首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Electron microscopic and biochemical studies of lignocellulose degradation by wood-rotting fungi have shown that enzymes such as lignin peroxidases, manganese-dependent peroxidases, laccases and cellulases are too large to penetrate undegraded secondary wood cell walls. Degradation occurs by surface interaction between cell wall and enzymes, but initiation of decay at a distance from the fungal hyphae must involve diffusible low-molecular mass agents. The roles of hydrogen peroxide, veratryl alcohol, oxalate, Fe2+-Fe3+ and Mn2+-Mn3+, as such agents in lignocellulose degradation are discussed.  相似文献   

2.
Ca2+ and Mn2+ activate the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) by root microsomes of Vicia lens as they do in other similar systems. The preparation of microsomes in the presence of Mn2+ greatly increases their ability to convert ACC into ethylene, without addition of Mn2+ in the reaction mixture. Ca2+ does not have this property. The effect could not be attributed to Mn2+ entrapping into membrane vesicles (sonication followed by repelleting had no effect) but, possibly, in part to Mn2+-mediated binding to microsomes of a soluble factor favouring the conversion of ACC to C2H4. Although no direct correlation could be established in vitro between ethylene-forming-enzyme (EFE) and peroxidase activities, some soluble peroxidases might be this soluble factor. Mn2+ favoured attachment to membranes of some peroxidase activity from the soluble fraction and from commercial HRP and lipoxygenase. This binding effect of Mn2+ cannot be readily distinguished from its role in the generation of a chain of free radicals and in redox mechanisms.  相似文献   

3.
Shikimate dehydrogenase (SKDH, EC 1.1.1.25) was extracted from seedlings of pepper ( Capsicum annuum L.) and purified 347-fold. The purification procedure included precipitation with ammonium sulphate and chromatography in columns of Reactive Red-agarose, Q-Sepharose and Sephadex G-100. Pepper SKDH isozymes are separable only using PAGE. The purified enzyme has a relative molecular mass of 67 000 as estimated by gel filtration. The optimum pH of enzyme activity is 10.5 and the optimum temperature is 50°C, but the enzyme is quickly inactivated at temperatures higher than 40°C. The purified enzyme exhibited typical Michaelis-Menten kinetics and Km values are 0.087 m M for shikimic acid and 0.017 m M for NADP. The mechanism of reaction is sequential considering NADP as a cosubstrate. Ions such as Ca2+, Mg2+ and Mn2+ activate the enzyme, but Zn2+ and Cu2+ are strong inhibitors. Some phenolic compounds such as guaiacol, protocatechuic acid and 2,4-D are competitive inhibitors of pepper SKDH, showing Ki values of 0.38 m M , 0.27 m M and 0.16 m M , respectively.  相似文献   

4.
Cyclic nucleotide phosphodiesterase (3',5'-cyclic nucleotide nucleotidohydrolase, EC 3.1.4.17) activity isolated from Phaseolus vulgaris L. cv. Limberg seedlings was partially purified and characterized by fractional (NH4)2SO4 precipitation, DEAE-cellulose chromatography, chromatography on 3',5'-cAMP-agarose, gel permeation chromatography and chromatofocusing. A crude enzyme preparation, a 30–65% (NH4)2SO4 pellet, showed an acidic pH optimum. The enzyme activity was stimulated by imidazole and divalent cations such as Ca2+, Mg2+ and Mn2+, whereas NaF, PPi and Fe3+ were inhibitory. Isobutylmethylxanthine had no significant effect on the plant enzyme. An MI of 42 000 was estimated by gel permeation high performance liquid chromatography. By chromatography on 3',5'-cAMP-agarose a phosphodiesterase was resolved that produced 5'-AMP as sole reaction product.  相似文献   

5.
NADP+-dependent malic enzyme (L-malate : NADP+ oxidoreductase, decarboxylating, EC 1.1.1.40) was extracted from the leaves of yellow lupine. The purification procedure included fractionation with (NH4)2SO4 and Sephadex G-25 chromatography, followed by purification on DEAE-cellulose and Sephadex G-200 columns. The enzyme was purified 122-fold. The enzyme affinity towards L-malate was found to be significantly higher with Mn2+ than with Mg2+. The Hill coefficient for Mg2+ depended on concentration and was 1.6 for the lower and 3.9 for the higher concentrations. The dependence of the enzyme activity on NADP+ followed a hyperbolic curve. Km values and Hill coefficients for NADP+ were similar with both Mn2+ and Mg2+. The enzyme activity was strictly dependent on divalent cations and followed a sigmoidal curve at least for Mg2+. The enzyme had 4-fold higher affinity towards Mn2+ than towards Mg2+, the Km values being 0.3 and 1.15 m M respectively. Of several tested organic acids, oxalate was the most effective inhibitor followed by oxaloacetate while succinate was the strongest activator.  相似文献   

6.
NADP+-malic enzyme ( l -malate: NADP+ oxidoreductase, decarboxylating EC 1.1.1.40) from pod walls of chickpea was purified 51-fold by ammonium sulphate fractionation, DEAE- cellulose chromatography and gel filtration through Sepharose 4B. The purified enzyme required a divalent cation, either Mn2+ or Mg2+, for its activity. Km values at pH 7.8 for malate, NADP+ and Mn2+ were 4.0, 0.031 and 0.71 m M , respectively. Mn2+-dependent activity was inhibited by heavy metal ions such as Cd2+, Zn2+, Hg2+, and to a lesser extent by Pb2+ and Al3+. Among the organic acids examined, sodium salts of oxalate and oxaloacetate were inhibitory. Kinetics of the reaction mechanism showed sequential binding of malate and NADP+ to the enzyme. Products of reaction, viz. pyruvate, bicarbonate and NADPH, inhibited the enzyme activity. At limiting concentrations of NADP+, pyruvate and bicarbonate induced a positive cooperative effect by malate. It is proposed that the activity of NADP+-malic enzyme is controlled by intracellular concentrations of substrates and products.  相似文献   

7.
SUMMARY: A strain of Acinetobacter Iwoffii , isolated from a stored sample of distilled water, hydrolysed acetylsalicylic acid to salicylic and acetic acids. It grew in mineral salts medium with either of these compounds as C source and NH4+ as N source. Experiments with whole cells and cell free extracts and the isolation of intermediates showed that acetylsalicylic acid was metabolized through salicylic acid, catechol, cis-cis -muconic acid, (+)-muconolactone and β-oxoadipic acid. The salicylate hydroxylase required NADH or NADPH as cofactor and 1 mole of O2 was taken up and 1 mole of CO2 evolved for each mole of salicylate oxidized. Catalytic quantities of flavine adenine dinucleotide (FAD) but not flavine mononucleotide (FMN) activated the enzyme. The cis-cis -muconate lactonizing enzyme was activated by Mn2+ and inhibited by EDTA.  相似文献   

8.
Manganese (Mn2+) is an essential metal involved in normal functioning of a range of physiological processes. However, occupational overexposure to Mn2+ causes neurotoxicity. The dopaminergic system is a particular target for Mn2+ neurotoxicity. Tyrosine hydroxylase (TH) is the rate limiting enzyme for dopamine synthesis and is regulated acutely by phosphorylation at Ser40 and chronically by protein synthesis. In this study we used pheochromocytoma 12 cells to investigate the effects of Mn2+ exposure on the phosphorylation and activity of TH. Mn2+ treatment for 24 h caused a sustained increase in Ser40 phosphorylation and TH activity at a concentration of 100 μM, without altering the level of TH protein or PC12 cell viability. Inhibition of protein kinase A and protein kinase C and protein kinases known to be involved in sustained phosphorylation of TH in response to other stimuli did not block the effects of Mn2+ on Ser40 phosphorylation. A substantial increase in H2O2 production occurred in response to 100 μM Mn2+. The antioxidant TroloxTM completely inhibited H2O2 production but did not block TH phosphorylation at Ser40, indicating that oxidative stress was not involved. Sustained TH phosphorylation at Ser40 and the consequent activation of TH both occurred at low concentrations of Mn2+ and this provides a potential new mechanism for Mn2+-induced neuronal action that does not involve H2O2-mediated cell death.  相似文献   

9.
Rubbing applied to a young tomato internode inhibited the elongation of this internode and increased soluble peroxidase activity. These morphological and biochemical changes were observed both at the site of rubbing (local response) and in the neighbouring internode (systemic response). The cellular, biochemical, and molecular mechanisms leading to inhibition of internode elongation are not fully understood. It was proposed that mechanical stimuli increased the oxidation of IAA, via the induction of specific peroxidases and stimulated the lignification processes. In order to gain more information about the role of these enzymes, analysis of changes in peroxidase activities were performed. Qualitative analysis of isoperoxidases, by means of native cathodic PAGE, showed four induced isoforms termed C1, C2, C3, and C4. The major isoform (C2) was purified to homogeneity and partially characterized. This isoform is probably unglycosylated, with a molecular mass of 36 kDa and a neutral pI of 7.1. The effects of pH and temperature on the activity were determined with guaiacol as electron donor. Optima were obtained at pH 5 and at a temperature of 55°C. The activity of the purified enzyme was not affected by Ca2+, Mg2+ and Mn2+ as was reported for some basic peroxidases. Analysis of substrate specificity revealed that this isoperoxidase acted on ABTS, o -dianisidine, pyrogallol, guaiacol, coniferyl alcohol (monolignol) and IAA but not on syringaldazine. Activitiy of C2 isoperoxidase on coniferyl alcohol and IAA suggests a possible role of peroxidase C2 in inhibition of internode elongation, observed in rubbed plants, probably via an increase in lignification processes and regulation of IAA levels in internode tissues.  相似文献   

10.
A haem peroxidase different from other microbial, plant and animal peroxidases is described. The enzyme is secreted as two isoforms by dikaryotic Pleurotus eryngii in peptone-containing liquid medium. The corresponding gene, which presents 15 introns and encodes a 361-amino-acid protein with a 30-amino-acid signal peptide, was isolated as two alleles corresponding to the two isoforms. The alleles differ in three amino acid residues and in a seven nucleotide deletion affecting a single metal response element in the promoter. When compared with Phanerochaete chrysosporium peroxidases, the new enzyme appears closer to lignin peroxidase (LiP) than to Mn-dependent peroxidase (MnP) isoenzymes (58–60% and 55% identity respectively). The molecular model built using crystal structures of three fungal peroxidases as templates, also showed high structural affinity with LiP (Cα-distance 1.2 Å). However, this peroxidase includes a Mn2+ binding site formed by three acidic residues (E36, E40 and D175) near the haem internal propionate, which accounts for the ability to oxidize Mn2+. Its capability to oxidize aromatic substrates could involve interactions with aromatic residues at the edge of the haem channel. Another possibility is long-range electron transfer, e.g. from W164, which occupies the same position of LiP W171 recently reported as involved in the catalytic cycle of LiP.  相似文献   

11.
The reductive carboxylation of α-ketoglutarate by purified NADP+-isocitrate dehydrogenase (EC 1.1.1.42) from maturing castor bean seeds ( Ricinus communis L. ) has been characterized. The optimum pH for the reaction was 6.5, whereas pH 8.5 was optimum for oxidation of isocitrate (forward reaction). The enzyme utilized NADH as well as NADPH as the reducing agent in the reverse reaction, but only NADP+ in the forward reaction. The Km values for NADPH and NADH were 0.044 and 2.8 m M respectively, and for α-ketoglutarate and HCO3 4.1 and 3.7 m M. The enzyme was activated by various cations including Mg2+, Mn2+, Co2+, Zn2+, Ni2+ and Co2+. Km values for Mg2+ Mn2+, Co2+ and Zn2+ were 12, 34, 37 and 49μ M respectively.  相似文献   

12.
Abstract 3 New spectrophotometric enzyme assays were developed for the study of microbial lignin-degrading enzymes. The conversion of 2-methoxy-3-phenylbenzoic acid to 2-hydroxy-3-phenylbenzoic acid led to the discovery of an extracellular, aromatic methyl ether demethylase produced by the white-rot fungus Phanerochaete chrysosporium . The conversion of methyl 2-hydroxy-3-phenylbenzoate to 2-hydroxy-3-phenylbenzoic acid allowed the identification of an extracellular, aromatic methyl ester esterase produced by this fungus. The Phanerochaete sp. also excreted an enzyme complex that oxidized 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, probably to aliphatic products. All 3 novel enzyme activities were produced together with, and probably comprise a part of, the Phanerochaete ligninolytic enzyme complex. Unlike previously known ligninases, these enzymes did not oxidize 3,4-dimethoxybenzyl alcohol. All 3 were H2O2-dependent and were activated by Mn2+ ions.  相似文献   

13.
The effect of several metal ions on NADP+-malic enzyme (EC 1.1.1.40) purified from Zea mays L. leaves was studied Mg2+, Mn2+, Co2+ and Cd2+ were all active metal cofactors. The malic enzyme from maize has a moderately high intrinsic preference for Mn2+ relative to Mg2+ at pH 7.0 and 8.0 Negative cooperativity detected in the binding of Mg2+ at pH 7.0 and 8.0 and in the binding of Mn2+ at pH 7.0 suggests the existence of at least two binding sites with different affinity. All of the activating metal ions have preference for octahedral coordination geometry and have ionic radii of 0.86–1.09 Å. The ions that act as inhibitors are outside this range and/or are incapable of octahedral coordination. Ba2+, Sr2+, Cd2+, Ca2+, Be2+, Ni2+, Cu2+, Zn2+, Co2+, Hg2+ showed mixed-type inhibition. The reciprocal of their K1 values follow the order of their apparence in the Irving-Williams series of stability that derives in part from size effects. It is suggested that the size of the ions may play a partial role in determining the strength of the metal interaction.  相似文献   

14.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

15.
Abstract— The hypothesis that the ATPase and phosphatidyhnositol (PI) kinase activities of chromaffin vesicle membranes are catalysed by same enzyme was investigated. The two activities exhibited entirely different responses to variations in Mg2+ or Mn2+ concentrations. In the presence of 1 mM ATP, maximal ATPase activity occurred with 1 mM Mg2+ while maximal PI kinase activity required 100 mM Mg2+ Similar differences were observed with Mn2+ with the exception that maximal ATPase activity occurred with 0.5 mM Mn2+ and maximal PI kinase activity occurred with 5 mM Mn2+ Mn2+ was more effective than Mg2+ in stimulating PI kinase activity at low concentrations, but at optimal concentrations of each, the maximal activity obtained with Mg2+ was 5-fold greater than the maximal activity obtained with Mn2+ The heat stabilities of the two enzymes are vastly different. At 50°C the ATPase activity of the intact membranes was stable for up to 20 min while the t l/2 of PI kinase was less than 2 min. After solubilization in Lubrol PX or at higher temperatures both enzymes were less heat stable, but PI kinase was still inactivated at a much greater rate than the ATPase. The evidence suggests that the ATPase and the PI kinase are different proteins.
The major phosphorylated product was diphosphatidylinositol and once formed, it was stable. Phosphorylation of membrane protein accounted for less than 10% of the total 32P-incorporated into chromaffin vesicles. SDS gel electrophoresis of the solubilized membranes showed the presence of at least 2 major phosphorylated high molecular weight components.  相似文献   

16.
The behaviour of endogenous Mn2+ was studied by electron spin resonance spectro-scopy during benzyladenine-induced growth of excised cucumber ( Cucumis sativis L. cv. Long green) cotyledons. The level of endogenous Mn2+ was decreased by ben-zyladenine treatment, most pronounced after 96 h. MnCl2 applied alone promoted chlorophyll synthesis at relatively low concentrations but in the presence of ben-zyladenine higher concentrations of MnCl2 were required for stimulation of chlorophyll synthesis. A pronounced increase in growth was observed when Mn2+ was applied with benzyladenine at 96 h, when the decline in the endogenous level of paramagnetic Mn2+ was maximal.  相似文献   

17.
The metabolism of hydrogen peroxide by the scavenging system was studied in Chlamydomonas grown in a selenium-lacking and a selenium-containing medium. In cells of the former, 40% of external hydrogen peroxide (H2O2) was scavenged by ascorbate peroxidase (AsAP; EC 1.11.1.11) and the residual H2O2 by catalase (EC 1.11.1.6). The enzymes involved in the ascorbate-glutathione cycle including AsAP. were localized in the chloroplast. In cells of the latter, glutathione peroxidase (GSHP; EC 1.11.1.9) functioned primarily in the removal of external H2O2. GSHP was located solely in the cytosol. The Chlamydomonas AsAP was relatively stable in ascorbate-depleted medium as compared with chloroplast AsAP of higher plants. No inactivation of the enzyme was found upon its incubation with hydroxyurea, an inhibitor of the chloroplast enzyme of higher plants. The enzyme showed higher specificity with pyrogallol than with ascorbate. The amino acid sequences in the N-terminal region of Chlamvdomonas AsAP showed no significant similarity to any other AsAP from higher plants and Euglena . The enzyme had a molecular mass of 34 kDa. The Km values of the enzyme for ascorbate and H2O2 were 5.2±0.3 and 25±3.4 μ M , respectively. Hydrogen peroxide was generated at a rate of 6.1±0.8 μmol mg-1 chlorophyll h-1 in intact chloroplasts isolated from Chlamydomonas cells grown in the presence of Na-selenite, and it diffused from the organelles into the medium.  相似文献   

18.
Glucoamylases produced by Aspergillus niger grown on wheat bran in solid cultures were purified. Four different forms, GA I, GA I', GA II and GA III, were found having apparent molecular weights of 112 000, 104 000, 74 000 and 61 000 Da respectively. The enzymes are glycoproteins with a carbohydrate content of 16%, and optimal activity at 60C and pH 4.4. Activity was strongly inhibited by Hg2+ while Mn2+ and Fe2+ were stimulatory. The Km values for the degradation of starch and maltose were 3.5 and 7.8 mg ml-1, respectively.  相似文献   

19.
Abstract: The role of Ca2+ and Mn2+ in Rhodospirillum rubrum grown under different conditions with respect to nitrogen source has been studied. The results show that this phototroph does not have an absolute requirement for these cations. In vitro studies of one of the enzymes operative in the metabolic regulation of nitrogenase in Rsp. rubrum have shown that Mn2+ or Fe2+ is required for activity. This investigation indicates that Mn2+ is not required in vivo for the function of this enzyme, suggesting that either Fe2+ is functional or that the enzyme has other properties when active in the cell.  相似文献   

20.
Abstract Transport of Mn2+ was repressed in Candida utilis cells grown in continuous culture in high-Mn2+ (100 μM Mn2+) medium as compared to cells grown in basic (0.45 μM Mn2+) and low-Mn2+ (< 0.05 μM Mn2+) media. In contrast, no repression of Cu2+ uptake occurred in high-Cu2+-grown (25 μM Cu2+) cells as compared to cells grown in basic medium (0.54 μM Cu2+). Cu2+-limited cells did not hyperaccumulate Cu2+ and there was not significant difference in initial uptake rates for all 3 Cu2+ conditions. Mn2+ uptake appears to be regulated by a mechanism sensitive to the external Mn2+ concentration, whereas Cu2+ transport is not governed in this way by the external Cu2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号