首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One consequence of the dramatic rise of antibiotic-resistant pathogenic bacteria is the need for new targets for antibiotics. Because membrane lipid biogenesis is essential for bacterial growth, enzymes of the fatty acid biosynthetic pathway offer attractive possibilities for the development of new antibiotics. Acetyl-coenzyme A carboxylase (ACC) catalyzes the first committed and regulated step in fatty acid biosynthesis in bacteria and thus is a prime target for development of antibiotics. ACC is a multifunctional enzyme composed of three separate proteins. The biotin carboxylase component catalyzes the ATP-dependent carboxylation of biotin. The biotin carboxyl carrier protein features a biotin molecule covalently attached at Lys122 of the Escherichia coli enzyme. The carboxyltransferase subunit catalyzes the transfer of a carboxyl group from biotin to acetyl-coenzyme A (acetyl-CoA) to form malonyl-CoA. The objective of this study was to develop an assay for high-throughput screening for inhibitors of the carboxyltransferase subunit. The carboxyltransferase reaction was assayed in the reverse direction in which malonyl-CoA reacts with biocytin (an analog of the biotin carboxyl carrier protein) to form acetyl-CoA and carboxybiotin. The production of acetyl-CoA was coupled to citrate synthase, which produced citrate and coenzyme A. The amount of coenzyme A formed was detected using 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent). The assay has been developed for use in both 96- and 384-well microplate formats and was validated using a known bisubstrate analog inhibitor of carboxyltransferase. The spectrophotometric readout in the visible absorbance range used in this assay does not generate the number of false negatives associated with frequently used NAD/NADH assay systems that rely on detection of NADH using UV absorbance.  相似文献   

2.
Acetyl-CoA carboxylase catalyzes the first committed step in the biosynthesis of long-chain fatty acids. The Escherichia coli form of the enzyme consists of a biotin carboxylase activity, a biotin carboxyl carrier protein, and a carboxyltransferase activity. The C-terminal 87 amino acids of the biotin carboxyl carrier protein (BCCP87) form a domain that can be independently expressed, biotinylated, and purified (Chapman-Smith, A., Turner, D. L., Cronan, J. E., Morris, T. W., and Wallace, J. C. (1994) Biochem. J. 302, 881-887). The ability of the biotinylated form of this 87-residue protein (holoBCCP87) to act as a substrate for biotin carboxylase and carboxyltransferase was assessed and compared with the results with free biotin. In the case of biotin carboxylase holoBCCP87 was an excellent substrate with a K(m) of 0.16 +/- 0.05 mM and V(max) of 1000.8 +/- 182.0 min(-1). The V/K or catalytic efficiency of biotin carboxylase with holoBCCP87 as substrate was 8000-fold greater than with biotin as substrate. Stimulation of the ATP synthesis reaction of biotin carboxylase where carbamyl phosphate reacted with ADP by holoBCCP87 was 5-fold greater than with an equivalent amount of biotin. The interaction of holoBCCP87 with carboxyltransferase was characterized in the reverse direction where malonyl-CoA reacted with holoBCCP87 to form acetyl-CoA and carboxyholoBCCP87. The K(m) for holoBCCP87 was 0.45 +/- 0.07 mM while the V(max) was 2031.8 +/- 231.0 min(-1). The V/K or catalytic efficiency of carboxyltransferase with holoBCCP87 as substrate is 2000-fold greater than with biotin as substrate.  相似文献   

3.
The first committed step in long-chain fatty acid synthesis is catalyzed by the multienzyme complex acetyl CoA carboxylase. One component of the acetyl CoA carboxylase complex is biotin carboxylase which catalyzes the ATP-dependent carboxylation of biotin. The Escherichia coli form of biotin carboxylase can be isolated from the other components of the acetyl CoA carboxylase complex such that enzymatic activity is retained. The synthesis of a reaction intermediate analog inhibitor of biotin carboxylase has been described recently (Organic Lett. 1, 99-102, 1999). The inhibitor is formed by coupling phosphonoacetic acid to the 1'-N of biotin. In this paper the characterization of the inhibition of biotin carboxylase by this reaction-intermediate analog is described. The analog showed competitive inhibition versus ATP with a slope inhibition constant of 8 mM. Noncompetitive inhibition was found for the analog versus biotin. Phosphonoacetate exhibited competitive inhibition with respect to ATP and noncompetitive inhibition versus bicarbonate. Biotin was found to be a noncompetitive substrate inhibitor of biotin carboxylase. These data suggested that biotin carboxylase had an ordered addition of substrates with ATP binding first followed by bicarbonate and then biotin.  相似文献   

4.
Acetyl-CoA carboxylase (ACC) catalyzes the first committed step in the synthesis of long-chain fatty acids. The crystal structure of the Escherichia coli carboxyltransferase component of ACC revealed an alpha(2)beta(2) subunit composition with two active sites and, most importantly, a unique zinc domain in each alphabeta pair that is absent in the eukaryotic enzyme. We show here that carboxyltransferase binds DNA. Half-maximal saturation of different single-stranded or double-stranded DNA constructs is seen at 0.5-1.0 muM, and binding is cooperative and nonspecific. The substrates (malonyl-CoA and biocytin) inhibit DNA:carboxyltransferase complex formation. More significantly, single-stranded DNA, double-stranded DNA, and heparin inhibit the reaction catalyzed by carboxyltransferase, with single-stranded DNA and heparin acting as competitive inhibitors. However, double-inhibition experiments revealed that both DNA and heparin can bind the enzyme in the presence of a bisubstrate analog (BiSA), and the binding of BiSA has a very weak synergistic effect on the binding of the second inhibitor (DNA or heparin) and vice versa. In contrast, DNA and heparin can also bind to the enzyme simultaneously, but the binding of either molecule has a strong synergistic effect on binding of the other. An important mechanistic implication of these observations is that the dual active sites of ACC are functionally connected.  相似文献   

5.
An acyl coenzyme A (CoA) carboxylase, which catalyzes the adenosine triphosphate-dependent fixation of CO2 into acetyl-, propionyl-, and butyryl-CoA, was detected in fractionated cell extracts of Propionibacterium shermanii. Catalytic activity was inhibited by avidin but was unaffected by avidin pretreated with excess biotin. The carboxylase levels detected were relatively small and were related to cellular growth. Maximal carboxylase activity was detected in cells grown for about 96 h. Thereafter, the activity declined rapidly. Optimal CO2 fixation occurred at pH 7.5. Other parameters of the assay system were optimized, and the apparent Km values for substrates were determined. The end product of the reaction (with acetyl-CoA as the substrate) was identified as malonyl-CoA. The stoichiometry of the reaction was such that, for every mole of acetyl-CoA and adenosine triphosphate consumed, 1 mol each of malonyl-CoA, adenosine diphosphate, and orthophosphate was formed. These data provide the first evidence for the presence of another biotin-containing enzyme, an acyl-CoA carboxylase, in these bacteria in addition to the well-characterized methylmalonyl-CoA carboxyltransferase.  相似文献   

6.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.  相似文献   

7.
Acetyl-CoA carboxylase (ACC) catalyses the first committed step in fatty acid biosynthesis: a metabolic pathway required for several important biological processes including the synthesis and maintenance of cellular membranes. ACC employs a covalently attached biotin moiety to bind a carboxyl anion and then transfer it to acetyl-CoA, yielding malonyl-CoA. These activities occur at two different subsites: the biotin carboxylase (BC) and carboxyltransferase (CT). Structural biology, together with small molecule inhibitor studies, has provided new insights into the molecular mechanisms that govern ACC catalysis, specifically the BC and CT subunits. Here, we review these recent findings and highlight key differences between the bacterial and eukaryotic isozymes with a view to establish those features that provide an opportunity for selective inhibition. Especially important are examples of highly selective small molecule inhibitors capable of differentiating between ACCs from different phyla. The implications for early stage antibiotic discovery projects, stemming from these studies, are discussed.  相似文献   

8.
We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.  相似文献   

9.
Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the α- and β-subunits, respectively, are not in an operon, yet yield an α2β2 carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the β-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a ‘dimmer switch’ to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration.  相似文献   

10.
Phosphorylation of pea chloroplast acetyl-CoA carboxylase   总被引:4,自引:2,他引:2  
We have examined whether chloroplast acetyl-CoA carboxylase is a phosphoprotein. Pea ( Pisum sativum ) chloroplasts were incubated in the presence of [γ- 33 P]-ATP and radiolabeled proteins were examined after immunoprecipitation with antibodies against all four known subunits of heteromeric chloroplast acetyl-CoA carboxylase. The β-subunit of the carboxyltransferase was found to be labeled by 33 P. Phosphoamino acid analysis of the immunoprecipitated β-subunit of the carboxyltransferase indicates that it is phosphorylated on serine residues. Incorporation of 33 P into carboxyltransferase β-subunit decreased in chloroplasts transferred to dark conditions after labeling in the light. Dephosphorylation of pea chloroplast extracts by an alkaline phosphatase-agarose conjugate reduced in vitro acetyl-CoA carboxylase activity by 67%. Furthermore, while acetyl-CoA carboxylase activity and its carboxyltransferase half-reaction were reduced in dephosphorylated extracts, the biotin carboxylase half-reaction was not inhibited. The evidence presented here points to the carboxyltransferase β-subunit of chloroplast acetyl-CoA carboxylase as a candidate for regulation by protein phosphorylation/dephosphorylation.  相似文献   

11.
Rat hindlimb muscle tissue was extracted from male Sprague-Dawley rats exsanguinated under light ether anesthesia. Muscle homogenates (50,000 x g supernatant) were incubated with ATP, bicarbonate, acetyl-CoA, and citrate. The quantity of malonyl-CoA synthesized was determined by malonyl-CoA incorporation into long acyl chains using tritiated acetyl-CoA and fatty acid synthetase. Malonyl-CoA synthesis was found to be dependent on the presence of ATP, bicarbonate, citrate, and acetyl-CoA in the incubation medium. Incubation with avidin showed near complete inhibition of carboxylation that was restored with the addition of biotin. These results represent strong evidence of a biotin containing acetyl-CoA carboxylase in skeletal muscle.  相似文献   

12.
Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or "flip-flop" their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF(2)P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC.  相似文献   

13.
Acetyl-CoA carboxylase regulates the rate of fatty acid synthesis. This enzyme in plants is localized in plastids and is believed to be composed of biotin carboxyl carrier protein, biotin carboxylase, and carboxyltransferase made up of alpha and beta polypeptides, although the enzyme has not been purified yet. Accumulated evidence shows that pea plastidic acetyl-CoA carboxylase is activated by light and the activation is caused by light-dependent reduction of carboxyltransferase, but not of biotin carboxylase, via a redox cascade. To understand the reductive activation of carboxyltransferase at the molecular level here, we obtained the active enzyme composed of decahistidine-tagged (His tag) alpha and beta polypeptides through the expression of the pea plastidic carboxyltransferase gene in Escherichia coli. Gel filtration showed that the molecular size of the recombinant carboxyltransferase is in agreement with that of partially purified carboxyltransferase from pea chloroplasts. The catalytic activity of the recombinant enzyme was similar to that of native carboxyltransferase. These results indicate that the molecular structure and conformation of recombinant carboxyltransferase resemble those of its native counterpart and that native carboxyltransferase is indeed composed of alpha and beta polypeptides. This recombinant enzyme was activated by dithiothreitol, a known reductant of S-S bonds, with a profile similar to that of its native counterpart. The recombinant enzyme was activated by reduced thioredoxin-f, a signal transducer of redox potential in chloroplasts under irradiation. Thus, this enzyme was redox-regulated, like that of the native carboxyltransferase.  相似文献   

14.
The biotin carboxyl carrier protein (BCCP) is a subunit of acetyl-CoA carboxylase, a biotin-dependent enzyme that catalyzes the first committed step of fatty acid biosynthesis. In its functional cycle, this protein engages in heterologous protein-protein interactions with three distinct partners, depending on its state of post-translational modification. Apo-BCCP interacts specifically with the biotin holoenzyme synthetase, BirA, which results in the post-translational attachment of biotin to a single lysine residue on BCCP. Holo-BCCP then interacts with the biotin carboxylase subunit of acetyl-CoA carboxylase, which leads to the addition of the carboxylate group of bicarbonate to biotin. Finally, the carboxy-biotinylated form of BCCP interacts with transcarboxylase in the transfer of the carboxylate to acetyl-CoA to form malonyl-CoA. The determinants of protein-protein interaction specificity in this system are unknown. The NMR solution structure of the unbiotinylated form of an 87 residue C-terminal domain fragment (residue 70-156) of BCCP (holoBCCP87) and the crystal structure of the biotinylated form of a C-terminal fragment (residue 77-156) of BCCP from Escherichia coli acetyl-CoA carboxylase have previously been determined. Comparative analysis of these structures provided evidence for small, localized conformational changes in the biotin-binding region upon biotinylation of the protein. These structural changes may be important for regulating specific protein-protein interactions. Since the dynamic properties of proteins are correlated with local structural environments, we have determined the relaxation parameters of the backbone 15N nuclear spins of holoBCCP87, and compared these with the data obtained for the apo protein. The results indicate that upon biotinylation, the inherent mobility of the biotin-binding region and the protruding thumb, with which the biotin group interacts in the holo protein, are significantly reduced.  相似文献   

15.
Acetyl-CoA carboxylase is thought to be absent in the heart since the latter is highly catabolic and nonlipogenic. It has been suggested that the high level of malonyl-CoA that is found in the heart is derived from mitochondrial propionyl-CoA carboxylase, which also uses acetyl-CoA. In the present study, acetyl-CoA carboxylase was identified and purified from homogenates of rat heart. The isolated enzyme had little activity in the absence of citrate (specific activity, less than 0.1 units/mg); however, citrate stimulated its activity (specific activity, 1.8 units/mg in the presence of 10 mM citrate). Avidin inhibited greater than 95% of activity, and addition of biotin reversed this inhibition. Further, malonyl-CoA (1 mM) and palmitoyl-CoA (100 microM) inhibited greater than 90% of carboxylase activity. Similar to acetyl-CoA carboxylase of lipogenic tissues, the heart enzyme could be activated greater than 6-fold by preincubation with liver (acetyl-CoA carboxylase)-phosphatase 2. The activation was accompanied by a decrease in the K0.5 for citrate to 0.68 mM. These observations suggest that the activity in preparations from heart is due to authentic acetyl-CoA carboxylase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the preparation from heart showed the presence of one major protein band (Mr 280,000) and a minor band (Mr 265,000) while that from liver gave a major protein band (Mr 265,000). A Western blot probed with avidin-peroxidase suggested that both the 280- and 265-kDa species contained biotin. Antibodies to liver acetyl-CoA carboxylase, which inhibited greater than 95% of liver carboxylase activity, inhibited only 35% of heart enzyme activity. In an immunoblot (using antibodies to liver enzyme) the 265-kDa species, and not the major 280-kDa species, in the heart preparation was specifically stained. These observations suggest the presence of two isoenzymes of acetyl-CoA carboxylase that are immunologically distinct, the 265-kDa species being predominant in the liver and the 280-kDa species being predominant in the heart.  相似文献   

16.
17.
18.
Acetyl-CoA carboxylase (ACC) catalyzes the committed and rate-limiting step in fatty acid biosynthesis. The two partial reactions, carboxylation of biotin followed by carboxyl transfer to the acceptor acetyl-CoA, are performed by two separate domains in animal ACCs.The cyclic keto-enol insecticides and acaricides have been proposed to inhibit insect ACCs. In this communication, we show that the enol derivative of the cylic keto-enol insecticide spirotetramat inhibited ACCs partially purified from the insect species Myzus persicae and Spodoptera frugiperda, as well as the spider mite (Tetranychus urticae) ACC which was expressed in insect cells using a recombinant baculovirus. Steady-state kinetic analysis revealed competitive inhibition with respect to the carboxyl acceptor, acetyl-CoA, indicating that spirotetramat-enol bound to the carboxyltransferase domain of ACC. Interestingly, inhibition with respect to the biotin carboxylase substrate ATP was uncompetitive.Amino acid residues in the carboxyltransferase domains of plant ACCs are important for binding of established herbicidal inhibitors. Mutating the spider mite ACC at the homologous positions, for example L1736 to either isoleucine or alanine, and A1739 to either valine or serine, did not affect the inhibition of the spider mite ACC by spirotetramat-enol. These results indicated different binding modes of the keto-enols and the herbicidal chemical families.  相似文献   

19.
The kinetic mechanism of pigeon liver fatty acid synthetase action has been studied using steady state kinetic analysis. Initial velocity studies are consistent with an earlier suggestion that the enzyme catalyzes this reaction by a seven-site ping-pong mechanism. Although the range of substrate concentrations that could be used was limited by several factors, the initial velocity patterns showing the relationship between the substrates acetyl coenzyme CoA, malonyl-CoA, and NADPH appear to be a series of parallel lines, regardless of which substrate is varied at fixed levels of a second substrate. However, two of the substrates, acetyl-CoA and malonly-CoA, apparently exhibit a competitive substrate inhibition with respect to each other, but NADPH shows no inhibition of any kind. Product inhibition patterns suggest that free CoA is competitive versus acetyl-CoA and malonyl-CoA and is uncompetitive versus NADPH, and that NADP+ is competitive versus NADPH and uncompetitive versus acetyl-CoA or malonyl-CoA. These results are consistent with a seven-site ping-pong mechanism with intermediates covalently bound to 4'-phosphopantetheine (part of acyl carrier protein). Double competitive substrate inhibition by acetyl-CoA and malonyl-CoA is consistent with the rate equation derived for the over-all mechanism. The kinetic mechanism developed from these results is capable of explaining the formation of fatty acids from malonyl-CoA and NADPH alone (Katiyar, S. S., Briedis, A. V., and Porter, J. W. (1974) Arch. Biochem. Biophys. 162, 412-420) and also the formation of triacetic acid lactone from either malonyl-CoA alone or acetyl-CoA plus malonyl-CoA.  相似文献   

20.
The multisubunit acetyl-CoA carboxylase, which catalyzes the first committed step in fatty acid biosynthesis, is broadly conserved among bacteria. Its rate-limiting role in formation of fatty acids makes this enzyme an attractive target for the design of novel broad-spectrum antibacterials. However, no potent inhibitors have been discovered so far. This report describes the identification and characterization of highly potent bacterial acetyl-CoA carboxylase inhibitors with antibacterial activity for the first time. We demonstrate that pseudopeptide pyrrolidine dione antibiotics such as moiramide B inhibit the Escherichia coli enzyme at nanomolar concentrations. Moiramide B targets the carboxyltransferase reaction of this enzyme with a competitive inhibition pattern versus malonyl-CoA (K(i) value = 5 nm). Inhibition at nanomolar concentrations of the pyrrolidine diones is also demonstrated using recombinantly expressed carboxyltransferases from other bacterial species (Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa). We isolated pyrrolidine dione-resistant strains of E. coli, S. aureus, and Bacillus subtilis, which contain mutations within the carboxyltransferase subunits AccA or AccD. We demonstrate that such mutations confer resistance to pyrrolidine diones. Inhibition values (IC(50)) of >100 microm regarding an eukaryotic acetyl-CoA carboxylase from rat liver indicate high selectivity of pyrrolidine diones for the bacterial multisubunit enzyme. The natural product moiramide B and synthetic analogues show broad-spectrum antibacterial activity. The knowledge of the target and the availability of facile assays using carboxyltransferases from different pathogens will enable evaluation of the antibacterial potential of the pyrrolidine diones as a promising antibacterial compound class acting via a novel mode of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号