods of large lipid loads, during suckling, and in type II hypercholesterolemia, cholesterol-fed animals, and apolipoprotein E-deficient mice. SM is thus an important amphiphilic component when plasma lipoprotein pools expand in response to large lipid loads or metabolic abnormalities. It inhibits lipoprotein lipase and LCAT as well as the interaction of lipoproteins with receptors and counteracts LDL oxidation. The turnover of plasma SM is greater than can be accounted for by the turnover of LDL and HDL particles. Some SM must be degraded via receptor-mediated catabolism of chylomicron and VLDL remnants and by scavenger receptor class B type I receptor-mediated transfer into cells.  相似文献   

10.
Apolipoprotein E (apoE), an apoprotein involved in lipid transport in both the plasma and within the brain, mediates the binding of lipoproteins to members of the low density lipoprotein (LDL) receptor family including the LDL receptor and the LDL receptor-related protein (LRP). ApoE/LRP interactions may be particularly important in brain where both are expressed at high levels, and polymorphisms in the apoE and LRP genes have been linked to AD. To date, only apoE-enriched lipoproteins have been shown to be LRP ligands. To investigate further whether other, more lipid-poor forms of apoE interact with LRP, we tested whether lipid-free apoE in the absence of lipoprotein particles interacts with its cell-surface receptors. No detectable lipid was found associated with bacterially expressed and purified apoE either prior to or following incubation with cells when analyzed by electrospray ionization mass spectrometry. We found that the degradation of lipid-poor (125)I-apoE was significantly higher in wild type as compared to LRP-deficient cells, and was inhibited by receptor-associated protein (RAP). In contrast, (125)I-apoE-enriched beta-VLDL was degraded by both LRP and the LDL receptor. When analyzed via a single cycle of endocytosis, (125)I-apoE was internalized prior to its subsequent intracellular degradation with kinetics typical of receptor-mediated endocytosis. Thus, we conclude that a very lipid-poor form of apoE can be catabolized via cell surface LRP, suggesting that the conformation of apoE necessary for recognition by LRP can be imposed by situations other than an apoE-enriched lipoprotein.  相似文献   

11.
LDL receptor-related protein 5 (LRP5) plays multiple roles, including embryonic development and bone accrual development. Recently, we demonstrated that LRP5 is also required for normal cholesterol metabolism and glucose-induced insulin secretion. To further define the role of LRP5 in the lipoprotein metabolism, we compared plasma lipoproteins in mice lacking LRP5, apolipoprotein E (apoE), or both (apoE;LRP5 double knockout). On a normal chow diet, the apoE;LRP5 double knockout mice (older than 4 months of age) had approximately 60% higher plasma cholesterol levels compared with the age-matched apoE knockout mice. In contrast, LRP5 deficiency alone had no significant effects on the plasma cholesterol levels. High performance liquid chromatography analysis of plasma lipoproteins revealed that cholesterol levels in the very low density lipoprotein and low density lipoprotein fractions were markedly increased in the apoE;LRP5 double knockout mice. There were no apparent differences in the pattern of apoproteins between the apoE knockout mice and the apoE;LRP5 double knockout mice. The plasma clearance of intragastrically loaded triglyceride was markedly impaired by LRP5 deficiency. The atherosclerotic lesions of the apoE;LRP5 double knockout mice aged 6 months were approximately 3-fold greater than those in the age-matched apoE-knockout mice. Furthermore, histological examination revealed highly advanced atherosclerosis, with remarkable accumulation of foam cells and destruction of the internal elastic lamina in the apoE;LRP5 double knockout mice. These data suggest that LRP5 mediates both apoE-dependent and apoE-independent catabolism of plasma lipoproteins.  相似文献   

12.
Transgenic rabbits as models for atherosclerosis research   总被引:4,自引:0,他引:4  
Several characteristics of the rabbit make it an excellent model for the study of lipoprotein metabolism and atherosclerosis. New Zealand White (NZW) rabbits have low plasma total cholesterol concentrations, high cholesteryl ester transfer protein activity, low hepatic lipase (HL) activity, and lack an analogue of human apolipoprotein (apo) A-II, providing a unique system in which to assess the effects of human transgenes on plasma lipoproteins and atherosclerosis susceptibility. Additionally, rabbit models of human lipoprotein disorders, such as the Watanabe Heritable Hyperlipidemic (WHHL) and St. Thomas' Hospital strains, models of familial hypercholesterolemia and familial combined hyperlipidemia, respectively, allow for the assessment of candidate genes for potential use in the treatment of dyslipoproteinemic patients. To date, transgenes for human apo(a), apoA-I, apoB, apoE2, apoE3, HL, and lecithin:cholesterol acyltransferase (LCAT), as well as for rabbit apolipoprotein B mRNA-editing enzyme catalytic poly-peptide 1 (APOBEC-1), have been expressed in NZW rabbits, whereas only those for human apoA-I and LCAT have been introduced into the WHHL background. All of these transgenes have been shown to have significant effects on plasma lipoprotein concentrations. In both NZW and WHHL rabbits, human apoA-I expression was associated with a significant reduction in the extent of aortic atherosclerosis, which was similarly the case for LCAT in rabbits having at least one functional LDL receptor allele. Conversely, expression of apoE2 in NZW rabbits caused increased susceptibility to atherosclerosis. These studies provide new insights into the mechanisms responsible for the development of atherosclerosis, emphasizing the strength of the rabbit model in cardiovascular disease research.  相似文献   

13.
Apolipoprotein (apo) E has a storied history as a lipid transport protein. The integral association between cholesterol homeostasis and lipoprotein clearance from circulation are intimately related to apoE’s function as a ligand for cell-surface receptors of the low-density lipoprotein receptor family. The receptor binding properties of apoE are strongly influenced by isoform specific amino acid differences as well as the lipidation state of the protein. As understanding of apoE as a structural component of circulating plasma lipoproteins has evolved, exciting developments in neurobiology have revitalized interest in apoE. The strong and enduring correlation between the apoE4 isoform and age of onset and increased risk of Alzheimer’s disease has catapulted apoE to the forefront of neurobiology. Using genetic tools generated for study of apoE lipoprotein metabolism, transgenic “knock-in” and gene-disrupted mice are now favored models for study of its role in a variety of neurodegenerative diseases. Key structural knowledge of apoE and isoform-specific differences is driving research activity designed to elucidate how a single amino acid change can manifest such profoundly significant pathological consequences. This review describes apoE through a lens of structure-based knowledge that leads to hypotheses that attempt to explain the functions of apoE and isoform-specific effects relating to disease mechanism.  相似文献   

14.
Lipoprotein metabolism in brain has not yet been fully elucidated, although there are a few reports concerning lipids in the brain and lipoproteins and apolipoproteins in the cerebrospinal fluid (CSF). To establish normal levels of lipoproteins in human CSF, total cholesterol, phospholipids, and fatty acids as well as apolipoprotein E (apoE) and apoA-I levels were determined in CSF samples from 216 individuals. For particle characterization, lipoproteins from human CSF were isolated by affinity chromatography and analyzed for size, lipid and apolipoprotein composition. Two consecutive immunoaffinity columns with antibodies, first against apoE and subsequently against apoA-I, were used to define four distinct lipoprotein classes. The major lipoprotein fraction consisted of particles of 13;-20 nm containing apoE and apoA-I as well as apoA-IV, apoD, apoH, and apoJ. In the second particle class (13;-18 nm) mainly apoA-I and apoA-II but no apoE was detected. Third, there was a small number of large particles (18;-22 nm) containing no apoA-I but apoE associated with apoA-IV, apoD, and apoJ. In the unbound fraction we detected small particles (10;-12 nm) with low lipid content containing apoA-IV, apoD, apoH, and apoJ. In summary, we established lipid and apolipoprotein levels in CSF in a large group of individuals and described four distinct lipoprotein classes in human CSF, differing in their apolipoprotein pattern, lipid composition, and size. On the basis of our own data and previous findings from other groups, we propose a classification of CSF lipoproteins.  相似文献   

15.
This study was undertaken to determine if apolipoprotein (apo) E-containing lipoproteins and their receptors could provide a system for lipid transport and cholesterol homeostasis in the brain, as they do in other tissues. To accomplish this goal, the lipoproteins in human and canine cerebrospinal fluid (CSF) were characterized, and rat brain and monkey brain were examined for the presence of apoB,E(LDL) receptors. Apolipoprotein E and apoA-I were present in human and canine CSF, but apoB could not be detected. Apo-lipoprotein E and apoA-I were both present on lipoproteins with a density of approximately 1.09 to 1.15 g/ml. In human CSF, the lipoproteins were primarily spherical (approximately 140 A), whereas in canine CSF the lipoproteins were a mixture of discs (200 x 65 A) and spheres (approximately 130 A). Apolipoproteins E and A-I were contained primarily in separate populations of lipoproteins. Although the apoE of CSF was more highly sialylated than plasma apoE, the apoE-containing lipoproteins in canine CSF competed as effectively as canine plasma apoE HDLc for binding of 125I-LDL to the apoB,E(LDL) receptors on human fibroblasts. The presence of apoB,E(LDL) receptors in both rat and monkey brain was demonstrated by immunocytochemistry. Astrocytes abutting on the arachnoid space and pial cells of the arachnoid itself, both of which contact CSF, expressed apoB,E(LDL) receptors. Relatively few receptors were present in the cells of the gray matter of the cortex. Receptors were more prominent on the astrocytes of white matter and in the cells of the brain stem. The expression of apoB,E(LDL) receptors by brain cells and the presence of apoE- and apoA-I-containing lipoproteins in CSF suggest that the central nervous system has a mechanism for lipid transport and cholesterol homeostasis similar to that of other tissues.  相似文献   

16.
17.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

18.
Vesicular lipoproteins (e.g., lipoprotein-X) are found in plasma in cholestasis or following infusion of Intralipid or phospholipid. To investigate the metabolism of vesicular lipoproteins, we isolated them from the plasma of subjects with cholestasis or following chronic or single Intralipid infusion. Cholestasis and chronic Intralipid therapy were found to be associated with elevated plasma concentrations of apoE, as determined by radioimmunoassay. Vesicular lipoproteins purified from each of the three types of plasma contained apoE, as well as other proteins. In cholestasis, in which levels of apoE were up to five times normal, a major portion of the plasma apoE was on vesicular lipoproteins. Normalized for apoE content, all preparations of vesicular lipoproteins displaced 125I-labeled LDL from apoB,E receptors of cultured fibroblasts identically. This displacement was inhibited by monoclonal antibodies that block receptor binding of apoE. Vesicular lipoproteins containing 125I-labeled apoE were internalized and degraded by fibroblasts. Different preparations caused small losses or gains of cellular cholesterol, with appropriate stimulation or suppression of apoB,E receptors. Thus, vesicular lipoproteins contain apoE, and apoE mediates their interaction with the apoB,E receptor. Our results suggest that the catabolism of cholesterol-rich vesicular lipoproteins, formed during cholestasis or following infusions of Intralipid or phospholipid, may be receptor-mediated.  相似文献   

19.
Following its secretion into the plasma compartment, the high-density lipoprotein (HDL) is presumed to be acted upon by both soluble enzymes, such as lecithin:cholesterol acyltransferase (LCAT), and membrane-associated enzymes, such as lipoprotein lipase and hepatic lipase. Rats were injected intravenously with heparin to release membrane-associated lipolytic activities into the circulation and the collected plasma was incubated overnight at 37 degrees C in the presence or absence of an LCAT inhibitor or an inhibitor of lipoprotein lipase (1 M NaCl). It was observed that lipoprotein lipase accounted for most of the triglyceride hydrolase activity in the heparin-treated plasma, and that the heparin-releasable activities caused an increase in HDL density but no measurable change in particle size when LCAT was inhibited. Heparin treatment caused about a 60% decrease in plasma triacylglycerol during the interval between injection of heparin and blood collection. Although this caused marked compositional changes in the d less than 1.063 g/ml lipoproteins, no changes were observed in the lipid composition or apoprotein distribution in the HDL. Subsequent incubation for 18 h at 37 degrees C produced marked increases in the apoE content of HDL from heparin-treated plasma even when LCAT was inhibited. Time-course studies showed that in the presence of an LCAT inhibitor there was considerable conversion of phosphatidylcholine to lysophosphatidylcholine in heparin-treated plasma, and that this activity was diminished by 1 M NaCl, but that no phospholipolysis was observed in control plasma. By contrast, both heparin-treated and control plasma possessed substantial triglyceride hydrolase activity. The concurrent action of lipases and LCAT was observed to reduce the maximum level of cholesterol esterification which could be achieved in the absence of lipase activity. It is concluded that changes in HDL particle size are mainly attributable to LCAT, but that lipase activities, which are either free in rat plasma or releasable by heparin, play a role in restructuring the phospholipid moiety and altering the protein composition of the HDL, especially with respect to apoE, a potential ligand to cellular receptors.  相似文献   

20.
Following the internalization of low density lipoprotein (LDL) by the LDL receptor within cells, both the lipid and the protein components of LDL are completely degraded within the lysosomes. Remnant lipoproteins are also internalized by cells via the LDL receptor as well as other receptors, but the events following the internalization of these complexes, which use apolipoprotein E (apoE) as their ligand for receptor capture, have not been defined. There is evidence that apoE-containing beta-very low density lipoproteins follow differential intracellular routing depending on their size and apoE content and that apoE internalized with lipoproteins can be resecreted by cultured hepatocytes and fibroblasts. In the present studies, we addressed the question of apoE sparing or recycling as a physiologic phenomenon. Remnant lipoproteins (d < 1.019 g/ml) from normal mouse plasma were iodinated and injected into normal C57BL/6 mice. Livers were collected at 10, 30, 60, and 120 min after injection, and hepatic Golgi fractions were prepared for gel electrophoresis analysis. Golgi preparations were analyzed for galactosyltransferase enrichment (>40-fold above cell homogenate) and by appearance of the Golgi stacks and vesicles on electron microscopy. Iodinated apoE was consistently found in the Golgi fractions peaking at 10 min and disappearing by 2 h after injection. Although traces of apoB48 were present in the Golgi fractions, the apoE/apoB ratio in the Golgi was 50-fold higher compared with serum. Quantitatively similar results were obtained when the very low density lipoprotein remnants were injected into mice deficient in either apoE or the LDL receptor, indicating that the phenomenon of apoE recycling is not influenced by the production of endogenous apoE and is not dependent on the presence of LDL receptors. In addition, radioactive apoE in the Golgi fractions was part of d = 1.019-1.21 g/ml complexes, indicating an association of recycled apoE with either newly formed lipoproteins or the internalized complexes. These studies show that apoE recycling is a physiologic phenomenon in vivo and establish the presence of a unique pathway of intracellular processing of apoE-containing remnant lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号