首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonstructural protein 2 (NS2) from parvovirus minute virus of mice (MVMp) is a 25-kDa polypeptide which localizes preferentially to the cytoplasm and associates with cellular proteins in cytoplasm. These lines of evidence suggest that NS2 is positively exported from the nucleus to cytoplasm and functions in cytoplasm. We report here that nuclear export of NS2 is inhibited by leptomycin B (LMB), a drug that specifically blocks nuclear export signal (NES)-chromosomal region maintenance 1 (CRM1) interactions. CRM1 binds specifically to the 81- to 106-amino-acid (aa) region of NS2, and the region of NS2 actually functions as a NES. Interestingly, this region appears to be distinct from a typical NES sequence, which consists of leucine-rich sequences. These results indicate that NS2 protein is continuously exported from the nucleus by a CRM1-dependent mechanism and suggest that CRM1 also exports to distinct type of NESs.  相似文献   

2.
Beta-catenin not only plays a role in cadherin-dependent cell adhesion, but also interacts with T-cell factor (TCF)/lymphoid enhancer factor-1 (LEF-1) to affect gene expression. In this report, we describe the effects of exogenous LEF-1 and of treatment with leptomycin B (LMB), a specific inhibitor of CRM1-medicated nuclear export, on the nuclear localization and export of beta-catenin. Normal epithelial cells overexpressing LEF-1 accumulate nuclear beta-catenin in a LEF-1 concentration-dependent manner. Nuclear beta-catenin, once imported from the cytoplasm, is rapidly removed from the nucleus. Treatment with LMB results in dramatic retention of nuclear beta-catenin in normal epithelial cells transfected with LEF-1, and this effect is intensified by treatment of N-Acetyl-leucyl-leucyl-norleucinal together with LMB. Colon carcinoma cells containing an adenomatous polyposis coli mutation retain significant amounts of LEF-1 induced nuclear beta-catenin considerably after the time-point when beta-catenin disappears from the nuclei of LEF-1 transfected normal epithelial cells. beta-Catenin binds directly to CRM1, and overexpression of CRM1 reduces nuclear beta-catenin-mediated transactivation function.  相似文献   

3.
Leptomycin B (LMB) is aStreptomycesmetabolite that inhibits nuclear export of the human immunodeficiency virus type 1 regulatory protein Rev at low nanomolar concentrations. Recently, LMB was shown to inhibit the function of CRM1, a receptor for the nuclear export signal (NES). Here we show evidence that LMB binds directly to CRM1 and that CRM1 is essential for NES-dependent nuclear export of proteins in both yeast and mammalian cells. Binding experiments with a biotinylated derivative of LMB and a HeLa cell extract led to identifying CRM1 as a major protein that bound to the LMB derivative. Microinjection of a purified anti-human CRM1 antibody into the mammalian nucleus specifically inhibited nuclear export of NES-containing proteins, as did LMB. Consistent with this, CRM1 was found to interact with NES, when assayed with immobilized NES and HeLa cell extracts. This association was disrupted by adding LMB or purified anti-human CRM1 antibody. The inhibition of CRM1 by LMB was also observed in fission yeast. The fission yeastcrm1mutant was defective in the nuclear export of NES-fused proteins, but not in the import of nuclear localization signal (NLS)-fused proteins. Interestingly, a protein containing both NES and NLS, which is expected to shuttle between nucleus and cytoplasm, was highly accumulated in the nucleus of thecrm1mutant cells or of cells treated with LMB. These results strongly suggest that CRM1 is the target of LMB and is an essential factor for nuclear export of proteins in eukaryotes.  相似文献   

4.
The nonstructural NS2 proteins of autonomous parvoviruses are known to act in a host cell-dependent manner and to play a role in viral DNA replication, efficient translation of viral mRNA, and/or encapsidation. Their exact function during the parvovirus life cycle remains, however, still obscure. We report here the characterization of the interaction with the NS2 proteins from the parvovirus minute virus of mice (MVM) and rat as well as mouse homologues of the human CRM1 protein, a member of the importin-beta family recently identified as an essential nuclear export factor. Using the two-hybrid system, we could detect the interaction between the carboxy-terminal region of rat CRM1 and each of the three isoforms of NS2 (P [or major], Y [or minor], and L [or rare]). NS2 proteins were further shown to interact with the full-length CRM1 by coimmunoprecipitation experiments using extracts from both mouse and rat cell lines. Our data show that CRM1 preferentially binds to the nonphosphorylated isoforms of NS2. Moreover, we observed that the treatment of MVM-infected cells with leptomycin B, a drug that specifically inhibits the CRM1-dependent nuclear export pathway, leads to a drastic accumulation of NS2 proteins in the nucleus. Both NS2 interaction with CRM1 and nuclear accumulation upon leptomycin B treatment strongly suggest that these nonstructural viral proteins are actively exported out of the nuclei of infected cells via a CRM1-mediated nuclear export pathway.  相似文献   

5.
For nuclear export of proteins, the formation of a ternary export complex composed of the export substrate, a cellular export factor and Ran-GTP is crucial. CRM1 is a cellular export factor for proteins containing leucine-rich nuclear export signals (NESs). Although the NES sequence is crucial for nuclear export, its exact role in the formation of the ternary export complex is controversial. Here we demonstrate an interaction between human CRM1 (hCRM1) and influenza A virus NS2 protein, which contains an NES motif in its N-terminal region. Replacement of the hydrophobic amino acids in the NES motif did not abolish NS2's interaction with hCRM1. Using our recently established systems for the generation of influenza virus or virus-like particles from cloned cDNAs, we found that NS2 is essential for nuclear export of influenza virus ribonucleoprotein (RNP) complexes, and that alteration of the NS2-NES abrogated this event and influenza virus generation. These findings suggest that the NS2-NES is not crucial for the interaction of this protein with hCRM1, but is for the formation of the ternary export complex with Ran-GTP.  相似文献   

6.
Incoming adenovirus type 2 (Ad2) and Ad5 shuttle bidirectionally along microtubules, biased to the microtubule-organizing center by the dynein/dynactin motor complex. It is unknown how the particles reach the nuclear pore complex, where capsids disassemble and viral DNA enters the nucleus. Here, we identified a novel link between nuclear export and microtubule-mediated transport. Two distinct inhibitors of the nuclear export factor CRM1, leptomycin B (LMB) and ratjadone A (RJA) or CRM1-siRNAs blocked adenovirus infection, arrested cytoplasmic transport of viral particles at the microtubule-organizing center or in the cytoplasm and prevented capsid disassembly and nuclear import of the viral genome. In mitotic cells where CRM1 is in the cytoplasm, adenovirus particles were not associated with microtubules but upon LMB treatment, they enriched at the spindle poles implying that CRM1 inhibited microtubule association of adenovirus. We propose that CRM1, a nuclear factor exported by CRM1 or a protein complex containing CRM1 is part of a sensor mechanism triggering the unloading of the incoming adenovirus particles from microtubules proximal to the nucleus of interphase cells.  相似文献   

7.
Glucocorticoid receptors (GRs) are shuttling proteins, yet they preferentially accumulate within either the cytoplasmic or nuclear compartment when overall rates of nuclear import or export, respectively, are limiting. Hormone binding releases receptors from stable heteromeric complexes that restrict their interactions with soluble nuclear import factors and contribute to their cytoplasmic retention. Although hormone dissociation leads to the rapid release of GRs from chromatin, unliganded nuclear receptors are delayed in their export. We have used a chimeric GR that contains a heterologous, leucine-rich nuclear export signal sequence (NES) to assess the consequences of accelerated receptor nuclear export. Leucine-rich NESs utilize the exportin 1/CRM1-dependent nuclear export pathway, which can be blocked by leptomycin B (LMB). The fact that rapid nuclear export of the NES-GR chimera, but not the protracted export of wild-type GR, is sensitive to LMB, suggests that GR does not require the exportin 1/CRM1 pathway to exit the nucleus. Despite its more rapid export, the NES-GR chimera appears indistinguishable from wild-type GR in its transactivation activity in transiently transfected cells. However, accelerated nuclear export of the NES-GR chimera is associated with an increased rate of hormone-dependent down-regulation. The increase in NES-GR down-regulation is overcome by LMB treatment, thereby confirming the connection between receptor nuclear export and down-regulation. Given the presence of a nuclear recycling pathway for GR, the protracted rate of receptor nuclear export may increase the efficiency of biological responses to secondary hormone challenges by limiting receptor down-regulation and hormone desensitization.  相似文献   

8.
Research on the export of proteins and nucleic acids from the nucleus to the cytoplasm has greatly gained from the discovery that the actinobacterial toxin leptomycin B (LMB) specifically inactivates the export receptor chromosomal region maintenance 1 (CRM1). Recently, it was shown that myxobacterial cytotoxins, named ratjadones (RATs), also bind to CRM1 and inhibit nuclear export. However, the reaction mechanism of RATs was not resolved. Here, we show that LMB and RAT A employ the same molecular mechanism to inactivate CRM1. Alkylation of residue Cys528 of CRM1 determines both LMB and RAT sensitivity and prevents nuclear export of CRM1 cargo proteins.  相似文献   

9.
10.
Herpes simplex virus type 1 (HSV-1) protein ICP27 facilitates the export of viral intronless mRNAs. ICP27 shuttles between the nucleus and cytoplasm, which has been shown to require a leucine-rich nuclear export sequence (NES). ICP27 export was reported to be sensitive to the CRM1 inhibitor leptomycin B (LMB) in HSV-1-infected cells but not in Xenopus oocytes, where ICP27 interacts with the export factor Aly/REF to access the TAP export pathway. Here, we show that ICP27 interacts with Aly/REF in HSV-1-infected mammalian cells and that Aly/REF stimulates export of viral intronless RNAs but does not cross-link to these RNAs. During infection, Aly/REF was no longer associated with splicing factor SC35 but moved into structures that colocalized with ICP27, suggesting that ICP27 recruits Aly/REF from spliceosomes to viral intronless RNAs. Further, ICP27 was found to interact in vivo with TAP but not with CRM1. In vitro export assays showed that ICP27 export was not sensitive to LMB but was blocked by a dominant-negative TAP deletion mutant lacking the nucleoporin interaction domain. These data suggest that ICP27 uses the TAP pathway to export viral RNAs. Interestingly, the leucine-rich N-terminal sequence was required for efficient export, even though ICP27 export was LMB insensitive. Thus, this region is required for efficient ICP27 export but does not function as a CRM1-dependent NES.  相似文献   

11.
The influenza virus genome replicates and forms a viral ribonucleoprotein complex (vRNP) with nucleoprotein (NP) and RNA polymerases in the nuclei of host cells. vRNP is then exported into the cytoplasm for viral morphogenesis at the cell membrane. Matrix protein 1 (M1) and nonstructural protein 2/nuclear export protein (NS2/NEP) work in the nuclear export of vRNP by associating with it. It was previously reported that influenza virus production was inhibited in Madin-Darby canine kidney (MDCK) cells cultured at 41 degrees C because nuclear export of vRNP was blocked by the dissociation of M1 from vRNP (A. Sakaguchi, E. Hirayama, A. Hiraki, Y. Ishida, and J. Kim, Virology 306:244-253, 2003). Previous data also suggested that a certain protein(s) synthesized only at 41 degrees C inhibited the association of M1 with vRNP. The potential of heat shock protein 70 (HSP70) as a candidate obstructive protein was investigated. Induction of HSP70 by prostaglandin A1 (PGA1) at 37 degrees C caused the suppression of virus production. The nuclear export of viral proteins was inhibited by PGA1, and M1 was not associated with vRNP, indicating that HSP70 prevents M1 from binding to vRNP. An immunoprecipitation assay showed that HSP70 was bound to vRNP, suggesting that the interaction of HSP70 with vRNP is the reason for the dissociation of M1. Moreover, NS2 accumulated in the nucleoli of host cells cultured at 41 degrees C, showing that the export of NS2 was also disturbed at 41 degrees C. However, NS2 was exported normally from the nucleus, irrespective of PGA1 treatment at 37 degrees C, suggesting that HSP70 does not influence NS2.  相似文献   

12.
The protein kinase inhibitor H7 blocks influenza virus replication, inhibits production of the matrix protein (M1), and leads to a retention of the viral ribonucleoproteins (vRNPs) in the nucleus at late times of infection (K. Martin and A. Helenius, Cell 67:117-130, 1991). We show here that production of assembled vRNPs occurs normally in H7-treated cells, and we have used H7 as a biochemical tool to trap vRNPs in the nucleus. When H7 was removed from the cells, vRNP export was specifically induced in a CHO cell line stably expressing recombinant M1. Similarly, fusion of cells expressing recombinant M1 from a Semliki Forest virus vector allowed nuclear export of vRNPs. However, export was not rescued when H7 was present in the cells, implying an additional role for phosphorylation in this process. The viral NS2 protein was undetectable in these systems. We conclude that influenza virus M1 is required to induce vRNP nuclear export but that cellular phosphorylation is an additional factor.  相似文献   

13.
v-ErbA, an oncogenic derivative of the thyroid hormone receptor alpha (TRalpha) carried by the avian erythroblastosis virus, contains several alterations including fusion of a portion of avian erythroblastosis virus Gag to its N terminus, N- and C-terminal deletions, and 13 amino acid substitutions. Nuclear export of v-ErbA occurs through a CRM1-mediated pathway. In contrast, nuclear export of TRalpha and another isoform, TRbeta, is CRM1-independent. To determine which amino acid changes in v-ErbA confer CRM1-dependent nuclear export, we expressed a panel of green and yellow fluorescent protein-tagged mutant and chimeric proteins in mammalian cells. The sensitivity of subcellular trafficking of these mutants to leptomycin B (LMB), a specific inhibitor of CRM1, was assessed by fluorescence microscopy. Our data showed that a nuclear export sequence resides within a 70-amino acid domain in the C-terminal portion of the p10 region of Gag, and in vitro binding assays demonstrated that Gag interacts directly with CRM1. However, a panel of ligand-binding domain mutants of v-ErbA lacking the Gag sequence exhibited greater nuclear localization in the presence of LMB, suggesting that the various amino acid substitutions/deletions may cause a conformation shift, unmasking an additional CRM1-dependent nuclear export sequence. In contrast, the altered DNA-binding domain of the oncoprotein did not contribute to CRM1-dependent nuclear export. Heterokaryon experiments revealed that v-ErbA did not undergo nucleocytoplasmic shuttling when the CRM1 export pathway was blocked by LMB treatment, suggesting that the ability to follow the export pathway used by TRalpha has been lost by the oncoprotein during its evolution. Our findings thus point to the intriguing possibility that acquisition of altered nuclear export capabilities contributes to the oncogenic properties of v-ErbA.  相似文献   

14.
We show that p27 localization is cell cycle regulated and we suggest that active CRM1/RanGTP-mediated nuclear export of p27 may be linked to cytoplasmic p27 proteolysis in early G1. p27 is nuclear in G0 and early G1 and appears transiently in the cytoplasm at the G1/S transition. Association of p27 with the exportin CRM1 was minimal in G0 and increased markedly during G1-to-S phase progression. Proteasome inhibition in mid-G1 did not impair nuclear import of p27, but led to accumulation of p27 in the cytoplasm, suggesting that export precedes degradation for at least part of the cellular p27 pool. p27-CRM1 binding and nuclear export were inhibited by S10A mutation but not by T187A mutation. A putative nuclear export sequence in p27 is identified whose mutation reduced p27-CRM1 interaction, nuclear export, and p27 degradation. Leptomycin B (LMB) did not inhibit p27-CRM1 binding, nor did it prevent p27 export in vitro or in heterokaryon assays. Prebinding of CRM1 to the HIV-1 Rev nuclear export sequence did not inhibit p27-CRM1 interaction, suggesting that p27 binds CRM1 at a non-LMB-sensitive motif. LMB increased total cellular p27 and may do so indirectly, through effects on other p27 regulatory proteins. These data suggest a model in which p27 undergoes active, CRM1-dependent nuclear export and cytoplasmic degradation in early G1. This would permit the incremental activation of cyclin E-Cdk2 leading to cyclin E-Cdk2-mediated T187 phosphorylation and p27 proteolysis in late G1 and S phase.  相似文献   

15.
Beta-catenin plays multiple roles in cell-cell adhesion and Wnt signal transduction. Through the Wnt signal, the cellular level of beta-catenin is constitutively regulated by the multicomponent destruction complex containing glycogen synthase kinase 3beta, axin, and adenomatous polyposis coli. Here, we present multiple lines of evidence to demonstrate that LZTS2 (lucine zipper tumor suppressor 2) interacts with beta-catenin, represses the transactivation of beta-catenin, and affects the subcellular localization of beta-catenin. The LZTS2 gene is located at 10q24.3, which is frequently lost in a variety of human tumors. A functional nuclear export signal (NES) was identified in the C terminus of the protein (amino acids 631 to 641). Appending this motif to green fluorescent protein (GFP) induced nuclear exclusion of the GFP fusion protein. However, introducing point mutations in either one or two leucine residues of this NES sequence abolished the nuclear exclusion of the LZTS2 protein. The nuclear export of LZTS2 can be blocked by leptomycin B (LMB), an inhibitor of the CRM1/exportin-alpha pathway. Intriguingly, beta-catenin colocalizes with LZTS2 in the cytoplasm of cells in the absence of LMB but in the nuclei of cells in the presence of LMB. Increasing the LZTS2 protein in cells reduces the level of nuclear beta-catenin in SW480 cells. Taken together, these data demonstrate that LZTS2 is a beta-catenin-interacting protein that can modulate beta-catenin signaling and localization.  相似文献   

16.
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that replicates and transcribes in the nucleus of infected cells. Recently, we have demonstrated that BDV phosphoprotein (P) can modulate its subcellular localization through binding to the protein X, which is encoded in the overlapping open reading frame (T. Kobayashi et al., J. Virol. 77:8099-8107, 2003). This observation suggested a unique strategy of intracellular trafficking of a viral protein that is essential for the formation of a functional BDV ribonucleoprotein (RNP). However, neither the mechanism nor the consequences of the cytoplasmic retention or nuclear export of BDV X-P complex have been elucidated. In this study, we show that BDV P contains a bona fide nuclear export signal (NES) and can actively shuttle between the nucleus and cytoplasm. A transient transfection analysis of cDNA clones that mimic the BDV bicistronic X/P mRNA revealed that the methionine-rich (MetR) domain of P is responsible for the X-dependent cytoplasmic localization of the protein complex. Mutational and functional analysis revealed that the methionine residues within the MetR domain are critical for the activity of the NES of P. Furthermore, leptomycin B or small interfering RNA for inhibition of CRM1 strongly suggested that a CRM1-dependent pathway mediates nuclear export of P. Fluorescence loss in photobleaching analysis confirmed the nucleocytoplasmic shuttling of P. Moreover, we revealed that the nuclear export of P is not involved in the inhibition of the polymerase activity by X in the BDV minireplicon system. Our results may provide a unique strategy for the nucleocytoplasmic transport of viral RNP, which could be critical for the formation of not only infectious virions in the cytoplasm but also a persistent viral state in the nucleus.  相似文献   

17.
18.
G Whittaker  M Bui    A Helenius 《Journal of virology》1996,70(5):2743-2756
The influenza virus nucleoprotein (NP), matrix protein (M1), and ribonucleoproteins (vRNPs) undergo regulated nuclear import and export during infection. Their trafficking was analyzed by using interspecies heterokaryons containing nuclei from infected and uninfected cells. Under normal conditions, it was demonstrated that the vRNPs which were assembled in the nucleus and transported to the cytosol were prevented from reimport into the nucleus. To be import competent, they must first assemble into virions and enter by the endosomal entry pathway. In influenza virus mutant ts51, in which M1 is defective, direct reimport took place but was inhibited by heterologous expression of wild-type M1. These data confirm M1's role as the inhibitor of premature nuclear import and as the main regulator of nuclear transport of vRNPs. In addition to this vRNP shuttling, M1 also shuttled between the nucleus and the cytoplasm in ts51-infected cells. When NP was expressed in the absence of virus infection, it was also found to be a shuttling protein.  相似文献   

19.
Studies have long been focused on the functions of annexin A2 in the cytoplasm. However, the involvement of annexin A2 in DNA replication as a part of primer recognition protein complex and the presence of nuclear export signal (NES) suggest that annexin A2 is also functional in the nucleus, and its localization in the nucleus is under regulation by interaction with other nuclear factors through its N-terminus. During the study of the mechanism of annexin A2 sequestering in the nucleus and the regulation of its export from the nucleus, in this study, we show that endogenous annexin A2 is present in both the cytoplasm and the nucleus in HeLa, PC-3 and DU-145 cells. While exogenously expressed annexin A2 is excluded from nuclei of annexin A2-null LNCaP cells in a CRM1 (Chromosome Maintenance Region 1) mediated nuclear export, endogenous annexin A2 in HeLa, PC-3 and DU-145 cell lines does not undergo the CRM1 mediated nuclear export. While investigating the mechanism of the nuclear retention of annexin A2, we found that an anti-annexin A2 antibody that recognizes the C-terminus of annexin A2 (D1/274.5) cannot recognize nuclear annexin A2, suggesting that the domain recognized by this antibody may be masked in the nuclei. In order to find out the role of annexin A2 C-terminus in the nuclear retention of annexin A2, we transiently transfected green fluorescence protein (GFP)-fused N-terminal 29 amino acids of annexin A2 to LNCaP, PC-3 and DU-145 cells, and determined that the C-terminus is not required for the nuclear retention of annexin A2. Based on the finding described above, we propose a model for nuclear retention of annexin A2 where the regulation sites reside in the N-terminus and are adjacent to the NES, and upon modification, the NES is exposed and annexin A2 is exported from the nucleus. Electronic Supplementary Material The online version of this article (doi) contains supplementary material, which is available to authorized users.  相似文献   

20.
Interleukin (IL)-15 is a ubiquitously expressed cytokine that in the basal state is mainly localized intracellularly, including the nucleus. Unexpectedly, tumor necrosis factor-α (TNF) time-dependently induced nuclear export of IL-15Rα and IL15. This process was inhibited by leptomycine B (LMB), a specific inhibitor of nuclear export receptor chromosomal region maintenance 1 (CRM1). In the presence of TNF, LMB co-treatment led to accumulation of both IL-15Rα and IL-15 in the nucleus of HeLa cells, suggesting that CRM1 facilitates nuclear export and that TNF enhances CRM1 activity. Once in the cytoplasm, IL-15 showed partial co-localization with late endosomes but very little with other organelles tested 4 h after TNF treatment. IL-15Rα showed co-localization with both early and late endosomes, and to a lesser extent with endoplasmic reticulum and Golgi. This indicates different kinetics and possibly different trafficking routes of IL-15 from its specific receptor. The TNF-induced secretion of IL-15 was attenuated by pretreatment of cells by brefeldin A that inhibits ER-to-Golgi transport, or by use of domain negative ADP-ribosylation factor 6 (ARF6) that interferes with exocytotic sorting. We conclude that TNF abolishes nuclear localization of IL-15 and IL-15Rα by acting on CRM1, and it facilitates exocytosis of IL-15 with the involvement of ARF6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号