首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fibronectin and fibrin gel structure   总被引:4,自引:0,他引:4  
Plasma fibronectin is covalently incorporated into alpha-chains of fibrin gels in the presence of Factor XIII activated by thrombin (FXIIIaT) but not by Factor XIII activated by the snake venom enzyme batroxobin (FXIIIaB). FXIIIaB catalyzes introduction of gamma-gamma cross-links in fibrin but cross-linked alpha-chains are not formed. In the presence of FXIIIaT, fibrin gels formed by batroxobin incorporated fibronectin and the alpha-chains are cross-linked indicating that FXIIIaB has a different substrate specificity from FXIIIaT. In the presence of FXIIIaT the incorporation of fibronectin approaches 1 mol/340 kDa unit weight of fibrin. Fibronectin when present in a fibrinogen thrombin mixture containing FXIII does not influence the clotting time of the system nor the release of fibrinopeptides. Incorporation of fibronectin is not appreciable before the gel point. This indicates that the polymerization and gelation of fibrinogen is essentially not perturbed by the presence of fibronectin and that fibrin in the gel matrix rather than the fibrin polymers formed prior to gel point is the preferred structure for fibronectin incorporation. Incorporation of fibronectin into fibrin gels during formation leads to an increase in turbidity and a small decrease in Ks (permeability coefficient). This suggests that the width of the strands in the gel increases as a result of fibronectin incorporation. Fibronectin is also incorporated into preformed gels having completely cross-linked gamma- and alpha-chains perhaps indicating that the sites in fibrin involved in fibronectin incorporation are different from those involved in fibrin cross-linking. FXIIIaT appeared to be adsorbed to fibrin gel matrix in the presence but not in the absence of calcium ions.  相似文献   

2.
The surface proteins of cultured human skin fibroblasts were iodinated and then exposed to one or more of the following blood coagulation proteins: thrombin, fibrinogen, and factor XIII (plasma protransglutaminase). Radiolabeled polypeptides were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. After exposure to physiological concentrations of activated factor XIII (XIIIa), the band of radioactivity corresponding to the major labeled surface protein (fibronectin, molecular weight = 2.2 × 105 daltons) was cross-linked to a very high molecular weight complex. The cross-linking reaction was inhibited by fibrin (which is known to bind the catalytic subunit of XIIIa). Cross-linking of labeled cell surface fibronectin to fibrin could not be demonstrated. The fibrillar pattern of surface fibronectin appeared unaffected by cross-linking when studied by immunofluorescence. Cross-linking of cell surface fibronectin by XIIIa requires highly specific enzyme-substrate and protein-protein interactions, and may be an important physiological reaction.  相似文献   

3.
Wound repair is characterized by the presence of a fibrin-rich matrix, but the effect of fibrin on re-epithelialization remains unclear. In this study, we determined the effects of different fibrin matrices on cultured human neonatal keratinocytes. Using purified fibrinogen and fibrin gels generated by the enzymatic action of thrombin, batroxobin (it leads to retention of fibrinopeptide B), or Agkistrodon contortrix thrombin-like enzyme (ACTE; it leads to retention of fibrinopeptide A), we determined the effect of each of these matrices on keratinocyte morphology, attachment, spreading, and replication as compared to tissue culture plastic. Morphologically, keratinocytes seeded on fibrin surfaces were more rounded and formed three-dimensional structures. Specific cell attachment, as measured at either 37°C or 4°C, was not altered on the different fibrin substrates (P > .05) but was increased on fibrinogen and factor XIII cross-linked fibrin (P < .01). However, keratinocytes seeded on fibrin, regardless of the presence or absence of fibrinopeptides A or B, showed a marked decrease (up to 71%) in cell numbers by days 5 (P = .0357) and 10 (P = .0114). Keratinocyte spreading was decreased by 78.8% (P = .0006), 80.3% (P = .0001), and 89.2% (P = .0001) on thrombin-, batroxobin-, and ACTE-generated fibrin, respectively, but not on fibrinogen-coated dishes. However, either the addition of fibronectin or cross-linking of fibrin with factor XIII allowed full keratinocyte spreading to occur (P = .0002 and P = .0013, respectively). We conclude that fibrin inhibits keratinocyte spreading in the absence of other matrix or plasma proteins or cross-linking by factor XIII. J. Cell. Physiol. 174:58–65, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
Factor XIII cross-linking of fibronectin at cellular matrix assembly sites   总被引:7,自引:0,他引:7  
We describe the effect of activated Factor XIII (Factor XIIIa, plasma transglutaminase) on the incorporation of plasma fibronectin into extracellular matrix by cultured human fibroblasts. In the absence of added Factor XIIIa, fibronectin binds to cultured fibroblast cell layers and is assembled into disulfide-bonded multimers of the extracellular matrix. When Factor XIIIa was included in the binding medium of skin fibroblasts, accumulation of 125I-fibronectin in the deoxycholate-insoluble matrix was increased. Fibronectin accumulating in the cell layer was cross-linked into nonreducible high molecular weight aggregates. The 70-kDa amino-terminal fragment of fibronectin inhibited the binding and cross-linking of 125I-fibronectin to cell layers, whereas fibrinogen had little effect. When 125I-fibronectin was incubated with isolated matrices or with cell layers pretreated with cytochalasin B, it did not bind and could not be cross-linked by Factor XIIIa into the matrix. HT-1080 human fibrosarcoma cells bound exogenous fibronectin following treatment with dexamethasone; Factor XIIIa cross-linked the bound fibronectin and caused its efficient transfer to the deoxycholate-insoluble matrix. These results indicate that exogenous fibronectin is susceptible to Factor XIIIa-catalyzed cross-linking at cellular sites of matrix assembly. Thus, Factor XIIIa-mediated fibronectin cross-linking complements disulfide-bonded multimer formation in the stabilization of assembling fibronectin molecules and thus enhances the formation of extracellular matrix.  相似文献   

5.
The solution properties of fibrinogen and the thrombin-induced activation and gelation of fibrinogen in 95% D2O at pH 7.4 were compared to those in H2O under similar conditions. The initial release rates of fibrinopeptides A and B in D2O were slightly slower than those in H2O. However, the values of the Michaelis-Menten parameters Km and V for the release of the two peptides in D2O and H2O in the presence of 0.5 M NaCl were about the same. From turbidity measurements at 450 nm it is obvious that fibrinogen is soluble in a slightly more narrow range of NaCl concentration and that the fibrin gels have a higher degree of lateral aggregation in D2O than in H2O. The variation of fibrinogen concentration, thrombin concentration, pH and ionic a strength have a similar dependence on the final gel structure and clotting time in D2O and H2O. SDS-gel electrophoresis on fibrin samples, which were cross-linked by factor XIII, yielded results where the cross-linking of the gamma-chain appeared to be the same in D2O and H2O. The alpha-chain cross-linking was somewhat faster in D2O than in H2O. When fibrinogen solutions in 95% D2O were incubated at 20 mM CaCl2, a slow gelation of fibrinogen was observed, which was found to be induced by trace amounts of factor XIII. The final gel turbidity appeared to be about the same for this gelation as for that induced by thrombin. The differences in solubility for fibrinogen, kinetics for the enzyme reaction and optical properties for the fibrin gels in D2O and H2O may be explained by differences in electrostatic interactions, hydrogen bonding and hydration of fibrinogen in these two media.  相似文献   

6.
Plasma fibronectin is a vital component of the fibrin clot; however its role on clot structure is not clearly understood. The goal of this study was to examine the influence of fibronectin on the kinetics of formation, structural characteristics and composition of reconstituted fibrin clots or fibrin matrices. Fibrin matrices were formed by adding thrombin to 1, 2 or 4 mg/ml fibrinogen supplemented with 0–0.4 mg/ml fibronectin. The rate of fibrin matrix formation was then monitored by measuring light absorbance properties at different time points. Confocal microscopy of fluorescein conjugated fibrinogen was used to visualize the structural characteristics of fibrin matrices. The amount of fibronectin in fibrin matrices was determined through electrophoresis and immunoblotting of solubilized matrices. Fibronectin concentration positively correlated with the initial rate of fibrin matrix formation and with steady state light absorbance values of fibrin matrices. An increase in fibronectin concentration resulted in thinner and denser fibers in the fibrin matrices. Electrophoresis and immunoblotting showed that fibronectin was covalently and non-covalently bound to fibrin matrices and in the form of high molecular weight multimers. The formation of fibronectin multimers was attributed to cross-linking of fibronectin by trace amounts Factor XIIIa. These findings are novel because they link results from light absorbance studies to microcopy analyses and demonstrate an influence of fibronectin on fibrin matrix structural characteristics. This data is important in developing therapies that destabilize fibrin clots.  相似文献   

7.
Cross-linking of cold-insoluble globulin by fibrin-stabilizing factor.   总被引:44,自引:0,他引:44  
Cold-insoluble globulin (CI globulin) was purified from human plasma and identified on the basis of its sedimentation coefficient, electrophoretic mobility, and concentration in normal plasma. CI globulin was distinguished from antihemophilic factor (AHF) by amino acid analysis, position of elution from 4% agarose, and electrophoretic migration in polyacrylamide gels in the presence of sodium dodecyl sulfate without prior reduction. CI globulin and AHF could not be distinguished by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction and probably have very similar subunit molecular weights. CI globulin apparently consists of two polypeptide chains, each of molecular weight 2.0 x 10(5), held together by disulfide bonds. CI globulin was a substrate for activated fibrin-stabilizing factor (FSF, blood coagulation factor XIII). FSF catalyzed the incorporation of a fluorescent primary amine, N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulfonamide, into CI globulin and also catalyzed the cross-linking of CI globulin into multimers, as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate after reduction. In the presence of fibrin, cross-linking of CI globulin by FSF occurred without the formation of CI globulin multimers. Instead, polypeptides with apparent molecular weights of 2.6 x 10(5) and 3.0 x 10(5) were seen. The formation of these polypeptides coincided with the loss of the alpha chain of fibrin and CI globulin. The polypeptides were not seen when fibrin alone was cross-linked. The formation of the polypeptides was greater in fine clots than in coarse clots, and greater in clots incubated at 0 degrees than in clots incubated at 37 degrees. In clots made from purified fibrinogen, CI globulin, and FSF, the concentration of CI globulin in the clot liquor was greater if either FSF or calcium ion was omitted and cross-linking did not take place. These observations suggest that CI globulin is enzymically cross-linked to one of the chains of fibrin, most likely the alpha chain, and is thus covalently incorporated into the fibrin clot. CI globulin is very similar to a protein in the plasma membrane of fibroblasts. The cross-linking of CI globulin to itself and to fibrin may typify reactions also involving the fibroblast membrane protein.  相似文献   

8.
Factor XIII zymogen activation is a complex series of events that involve fibrinogen acting in several different roles. This report focuses on the role of fibrinogen as a cofactor in factor XIII activation by thrombin. We demonstrate that fibrinogen has two distinct activities that lead to an increased rate of factor XIII activation. First, the thrombin proteolytic activity is increased by fibrin. The cleavage rates of both a small chromogenic substrate and the factor XIII activation peptide are increased in the presence of either the major fibrin isoform, gammaA/gammaA fibrin, or a minor variant form, gammaA/gamma' fibrin. This enhancement of thrombin activity by fibrin is independent of fibrin polymerization and requires only cleavage of the fibrinopeptides. Subsequently, gammaA/gamma' fibrinogen accelerates plasma factor XIII activation by a non-proteolytic mechanism. This increased rate of activation results in a slightly more rapid cross-linking of fibrin gammaA and gamma' chains and a significantly more rapid cross-linking of fibrin alpha chain multimers. Together, these results show that although both forms of fibrin increase the rate of activation peptide cleavage by thrombin, gammaA/gamma' fibrinogen also increases the rate of factor XIII activation in a non-proteolytic manner. A revised model of factor XIII activation is presented below.  相似文献   

9.
Sun Y  Giraudier O  Garde VL 《Biopolymers》2005,77(5):257-263
Various fibrin gels were prepared with a microbial transglutaminase under miscellaneous conditions. The gels were characterized through their rheological properties. The influence of fibronectin addition and that of covalent bonding on the viscoelastic characteristics were evaluated. Gel elasticity is proportional to fibrinogen concentration but shows a nonlinear dependence on transglutaminase concentration. Additional crosslink of fibronectin in fibrin gels has no effect on the rheological character of the matrix. Dissolution kinetics in concentrated urea solutions evidences the role of covalent bonds on gel stability. The rheological properties and gel stability are discussed in relation with the enzyme-catalyzed covalent bonding. The microbial enzyme reactions are compared to those of FXIII and tissue transglutaminases.  相似文献   

10.
Fibronectin binds specifically to fibrin and is covalently cross-linked to the fibrin α chain by activated factor XIII (XIIIa). This reaction is important for wound healing. Here we investigate XIIIa-catalyzed cross-linking of fibronectin and some of its fragments to a recombinant fragment representing the COOH-terminal 30kDa of the fibrin α chain (αC30K:His 368–Val 610). Only fibronectin and those fragments containing an intact NH2-terminus were able to form cross-linked complexes. As many as 10 of the 17 lysines in αC30K can serve as amine donors in this reaction. Analysis of the rate of XIIIa-catalyzed cross-linking of fibronectin NH2-terminal peptides and fragments with αC30K revealed that the presence of the first type I “finger” module accelerates the cross-linking reaction; addition of fingers 2–5 had no further effect.  相似文献   

11.
Staphylococcus aureus secretes coagulase (Coa) and von Willebrand factor-binding protein (vWbp) to activate host prothrombin and form fibrin cables, thereby promoting the establishment of infectious lesions. The D1-D2 domains of Coa and vWbp associate with, and non-proteolytically activate prothrombin. Moreover, Coa encompasses C-terminal tandem repeats for binding to fibrinogen, whereas vWbp has been reported to associate with von Willebrand factor and fibrinogen. Here we used affinity chromatography with non-catalytic Coa and vWbp to identify the ligands for these virulence factors in human plasma. vWbp bound to prothrombin, fibrinogen, fibronectin, and factor XIII, whereas Coa co-purified with prothrombin and fibrinogen. vWbp association with fibrinogen and factor XIII, but not fibronectin, required prothrombin and triggered the non-proteolytic activation of FXIII in vitro. Staphylococcus aureus coagulation of human plasma was associated with the recruitment of prothrombin, FXIII, and fibronectin as well as the formation of cross-linked fibrin. FXIII activity in staphylococcal clots could be attributed to thrombin-dependent proteolytic activation as well as vWbp-mediated non-proteolytic activation of FXIII zymogen.  相似文献   

12.
Polymorphonuclear leukocyte (PMN) migration through tissue extracellular space is an essential step in the inflammatory response, but little is known about the factors influencing PMN migration through gels of extracellular matrix (ECM). In this study, PMN migration within reconstituted gels containing collagen type I or collagen type I supplemented with laminin, fibronectin, or heparin was measured by quantitative direct visualization, resulting in a random motility coefficient (mum a quantitative index for rate of cell dispersion) for the migrating cell population. The random motility coefficient in unsupplemented collagen (0.4 mg/ml) gels was approximately 9 x 10(-9) cm2/s. Supplementing gels with heparin or fibronectin produced a significant decrease in mu, even at the lowest concentrations studied (1 microgram/ml fibronectin or 0.4 microgram/ml heparin). At least 100 micrograms/ml of laminin, or 20% of the total gel protein, was required to produce a similar decrease in mu. Scanning electron microscopy revealed two different gel morphologies: laminin or fibronectin appeared to coat the 150-nm collagen fibers whereas heparin appeared to induce fiber bundle formation and, therefore, larger interstitial spaces. The decrease in mu observed in heparin-supplemented gels correlated with the increased mesh size of the fiber network, but the difference observed in mu for fibronectin- and laminin-supplemented gels did not correlate with either mesh size or the mechanical properties of the gel, as determined by rheological measurements. However, PMNs adhered to fibronectin-coated surfaces in greater numbers than to collagen- or laminin-coated surfaces, suggesting that changes in cell adhesion to protein fibers can also produce significant changes in cell motility within an ECM gel.  相似文献   

13.
The effect of desialylation of fibrinogen on its conversion to fibrin has been investigated with particular reference to the kinetics of clot formation and structure. Also examined was the role of sialic acid in fibrinogen (factor I) poor in factor XIII (fibrinstabilizing factor) and factor I containing F XIII. The removal of more than 90% of the sialic acid of fibrinogen does not alter the thrombin clotting time, the clot solubility in monochloroacetic acid, the extent of cross-linking in the fibrin polymer, or the firmness and elasticity of the evolved clot. The data indicate that the sialic acid residues of fibrinogen do not contribute significantly to its conversion to fibrin by thrombin.  相似文献   

14.
The trunk neural crest originates by transformation of dorsal neuroepithelial cells into mesenchymal cells that migrate into embryonic interstices. Fibronectin (FN) is thought to be essential for the process, although other extracellular matrix (ECM) molecules are potentially important. We have examined the ability of three dimensional (3D) ECM to promote crest formation in vitro. Neural tubes from stage 12 chick embryos were suspended within gelling solutions of either basement membrane (BM) components or rat tail collagen, and the extent of crest outgrowth was measured after 22 hr. Fetal calf serum inhibits outgrowth in both gels and was not used unless specified. Neither BM gel nor collagen gel contains fibronectin. Extensive crest migration occurs into the BM gel, whereas outgrowth is less in rat tail collagen. Addition of fibronectin or embryo extract (EE), which is rich in fibronectin, does not increase the extent of neural crest outgrowth in BM, which is already maximal, but does stimulate migration into collagen gel. Removal of FN from EE with gelatin-Sepharose does not remove the ability of EE to stimulate migration. Endogenous FN is localized by immunofluorescence to the basal surface of cultured neural tubes, but is not seen in the proximity of migrating neural crest cells. Addition of the FN cell-binding hexapeptide GRGDSP does not affect migration into either the BM gel or the collagen gel with EE, although it does block spreading on FN-coated plastic. Thus, although crest cells appear to use exogenous fibronectin to migrate on planar substrata in vitro, they can interact with 3D collagenous matrices in the absence of exogenous or endogenous fibronectin. In BM gels, the laminin cell-binding peptide, YIGSR, completely inhibits migration of crest away from the neural tube, suggesting that laminin is the migratory substratum. Indeed, laminin as well as collagen and fibronectin is present in the embryonic ECM. Thus, it is possible that ECM molecules in addition to or instead of fibronectin may serve as migratory substrata for neural crest in vivo.  相似文献   

15.
R Procyk  R G King 《Biopolymers》1990,29(3):559-565
The elastic modulus (G') of factor XIIIa induced fibrinogen gels was found to be substantially lower than the G' of fibrin gels that were formed by clotting fibrinogen with thrombin. The addition of fibronectin and/or the reducing reagent dithiothreitol (DTT) to the factor XIIIa coagulation mixture led to the formation of a weaker gel structure, while the rigidity of thrombin induced clots was not appreciably affected by the inclusion of the DTT but increased somewhat in the presence of fibronectin. The reasons for the differing clot rigidities are discussed in terms of biochemical mechanisms.  相似文献   

16.
The major covalently linked multimolecular D fragments found in plasmic digests of factor XIIIa cross-linked fibrin formed under physiological pH and ionic strength conditions consist of D dimers, D trimers, and D tetramers. These fragments are linked by epsilon-amino-gamma-glutamyllysine bonds in the carboxy-terminal regions of their gamma chains, which had originated in the cross-linked fibrin as gamma dimers, gamma trimers, and gamma tetramers, respectively. In this study, factors affecting the degree and rate of formation of these three classes of cross-linked gamma chains were determined by analyzing the D-fragment content of plasmic digests of cross-linked fibrin that had been sampled after all gamma-chain monomers had been consumed in the cross-linking process. D trimers and D tetramers, expressed as a proportion of the total D-fragment content, both increased at the expense of the D-dimer population as a function of increasing factor XIII concentration, the time of cross-linking, or the CaCl2 concentration. Their levels decreased as the ionic strength was raised by NaCl addition. However, the ionic strength effect could be reversed by concomitantly raising the CaCl2 concentration. Digests of clots prepared from recalcified fresh citrated plasma also contained each type of cross-linked D fragment, and the proportion of D trimers and D tetramers in the digest increased with increasing clot incubation time. These results indicate that gamma-trimer and gamma-tetramer formation is a dynamic physiological process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Three-dimensional neurite outgrowth rates within fibrin matrices that contained variable amounts of RGD peptides were shown to depend on adhesion site density and affinity. Bi-domain peptides with a factor XIIIa substrate in one domain and a RGD sequence in the other domain were covalently incorporated into fibrin gels during coagulation through the action of the transglutaminase factor XIIIa, and the RGD-dependent effect on neurite outgrowth was quantified, employing chick dorsal root ganglia cultured two- and three-dimensionally within the modified fibrin. Two separate bi-domain peptides were synthesized, one with a lower binding affinity linear RGD domain and another with a higher binding affinity cyclic RGD domain. Both peptides were cross-linked into fibrin gels at concentrations up to 8.2 mol of peptide/mol of fibrinogen, and their effect on neurite outgrowth was measured. Both two- and three-dimensional neurite outgrowth demonstrated a bi-phasic dependence on RGD concentration for both the linear and cyclic peptide, with intermediate adhesion site densities yielding maximal neurite extension and higher densities inhibiting outgrowth. The adhesion site density that yielded maximal outgrowth depended strongly on adhesion site affinity in both two and three dimensions, with lower densities of the higher affinity ligand being required (0.8-1.7 mol/mol for the linear peptide versus 0.2 mol/mol for the cyclic peptide yielding maximum neurite outgrowth rates in three-dimensional cultures).  相似文献   

18.
Human plasma fibrin stabilizing factor (factor XIII) may be separated from fibrinogen through reversible fibrinogen polymer formation at pH 6.6, gamma/2 0.3, 0 degrees C, and subsequent Bio-Gel A 1.5m filtration. Factor XIII activity is eluted after the monomer fibrinogen peak. Polymer fractions from eight preparations, processed in duplicate, contain a mean 0.002 units factor XIII per mg fibrinogen, or about 0.7% the factor XIII content of standard plasma. Factor XIII-free fibrinogen polymers are easily dissociated (greater than 98%) to the monomer form by incubation at 37 degrees C, 18 hours. The fibrinogen preparations utilized were devoid of plasma fibronectin; thus these studies also show that reversible human fibrinogen polymer formation occurs in its absence.  相似文献   

19.
"Intimal cushions" which develop in the late gestation lamb ductus arteriosus (DA) are characterized by smooth muscle cells migrating into a large subendothelial space. Our previous in vitro studies, comparing DA cells with those from the aorta (Ao), have shown, even in early gestation, a 10-fold increase in DA endothelial incorporation of hyaluronan into the subendothelial matrix, a 2-fold increase in smooth muscle fibronectin synthesis and, in response to endothelial conditioned medium, a 2-fold increase in chondroitin sulfate. To determine whether these extracellular matrix components may be playing a role in inducing DA smooth muscle migration, we seeded Da or Ao smooth muscle cells onto three-dimensional collagen (2.0 mg/ml) gels and assessed migration 2, 5, and 8 days later. After 8 days, significantly greater numbers of DA compared to Ao cells were found invading the gels (23.1 +/- 3.1% vs 16.2 +/- 2.3%, P less than 0.01). Addition of GRGDS peptides (0.5 mM) or antibodies against fibronectin significantly decreased migration in the DA cells, but had no effect on migration in the Ao. Addition of endothelial conditioned medium to induce smooth muscle chondroitin sulfate production had no effect on DA cell migration. Inclusion of hyaluronan in the gel (0.5-1.5 mg), however, further enhanced DA cell migration, being greatest (31.9 +/- 3.1%) at a concentration of 1 mg/ml. Hyaluronan was without effect on Ao smooth muscle cell migration. The ability of hyaluronan to promote migration in cultures of DA smooth muscle cells was blocked completely by the addition of antibodies (1:100 dilution, 1 micrograms/ml) to a cell surface hyaluronan binding protein (HABP). As well, addition of anti-HABP to cells on gels containing collagen only significantly reduced migration in the DA but not the Ao. Immunofluorescent staining revealed that in DA cells, HABP was more concentrated in lamellipodia and leading edges than in Ao cells. As well, DA smooth muscle cells synthesized greater amounts of HABP as determined by Western immunoblotting and immunoprecipitation using polyclonal antisera to HABP. Thus, our studies indicate that both increased fibronectin and HABP contribute to the enhanced migration of DA smooth muscle cells. These results, together with our previous studies showing a 10-fold increase in hyaluronan accumulation in the DA endothelial matrix, would suggest a mechanism for increased DA smooth muscle migration into the subendothelial matrix observed in vivo.  相似文献   

20.
The kinetic parameters and some enzymatic characteristics of human platelet and chicken gizzard transglutaminases were determined. Activity of the transglutaminases was regulated by calmodulin. These enzymes co-isolated with alpha-actinin and were dissociated from alpha-actinin by gel filtration and absorption onto a calmodulin affinity column. Silver-stained polyacrylamide gels showed that the protein peak eluted by EGTA from this column contained polypeptides of Mr approximately 58,000 and 63,000. The transglutaminases required Ca2+ for incorporation of monodansylcadaverine into casein and actin substrates. Activity was enhanced 3-fold by calmodulin with a biphasic effect, showing stimulation at 10-200 nM and inhibition at concentrations higher than 300 nM. In the presence of 200 nM calmodulin, half-maximal transglutaminase stimulation was obtained with 2.5 microM free [Ca2+]. Chlorpromazine inhibited calmodulin enhancement of the transglutaminases. Activity of the transglutaminases was independent of proteolytic activation, since inhibitors for Ca2+-dependent proteases failed to inhibit filamin cross-linking. For comparison, factor XIIa, a plasma and platelet transglutaminase, required both Ca2+ and thrombin for activation and was insensitive to calmodulin. The cross-linking pattern of fibrin, fibrin monomers, and fibrinogen by the calmodulin-regulated transglutaminases showed, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, disappearance of fibrinogen alpha-chains with no decrease of beta- and gamma-chains or formation of gamma-gamma dimers. By autoradiography, cross-linked products of 125I-fibrinogen revealed heavily labeled high molecular weight polymers and polypeptides of Mr 98,000, 116,000, and 148,000; the latter appeared to be a transient species. However, when fibrin, fibrin monomers, and fibrinogen were used as factor XIIIa substrates, gamma-gamma dimers and alpha-polymers were formed. Formation of gamma-gamma dimers was slower with fibrinogen than with fibrin. Iodoacetamide blocked activity of factor XIIIa but not of the calmodulin-regulated transglutaminases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号