首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vacuoles of radish (Raphanus sativus) contained a Ca2+-binding protein (RVCaB) of 43 kDa. We investigated the Ca2+-binding properties of the protein. RVCaB was expressed in Escherichia coli and was purified from an extract by ion-exchange chromatography, nitrocellulose membrane filtration, and gel-filtration column chromatography. Ca2+-binding properties of the recombinant protein were examined by equilibrium dialysis with 45Ca2+ and small dialysis buttons. The protein was estimated to bind 19Ca2+ ions per molecule with a Kd for Ca2+ of 3.4 mM. Ca2+ was bound to the protein even in the presence of high concentrations of Mg2+ or K+. The results suggested that the protein bound Ca2+ with high ion selectivity, high capacity, and low affinity.  相似文献   

2.
Yuasa K  Maeshima M 《Plant physiology》2000,124(3):1069-1078
To understand the roles of plant vacuoles, we have purified and characterized a major soluble protein from vacuoles of radish (Raphanus sativus cv Tokinashi-daikon) taproots. The results showed that it is a novel radish vacuole Ca(2+)-binding protein (RVCaB). RVCaB was released from the vacuolar membrane fraction by sonication, and purified by ion exchange and gel filtration column chromatography. RVCaB is an acidic protein and migrated on sodium dodecyl sulfate-polyacrylamide gel with an apparent molecular mass of 43 kD. The Ca(2+)-binding activity was confirmed by the (45)Ca(2+)-overlay assay. RVCaB was localized in the lumen, as the protein was recovered in intact vacuoles prepared from protoplasts and was resistant to trypsin digestion. Plant vacuoles store Ca(2+) using two active Ca(2+) uptake systems, namely Ca(2+)-ATPase and Ca(2+)/H(+) antiporter. Vacuolar membrane vesicles containing RVCaB accumulated more Ca(2+) than sonicated vesicles depleted of the protein at a wide range of Ca(2+) concentrations. A cDNA (RVCaB) encoding a 248-amino acid polypeptide was cloned. Its deduced sequence was identical to amino acid sequences obtained from several peptide fragments of the purified RVCaB. The deduced sequence is not homologous to that of other Ca(2+)-binding proteins such as calreticulin. RVCaB has a repetitive unique acidic motif, but not the EF-hand motif. The recombinant RVCaB expressed in Escherichia coli-bound Ca(2+) as evidenced by staining with Stains-all and migrated with an apparent molecular mass of 44 kD. These results suggest that RVCaB is a new type Ca(2+)-binding protein with high capacity and low affinity for Ca(2+) and that the protein could function as a Ca(2+)-buffer and/or Ca(2+)-sequestering protein in the vacuole.  相似文献   

3.
4.
Many plant ion channels have been identified, but little is known about how these transporters are regulated. We have investigated the regulation of a slow vacuolar (SV) ion channel in the tonoplast of barley aleurone storage protein vacuoles (SPV) using the patch-clamp technique. SPV were isolated from barley aleurone protoplasts incubated with CaCl2 in the presence or absence of gibberellic acid (GA) or abscisic acid (ABA). A slowly activating, voltage-dependent ion channel was identified in the SPV membrane. Mean channel conductance was 26 pS when 100 mM KCl was on both sides of the membrane, and reversal potential measurements indicated that most of the current was carried by K+. Treatment of protoplasts with GA3 increased whole-vacuole current density compared to SPV isolated from ABA- or CaCl2-treated cells. The opening of the SV channel was sensitive to cytosolic free Ca2+ concentration ([Ca2+]i) between 600 nM and 100 [mu]M, with higher [Ca2+]i resulting in a greater probability of channel opening. SV channel activity was reduced greater than 90% by the calmodulin (CaM) inhibitors W7 and trifluoperazine, suggesting that Ca2+ activates endogenous CaM tightly associated with the membrane. Exogenous CaM partially reversed the inhibitory effects of W7 on SV channel opening. CaM also sensitized the SV channel to Ca2+. In the presence of ~3.5 [mu]M CaM, specific current increased by approximately threefold at 2.5 [mu]M Ca2+ and by more than 13-fold at 10 [mu]M Ca2+. Since [Ca2+]i and the level of CaM increase in barley aleurone cells following exposure to GA, we suggest that Ca2+ and CaM act as signal transduction elements mediating hormone-induced changes in ion channel activity.  相似文献   

5.
Crystalline arrays of Ca2+-ATPase molecules develop in detergent-solubilized sarcoplasmic reticulum during incubation for several weeks at 2 degrees C under nitrogen in a medium of 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Electron microscopy of sectioned, negatively stained, freeze-fractured, and frozen-hydrated Ca2+-ATPase crystals indicates that they consist of stacked lamellar arrays of Ca2+-ATPase molecules. Prominent periodicities of ATPase molecules within the lamellae arise from a centered rectangular lattice of dimensions 164 x 55.5 A. The association of lamellae into three-dimensional stacks is assumed to involve interactions between the exposed hydrophilic headgroups of ATPase molecules, that is promoted by glycerol and 20 mM Ca2+. Similar Ca2+-induced crystals were observed with purified or purified and delipidated Ca2+-ATPase preparations at lower detergent/protein ratios. Cross-linking of Ca2+-ATPase crystals with glutaraldehyde protects the structure against conditions such as low Ca2+, high pH, elevated temperature, SH group reagents, high concentration of detergents, and removal of phospholipids by extraction with organic solvents that disrupt unfixed preparations.  相似文献   

6.
The effects of 3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-6-butyric acid (DBA), an antisickling agent, on the rates of Ca2+-dependent ATP hydrolysis by the human red cell (Ca2+ + Mg2+)-ATPase, have been studied in membranes (normal and sickle-cell) stripped of endogenous calmodulin. The activity of the enzyme is increased by DBA in a manner which is dependent on both the concentrations of DBA and Ca2+. At 37 degrees C, the normal red cell (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 133% in the presence of 1 mM DBA and 0.2 mM CaCl2, while the sickle-cell enzyme is stimulated maximally by 81% in the presence of 0.5 mM DBA and 0.2 mM CaCl2. The stimulation of the enzyme in both systems is antagonized by increasing the CaCl2 concentration in the medium to 0.5 mM, in contrast to the well established mode of activation by the modulator protein, calmodulin. This suggests that the two effectors, DBA and calmodulin, probably act by different mechanisms. From our present observations, we suggest that the antisickling effect of DBA may be connected with the mobilization of calcium within red cells.  相似文献   

7.
The ratio between Ca2+ uptake and Ca(2+)-dependent ATP hydrolysis measured in sarcoplasmic reticulum vesicles of rabbit skeletal muscle was found to vary greatly depending on the concentrations of oxalate or Pi used. In the presence of 5 mM oxalate, 20 mM Pi, and 1 mM Pi, the ratios found were in the range of 1.4-2.3, 0.6-0.8, and 0.01-0.10, respectively. The rates of Ca2+ exchange and ATP synthesis were measured at the steady state by adding trace amounts of 45Ca and 32Pi, after the vesicles had been loaded with Ca2+. In the presence of 1 mM Pi, 10 mM MgCl2, and 0.2 mM CaCl2, the ratio between Ca2+ exchange and ATP synthesis varied from 9 to 14. This ratio approached two when Ca2+ in the medium was reduced to a very low level, or when in the presence of Ca2+, dimethyl sulfoxide was added to the assay medium, or when the Pi concentration was raised from 1 to 20 mM. A ratio of two was also measured when the steady state was attained using ITP instead of ATP. In all the conditions that led to a ratio close to two, there was an increase in the fraction of enzyme phosphorylated by Pi. It is proposed that the coupling between Ca2+ translocation and ATP hydrolysis or synthesis is modulated by the phosphorylation of the ATPase by Pi.  相似文献   

8.
Using the fluorescent probes, Quin 2 and chlortetracycline, a comparative study of the Ca2+ and inositol-1.4.5-triphosphate (IP3)-induced Ca2+ release from rabbit skeletal muscle sarcoplasmic reticulum (SR) terminal cisterns and rat brain microsomal vesicles was carried out. It was shown that Ca2+ release from rat brain microsomal vesicles is induced both by IP3 and Ca2+, whereas that in SR terminal cisterns is induced only by Ca2+. Data from chlorotetracycline fluorescence analysis revealed that CaCl2 (50 microM) causes the release of 15-20% and 40-50% of the total Ca2+ pool accumulated in rat brain microsomal vesicles and rabbit SR terminal cisterns, respectively. Using Quin 2, it was found that IP3 used at the optimal concentration (1.5 mM) caused the release of 0.4-0.6 nmol of Ca2+ per mg microsomal protein, which makes up to 10-15% of the total Ca2+ pool. IP3 does not induce Ca2+ release in SR. Preliminary release of Ca2+ from brain microsomes induced by IP3 diminishes the liberation of this cation induced by Ca2+. It is suggested that brain microsomes contain a Ca2+ pool which is exhausted under the action of the both effectors, Ca2+ and IP3.  相似文献   

9.
Gelsolin is a 90,000-mol-wt protein with two actin and two high affinity calcium-binding sites that can form complexes with Ca2+ ions and monomeric actin. These complexes will nucleate filament growth and cap the barbed end of filaments, but will not fragment F-actin. Uncomplexed gelsolin severs F-actin. (Bryan, J., and L. M. Coluccio, 1985, J. Cell Biol., 101:1236-1244). These associations with actin are modulated by Ca2+. We have purified and characterized monoclonal antibodies that recognize Ca2+-induced conformational changes in human platelet gelsolin (G) and human plasma brevin (B), a closely related protein. Two hybridomas, 8G5 and 4F8, were adapted to growth in serum-free medium. 8G5 was found to secrete an IgG; 4F8 secretes an IgA. On immunoblots, both antibodies gave a strong reaction if Ca2+ was present, but gave barely detectable reactions if EGTA was used. 8G5 IgG-Sepharose columns retained gelsolin (as GCa2) or brevin (as BCa2) in 0.1 mM CaCl2 containing buffers, but released these molecules when eluted with 4 mM EGTA. 8G5 IgG-Sepharose columns also retained gelsolin-actin-Ca2+ complexes, as GA1Ca2 or higher oligomers from platelet extracts containing 0.1 mM CaCl2. Elution with 4 mM EGTA released material that gel filtration showed to be the EGTA-stable 130,000-mol-wt gelsolin-actin complex, GA1Ca1. The results demonstrate that the 8G5 IgG recognizes a conformation of gelsolin or brevin induced by binding of an easily exchangeable Ca2+ ion. Actin is not required for this conformational change, and the antibody discriminates, for example, GCa2 from G and GCa1. A 4F8 IgA-Sepharose column retained brevin or gelsolin in 0.1 mM CaCl2-containing buffers, but, like the 8G5 IgG, released these molecules when eluted with 4 mM EGTA. The 4F8 IgA column also retained gelsolin or brevin-actin-Ca2+ complexes, for example, as BA1Ca2, or higher oligomers, in 0.1 mM CaCl2. No protein was recovered, however, upon elution with 4 mM EGTA, but elution with 0.1 M glycine-HCl, pH 2.8, released bound brevin or gelsolin and actin. Similarly, preformed brevin-actin-Ca2+ complex, equilibrated with EGTA, was retained by 4F8 IgA-Sepharose. The results demonstrate that the 4F8 IgA recognizes a conformation of gelsolin or brevin that is maintained and presumably induced by binding of a nonexchangeable Ca2+ ion that is trapped in the complex.  相似文献   

10.
The effect of SH-reagents on cytoplasmic free Ca2+ concentration [( Ca2+]i) in rat thymocytes and B lymphoma Raji cells has been studied by means of fluorescent Ca2+ indicator quin-2. N-ethylmaleimide and ethylmercurythiosalicylate have been found to induce a dose-dependent increase of Ca2+ concentration from about 100 nM in the control cells up to 1000 nM. The effect is weakened with a decrease of the external Ca2+ concentration and is not observed already with Ca2+ concentration in the medium less than 0.2 mM. Reduction of the level of intracellular ATP does not suppress the Ca2+ response to SH-reagents. The effect of SH-reagents is weakened with a decrease of the temperature from 37 to 24 degrees C. Addition of 1 mM Mn2+ or Ca2+ into the standard medium containing 1 mM CaCl2 prevents Ca2+ concentration increase in the cytoplasm under the action of SH-reagents. The conclusion is made that in lymphocytes Ca2+ permeability is regulated by a protein(s) sensitive to the SH-reagent and that a high level of SH-group oxidation is necessary to maintain the low Ca2+ permeability of lymphocyte plasma membrane. Mechanisms of SH-reagents action on the Ca2+ level in the cell are discussed.  相似文献   

11.
Kinetic and molecular properties of the Ca2+/H+ antiporter in the vacuolar membrane of mung bean hypocotyls were examined and compared with Ca2+-ATPase. Ca2+ transport activities of both transporters were assayed separately by the filtration method using vacuolar membrane vesicles and 45Ca2+. Ca2+ uptake in the presence of ATP and bafilomycin A1, namely Ca2+-ATPase, showed a relatively low Vmax (6 nmol.min-1.mg-1 protein) and a low Km for Ca2+. The Ca2+/H+ antiporter activity driven by H+-pyrophosphatase showed a high Vmax (25 nmol.min-1.mg-1) and a relatively high Km for Ca2+. The cDNA for mung bean Ca2+/H+ antiporter (VCAX1) codes for a 444 amino-acid polypeptide. Two peptide-specific antibodies of the antiporter clearly reacted with a 42-kDa protein from vacuolar membranes and a cell lysate from a Escherichia coli transformant in which VCAX1 was expressed. These observations directly demonstrate that a low-affinity, high-capacity Ca2+/H+ antiporter and a high-affinity Ca2+-ATPase coexist in the vacuolar membrane. It is likely that the Ca2+/H+ antiporter removes excess Ca2+ in the cytosol to lower the Ca2+ concentration to micromolar levels after stimuli have increased the cytosolic Ca2+ level, the Ca2+-ATPase then acts to lower the cytosolic Ca2+ level further.  相似文献   

12.
Conditions were developed for the long-term stabilization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum, purified Ca2+-ATPase, and purified-delipidated Ca2+-ATPase preparations. The standard storage medium contains 0.1 M KCl, 10 mM K-3-(N-morpholino)propanesulfonate, pH 6.0, 3 mM MgCl2, 20 mM CaCl2, 20% glycerol, 3 mM NaN3, 5 mM dithiothreitol, 25 IU/ml Trasylol, 2 micrograms/ml 1,6-di-tert-butyl-p-cresol, 2 mg/ml protein, and 2-4 mg of detergent/mg of protein. Preparations stored under these conditions at 2 degrees C in a nitrogen atmosphere retain significant Ca2+-stimulated ATPase activity for periods of 5-6 months or longer when assayed in the presence of asolectin. The same conditions are also conducive for the formation of three-dimensional microcrystals of Ca2+-ATPase. Of the 49 detergents tested for solubilization, optimal crystallization of Ca2+-ATPase was obtained in sarcoplasmic reticulum solubilized with octaethylene glycol dodecyl ether at a detergent/protein weight ratio of 2, and with Brij 36T, Brij 56, and Brij 96 at a detergent/protein ratio of 4. Similar Ca2+-induced crystals of Ca2+-ATPase were obtained with purified or purified delipidated ATPase preparations at lower detergent/protein ratios. The stabilization of the ATPase activity in the presence of detergents is the combined effect of high Ca2+ (20 mM) and a relatively high glycerol concentration (20%). Ethylene glycol, glucose, sucrose, or myoinositol can substitute for glycerol with preservation of ATPase activity for several weeks in the presence of 20 mM Ca2+.Ca2+-induced association between ATPase molecules may be an essential requirement for preservation of enzymatic activity, both in intact sarcoplasmic reticulum and in solubilized preparations.  相似文献   

13.
A Ca2+-activatable cyclic nucleotide phosphodiesterase from bovine heart can be eluted from a DEAE-cellulose column either in the free form by buffers containing 0.1 mM ethylene glycol bis(beta-aminoethyl ether)N-N,N'N'-tetraacetic acid (EGTA) or as a complex of the enzyme with its protein modulator by buffers containing 0.01 mM CaCl2. A purification procedure based primarily on the significantly different affinity of the two forms of the enzyme for DEAE-cellulose was developed for the purification of the enzyme from bovine heart. The procedure involves ammonium sulfate fractionation, three chromatographic steps on DEAE-cellulose, and gel filtration on Sephadex G-200 with a 5000-fold purification over the crude extract. The purified enzyme has a specific activity of 120 mumol of cAMP/mg/min, can be activated 5-fold by Ca2+, but is only 80% pure as judged by analytical disc gel electrophoresis. The purified enzyme is unstable but can be stabilized by addition of Ca2+ and the protein modulator; this is in contrast to the less pure preparations of Ca2+-activatable phosphodiesterase which are destabilized by the protein modulator in the presence of Ca2+.  相似文献   

14.
Ultracytochemical localization of Ca2+ was investigated using the potassium pyroantimonate precipitation method during the development of phloem ganglion.The result showed that Ca2+ was mainly localized in the cell wall and intercellular spaces in the initiating phase.With the development of the phloem ganglion,the distribution of Ca2+ transferred to the vacuole,and the Ca2+ deposits in the cell wall and intercellular space decreased.At the later stage of the developmental phase.Ca2+ was distributed in the tonoplast and vacuole phagocytosis,and the vacuole became the main calcium storage in this phase.At the early stage of maturation of the phloem ganglion,most of the phloem ganglion cells'vacuoles cracked,and the cytoplastic Ca2+ content increased in large number.In the mature phloem ganglion,not only were there a few Ca2+ localized in the cytoplast of mature cells,but also in the differentiating cells in the vacuoles.Ca2+ was distributed in the tonoplast and vacuole contents;initiating cells almost had no Ca2+.In general,Ca2+ concentration in mature phloem ganglion cells was at a low level.The results indicated that the changes in Ca2+ distribution evoked the phloem ganglion generation,and Ca2+ regulated the physiological function of the phloem ganglion.  相似文献   

15.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.  相似文献   

16.
Rabbit skeletal sarcoplasmic reticulum vesicles were loaded with Ca2+ by ATP-dependent Ca2+ accumulation in the presence of low [Mg2+] (0.2-0.5 mM), and Ca2+ release was induced by addition of caffeine or ADP or by means of a Ca2+ jump. The levels of the phosphorylated intermediate (EP) and the tryptophan fluorescence of the Ca2+-ATPase were monitored during both the Ca2+ accumulation and the induced Ca2+ release using fast kinetic techniques. During Ca2+ uptake, both the EP level and the tryptophan fluorescence gradually decreased following a time course similar to that of the Ca2+ accumulation. Upon inducing Ca2+ release by addition of either caffeine or ADP, there was a transient increase of the EP level (from 0.3-0.5 to 1-2 nmol/mg protein) preceding the release of Ca2+. Similarly, a transient increase of the tryptophan fluorescence prior to Ca2+ release produced by the application of a Ca2+ jump was also found. These results indicate that the Ca2+-ATPase enzyme undergoes a rapid conformational change in response to triggering of Ca2+ release.  相似文献   

17.
The effect of Ca2+ on a gel-to-liquid crystal transition as well as the mechanical properties of dipalmitoylphosphatidylcholine bilayers was studied by an ultrasonic technique. Transition temperature increased with increase in Ca2+ concentration, whereas the variation of ultrasonic anomalies indicated that dipalmitoylphosphatidylcholine bilayers exhibited maximum pseudocritical fluctuation at a Ca2+ concentration of about 10 mM. Hardening of dipalmitoylphosphatidylcholine membranes due to the Ca2+ binding was observed above 10 mM CaCl2, suggesting the lateral compression of the lipid bilayer by bound Ca2+. Long-range attraction between bound Ca2+ and the head groups of surrounding lipid molecules was proposed from these calcium effects.  相似文献   

18.
The factors regulating Ca2+ transport by isolated sarcoplasmic reticulum (SR) vesicles have been studied using the fluorescent indicator Fluo-3 to monitor extravesicular free [Ca2+]. ATP, in the presence of 5 mM oxalate, which clamps intravesicular [Ca2+] at approximately 10 microM, induced a rapid decline in Fluo-3 fluorescence to reach a limiting steady state level. This corresponds to a residual medium [Ca2+] of 100 to 200 nM, and has been defined as [Ca2+]lim, whilst thermodynamic considerations predict a level of less than 1 nM. This value is similar to that measured in intact muscle with Ca2+ fluophores, where it is presumed that sarcoplasmic free [Ca2+] is a balance between pump and leaks. Fluorescence of Fluo-3 at [Ca2+]lim was decreased 70% to 80% by histidine, imidazole and cysteine. The K0.5 value for histidine was 3 mM, suggesting that residual [Ca2+]lim fluorescence is due to Zn2+. The level of Zn2+ in preparations of SR vesicles, measured by atomic absorption, was 0.47+/-0.04 nmol/mg, corresponding to 0.1 mol per mol Ca-ATPase. This is in agreement with findings of Papp et al. (Arch. Biochem. Biophys., 243 (1985) 254-263). Histidine, 20 mM, included in the buffer, gave a corrected value for [Ca2+]lim of 49+/-1.8 nM, which is still higher than predicted on thermodynamic grounds. A possible 'pump/leak' mechanism was tested by the effects of varying active Ca2+ transport 1 to 2 orders with temperature and pH. [Ca2+]lim remained relatively constant under these conditions. Alternate substrates acetyl phosphate and p-NPP gave similar [Ca2+]lim levels even though the latter substrate supported transport 500-fold slower than with ATP. In fact, [Ca2+]lim was lower with 10 mM p-NPP than with 5 mM ATP. The magnitude of passive efflux from Ca-oxalate loaded SR during the steady state of [Ca2+]lim was estimated by the unidirectional flux of 45Ca2+, and directly, following depletion of ATP, by measuring release of 40Ca2+, and was 0.02% of Vmax. Constant infusion of CaCl2 at [Ca2+]lim resulted in a new steady state, in which active transport into SR vesicles balances the infusion rate. Varying infusion rates allows determination of [Ca2+]-dependence of transport in the absence of chelating agents. Parameters of non-linear regression were Vmax=853 nmol/min per mg, K0.5(Ca)=279 nM, and nH(Ca)=1.89. Since conditions employed in this study are similar to those in the sarcoplasm of relaxed muscle, it is suggested that histidine, added to media in studies of intracellular Ca2+ transients, and in the relaxed state, will minimise contribution of Zn2+ to fluophore fluorescence, since it occurs at levels predicted in this study to cause significant overestimation of cytoplasmic free [Ca2+] in the relaxed state. Similar precautions may apply to non-muscle cells as well. This study also suggests that [Ca2+]lim in the resting state is a characteristic feature of Ca2+ pump function, rather than a balance between active transport and passive leakage pathways.  相似文献   

19.
Vacuoles of radish (Raphanus sativus) contained a Ca2+-binding protein (RVCaB) of 43 kDa. We investigated the Ca2+-binding properties of the protein. RVCaB was expressed in Escherichia coli and was purified from an extract by ion-exchange chromatography, nitrocellulose membrane filtration, and gel-filtration column chromatography. Ca2+-binding properties of the recombinant protein were examined by equilibrium dialysis with 45Ca2+ and small dialysis buttons. The protein was estimated to bind 19Ca2+ ions per molecule with a K d for Ca2+ of 3.4 mM. Ca2+ was bound to the protein even in the presence of high concentrations of Mg2+ or K+. The results suggested that the protein bound Ca2+ with high ion selectivity, high capacity, and low affinity.  相似文献   

20.
Small-angle neutron scattering (SANS) curves of unilamellar dipalmitoylphosphatidylcholine (DPPC) vesicles in 1-60mM CaCl2 were analyzed using a strip-function model of the phospholipid bilayer. The fraction of Ca2+ ions bound in the DPPC polar head group region was determined using Langmuir adsorption isotherm. In the gel phase, at 20 degrees C, the lipid bilayer thickness, dL, goes through a maximum as a function of CaCl2 concentration (dL=54.4A at approximately 2.5mM of CaCl2). Simultaneously, both the area per DPPC molecule AL, and the number of water molecules nW located in the polar head group region decrease (DeltaAL=AL(DPPC))-AL(DPPC+Ca)=2.3A2 and Deltan=n(W(DPPC))-n(W(DPPC+Ca))=0.8mol/mol at approximately 2.5mM of CaCl2). In the fluid phase, at 60 degrees C, the structural parameters d(L), A(L), and n(W) show evident changes with increasing Ca2+ up to a concentration C(Ca)(2+) < or = 10mM. DPPC bilayers affected by the calcium binding are compared to unilamellar vesicles prepared by extrusion. The structural parameters of DPPC vesicles prepared in 60mM CaCl2 (at 20 and 60 degrees C) are nearly the same as those for unilamellar vesicles without Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号